Effects of near‐fault acceleration and non‐acceleration pulses on pounding between in‐plan irregular fixed‐base and base‐isolated buildings

Summary Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 9
Main Authors Mazza, Fabio, Labernarda, Rodolfo
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2992

Cover

Abstract Summary Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses.
AbstractList Summary Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses.
Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses.
Author Labernarda, Rodolfo
Mazza, Fabio
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0003-1019-1333
  surname: Mazza
  fullname: Mazza, Fabio
  email: fabio.mazza@unical.it
  organization: Università della Calabria
– sequence: 2
  givenname: Rodolfo
  orcidid: 0000-0002-7628-1465
  surname: Labernarda
  fullname: Labernarda, Rodolfo
  email: rodolfo.labernarda@unical.it
  organization: Università della Calabria
BookMark eNp1kMFqGzEURUVxoUla6CcMZNPNOCPJkmaWxThNIJBF0vXwRvNkZFSNI2lwvMsnZNMf7JdUY5dAQrrSfU_n3gf3lMz84JGQr7Sa06piFzHpOWsa9oGcULEQJWOSz160EJ_IaYybTEpWixPye2UM6hSLwRQeIfx5ejYwulSA1ugwQLKDL8D3Rb6TP1-tt6OLmK1ZDaPvrV8XHaYdoi_sBG8dZBUCrkcHoTD2Efu87iDiIXISebZxcJAwz6N1U0r8TD4ayNlf_r1n5Ofl6n55Vd7c_rhefr8pNWs4KyU3WmulZG14t6CNpqIXwJQykgOVvGGdUohY1wIQlOiV6isGFZW0472s-Rk5P-Zuw_AwYkztZhiDzydbpqpqwWXdLDI1P1I6DDEGNK226dBACmBdS6t2qr7N1bdT9dnw7Y1hG-wvCPv30PKI7qzD_X-59u5-eeD_AvXSnI4
CitedBy_id crossref_primary_10_1016_j_prostr_2023_01_020
crossref_primary_10_1080_13632469_2023_2234500
crossref_primary_10_1007_s42417_023_00938_0
crossref_primary_10_1080_13467581_2023_2278455
crossref_primary_10_3390_buildings13020445
crossref_primary_10_1007_s10518_024_01963_4
crossref_primary_10_1007_s11831_024_10114_6
crossref_primary_10_1016_j_soildyn_2022_107715
crossref_primary_10_1016_j_engstruct_2022_114854
crossref_primary_10_1016_j_soildyn_2024_108667
crossref_primary_10_1016_j_istruc_2024_107544
crossref_primary_10_1002_eqe_4053
crossref_primary_10_3390_infrastructures9090143
crossref_primary_10_1007_s10518_023_01849_x
crossref_primary_10_1177_10775463241290398
crossref_primary_10_1155_2024_8845965
crossref_primary_10_1002_eqe_4146
Cites_doi 10.1002/eqe.2383
10.1080/13632469.2020.1866122
10.1002/stc.2926
10.2174/1874836801206010346
10.1061/(ASCE)0733‐9445(2004)130:3(433
10.1016/j.soildyn.2017.11.030
10.1016/j.soildyn.2020.106123
10.1002/stc.188
10.1061/(ASCE)0733‐9399(2004)130:9(1032
10.1002/stc.2683
10.1016/j.engstruct.2007.02.019
10.1016/j.engstruct.2019.05.003
10.1002/eqe.3184
10.1785/0120150226
10.1016/j.soildyn.2013.02.017
10.1016/j.engstruct.2009.03.024
10.1002/eqe.545
10.7763/IJET.2013.V5.585
10.1016/j.soildyn.2017.02.013
10.1016/j.engstruct.2018.02.038
10.1007/s10518‐020‐00961‐6
10.1002/stc.1870
10.1002/eqe.2989
10.1785/0120130191
10.1002/stc.2331
10.1016/j.soildyn.2020.106240
10.1016/j.soildyn.2010.08.006
10.1785/0120120320
10.1002/stc.1746
10.1002/eqe.2524
10.1080/13632469.2014.924890
10.1002/eqe.2901
10.1016/j.soildyn.2017.05.028
10.1016/j.soildyn.2017.06.022
10.1002/eqe.2758
10.1016/j.soildyn.2021.106626
10.1061/(ASCE)0733-9445(1990)116:2(455)
10.1016/j.engstruct.2020.111504
10.1002/stc.1661
10.1002/eqe.3261
10.1016/j.engstruct.2006.03.036
10.1785/0120060255
10.1016/j.engstruct.2009.01.016
10.1002/eqe.1126
10.1002/eqe.2446
10.1002/eqe.4290060105
10.1111/mice.12437
10.1002/eqe.2848
10.1016/j.soildyn.2018.01.044
10.1617/s11527‐015‐0642‐2
10.1080/13632469.2013.814611
ContentType Journal Article
Copyright 2022 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2992
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2992
STC2992
Genre article
GrantInformation_xml – fundername: Re.L.U.I.S.
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAMMB
AAYXX
ABJCF
ADMLS
AEFGJ
AEUYN
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2932-63fccc7768f3b419c15d5a277f63a16392b77eee885aea75d77d02a0161b3d683
IEDL.DBID 24P
ISSN 1545-2255
IngestDate Wed Aug 13 07:54:15 EDT 2025
Wed Oct 01 04:44:11 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-63fccc7768f3b419c15d5a277f63a16392b77eee885aea75d77d02a0161b3d683
Notes Funding information
Re.L.U.I.S.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7628-1465
0000-0003-1019-1333
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2992
PQID 2700436894
PQPubID 2034347
PageCount 22
ParticipantIDs proquest_journals_2700436894
crossref_citationtrail_10_1002_stc_2992
crossref_primary_10_1002_stc_2992
wiley_primary_10_1002_stc_2992_STC2992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 163
2006; 35
2021; 28
2017; 46
2016; 106
2008; 30
2013; 5
1978; 6
2018; 47
2022; 29
2020; 18
2007; 29
2015; 49
2013; 17
2004; 130
2013; 50
2019; 26
2020; 49
1986
2020; 133
2019; 119
2014; 18
2020; 136
2019; 193
2016; 45
2018; 108
2021; 149
2019; 34
2021; 228
2011; 31
2009
1996
2013; 103
2005
2007; 97
2007; 14
2014; 44
2014; 43
31
1999
2017; 96
1990; 116
2009; 31
2021
2019; 48
2015; 22
2017
2014
2013
2017; 100
2012; 6
2017; 101
2014; 104
2016; 24
2012; 41
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
AASHTO (e_1_2_10_45_1) 1999
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 46
  start-page: 2185
  issue: 13
  year: 2017
  end-page: 2207
  article-title: Accidental eccentricity in symmetric buildings due to wave passage effects arising from near‐fault pulse‐like ground motions
  publication-title: Earthq Eng Struct Dyn
– year: 2009
– volume: 100
  start-page: 144
  year: 2017
  end-page: 158
  article-title: Sensitivity to modelling and design of curved surface sliding bearings in the nonlinear seismic analysis of base‐isolated r.c. framed buildings
  publication-title: Soil Dyn. Earthq
– volume: 106
  start-page: 1011
  issue: 3
  year: 2016
  end-page: 1023
  article-title: A simple and quantitative algorithm for identifying pulse‐like ground motions based on zero velocity point method
  publication-title: Bull Seismol Soc Am
– year: 2005
– volume: 22
  start-page: 1295
  issue: 11
  year: 2015
  end-page: 1324
  article-title: Elimination of torsion and pounding of isolated asymmetric structures under near‐fault ground motions
  publication-title: Struct Control Health Monit
– volume: 31
  start-page: 1217
  issue: 5
  end-page: 1229
  article-title: Evaluation of current criteria in predicting the separation necessary to prevent seismic pounding between nonlinear hysteretic structural systems
  publication-title: Eng Struct
– volume: 31
  start-page: 1851
  issue: 8
  year: 2009
  end-page: 1864
  article-title: Non‐linear FEM analysis of earthquake‐induced pounding between the main building and the stairway tower of the Olive View Hospital
  publication-title: Eng Struct
– volume: 96
  start-page: 115
  year: 2017
  end-page: 127
  article-title: Structural and non‐structural intensity measures for the assessment of base‐isolated structures subjected to pulse‐like near‐fault earthquakes
  publication-title: Soil Dyn. Earthq
– volume: 29
  start-page: 237
  issue: 2
  year: 2007
  end-page: 247
  article-title: Torsional amplifications in asymmetric base‐isolated structures
  publication-title: Eng Struct
– volume: 103
  start-page: 2591
  issue: 5
  year: 2013
  end-page: 2603
  article-title: Quantitative identification of near‐fault pulse‐type ground motions based on energy
  publication-title: Bull Seismol Soc Am
– volume: 50
  start-page: 1
  year: 2013
  end-page: 15
  article-title: Directivity pulses in near‐fault ground motions—I: identification, extraction and modeling
  publication-title: Soil Dyn. Earthq
– volume: 47
  start-page: 757
  issue: 3
  year: 2018
  end-page: 771
  article-title: An efficient algorithm for identifying pulse‐like ground motions based on significant velocity half‐cycles
  publication-title: Earthq Eng Struct Dyn
– volume: 28
  issue: 3
  year: 2021
  article-title: Dissipative steel exoskeletons for the seismic control of reinforced concrete framed buildings
  publication-title: Struct Control Health Monit
– volume: 41
  start-page: 211
  issue: 2
  year: 2012
  end-page: 232
  article-title: Effects of near‐fault ground motions on the nonlinear dynamic response of base‐isolated r.c. framed buildings
  publication-title: Earthq Eng Struct Dyn
– year: 2014
– volume: 18
  start-page: 6795
  issue: 15
  year: 2020
  end-page: 6824
  article-title: Magnetic damped links to reduce internal seismic pounding in base‐isolated buildings
  publication-title: Bull. Earthq. Eng.
– volume: 26
  issue: 4
  year: 2019
  article-title: Effects of the long‐term behaviour of isolation devices on the seismic response of base‐isolated buildings
  publication-title: Struct Control Health Monit
– volume: 119
  start-page: 433
  year: 2019
  end-page: 453
  article-title: A novel OpenSees element for single curved surface sliding isolators
  publication-title: Soil Dyn. Earthq
– volume: 45
  start-page: 2405
  issue: 1
  year: 2016
  end-page: 2411
  article-title: An improved energy‐based approach for selecting pulse‐like ground motions
  publication-title: Earthq Eng Struct Dyn
– volume: 130
  start-page: 1032
  issue: 9
  year: 2004
  end-page: 1044
  article-title: Evaluation of peak ground velocity as a “good” intensity measure for near‐source ground motions
  publication-title: J Eng Mech
– volume: 43
  start-page: 985
  issue: 7
  year: 2014
  end-page: 1003
  article-title: An efficient methodology for simulating earthquake‐induced 3D pounding of buildings
  publication-title: Earthq Eng Struct Dyn
– volume: 31
  start-page: 59
  issue: 1
  year: 2011
  end-page: 76
  article-title: Response spectrum‐oriented pulse identification and magnitude scaling of forward directivity pulses in near‐fault ground motions
  publication-title: Soil Dyn. Earthq
– volume: 34
  start-page: 569
  issue: 7
  year: 2019
  end-page: 585
  article-title: Automated classification of near‐fault acceleration pulses using wavelet packets
  publication-title: Comput Aided Civ Inf Eng.
– volume: 108
  start-page: 111
  year: 2018
  end-page: 129
  article-title: Seismic demand of base‐isolated irregular structures subjected to pulse‐type earthquakes
  publication-title: Soil Dyn. Earthq
– volume: 29
  issue: 5
  year: 2022
  article-title: Seismic performance assessment of adjacent building structures connected with superelastic shape memory alloy damper and comparison with yield damper
  publication-title: Struct Control Health Monit
– volume: 6
  start-page: 346
  issue: 1
  year: 2012
  end-page: 354
  article-title: Nonlinear modeling and analysis of r.c. framed buildings located in a near‐fault area
  publication-title: Open Constr Build Technol J.
– volume: 130
  start-page: 433
  issue: 3
  year: 2004
  end-page: 442
  article-title: Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation
  publication-title: J. Struct. Eng.
– volume: 17
  start-page: 1162
  issue: 8
  year: 2013
  end-page: 1191
  article-title: Friction model for sliding bearings under seismic excitation
  publication-title: J. Earthq. Eng.
– volume: 48
  start-page: 1256
  issue: 11
  year: 2019
  end-page: 1276
  article-title: Near‐fault acceleration pulses and non‐acceleration pulses: effects on the inelastic displacement ratio
  publication-title: Earthq Eng Struct Dyn
– volume: 44
  start-page: 1409
  issue: 9
  year: 2014
  end-page: 1425
  article-title: Characterizing friction in sliding isolation bearings
  publication-title: Earthq Eng Struct Dyn
– volume: 5
  start-page: 406
  year: 2013
  end-page: 412
  article-title: Damped interconnection‐based mitigation of seismic pounding between adjacent R/C buildings
  publication-title: Int. J. Eng. Sci.
– volume: 104
  start-page: 2456
  issue: 5
  year: 2014
  end-page: 2466
  article-title: An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions
  publication-title: Bull Seismol Soc Am
– year: 1996
– volume: 35
  start-page: 577
  issue: 5
  year: 2006
  end-page: 593
  article-title: Uplift‐restraining friction pendulum seismic isolation system
  publication-title: Earthq Eng Struct Dyn
– start-page: 1
  year: 2021
  end-page: 29
  article-title: Internal pounding between structural parts of seismically isolated buildings
  publication-title: J. Earthq. Eng.
– volume: 24
  issue: 2
  year: 2016
  article-title: Experimental investigation of the re‐centring capability of curved surface sliders
  publication-title: Struct Control Health Monit
– volume: 49
  start-page: 716
  issue: 7
  year: 2020
  end-page: 734
  article-title: A vector‐valued intensity measure for near‐fault ground motions
  publication-title: Earthq Eng Struct Dyn
– volume: 163
  start-page: 93
  year: 2018
  end-page: 111
  article-title: Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction
  publication-title: Eng Struct
– volume: 14
  start-page: 895
  issue: 6
  year: 2007
  end-page: 914
  article-title: Self‐centring capacity of seismic isolation systems
  publication-title: Struct Control Health Monit
– volume: 18
  start-page: 1198
  issue: 8
  year: 2014
  end-page: 1216
  article-title: Numerical assessment of frictional heating in sliding bearings for seismic isolation
  publication-title: J Earthq Eng.
– volume: 30
  start-page: 110
  issue: 1
  year: 2008
  end-page: 125
  article-title: Base‐structure interaction of linearly isolated structures with lateral‐torsional coupling
  publication-title: Eng Struct
– volume: 116
  start-page: 455
  issue: 2
  year: 1990
  end-page: 474
  article-title: Teflon bearings in base isolation. II: modeling
  publication-title: J. Struct. Eng.
– volume: 133
  year: 2020
  article-title: Detection and extraction of velocity pulses of near‐fault ground motions using asymmetric Gaussian chirplet model
  publication-title: Soil Dyn. Earthq
– start-page: 2004
– volume: 46
  start-page: 1141
  issue: 7
  year: 2017
  end-page: 1159
  article-title: Damage‐based seismic planar pounding analysis of adjacent symmetric buildings considering inelastic structure‐soil‐structure interaction
  publication-title: Earthq Eng Struct Dyn
– volume: 97
  start-page: 1486
  issue: 5
  year: 2007
  end-page: 1501
  article-title: Quantitative classification of near‐fault ground motions using wavelet analysis
  publication-title: Bull Seismol Soc Am
– volume: 43
  start-page: 2261
  issue: 15
  year: 2014
  end-page: 2281
  article-title: Explicit determination of the pulse inherent in pulse‐like ground motions
  publication-title: Earthq Eng Struct Dyn
– volume: 22
  start-page: 71
  issue: 1
  year: 2015
  end-page: 90
  article-title: Seismic response analyses of an asymmetric base‐isolated building during the 2011 Great East Japan (Tohoku) Earthquake
  publication-title: Struct Control Health Monit
– volume: 6
  start-page: 31
  issue: 1
  year: 1978
  end-page: 42
  article-title: Aseismic design implications of near‐fault San Fernando earthquake records
  publication-title: Earthq Eng Struct Dyn
– volume: 136
  year: 2020
  article-title: Orientation of the strongest velocity pulses and the maximum structural response to pulse‐like ground motions
  publication-title: Soil Dyn. Earthq
– volume: 149
  year: 2021
  article-title: Automated detection of velocity pulses in ground motions based on adaptive similarity search in response spectrum
  publication-title: Soil Dyn. Earthq
– year: 2017
– volume: 193
  start-page: 121
  year: 2019
  end-page: 135
  article-title: Analysis of near‐fault pulse‐like seismic signals through variational mode decomposition technique
  publication-title: Eng Struct
– volume: 228
  year: 2021
  article-title: Base‐isolation of a hospital pavilion against in‐plane‐out‐of‐plane seismic collapse of masonry infills
  publication-title: Eng. Struct.
– start-page: 264
  year: 1986
  end-page: 287
– volume: 101
  start-page: 90
  year: 2017
  end-page: 104
  article-title: Near‐fault fling‐step ground motions: characteristics and simulation
  publication-title: Soil Dyn. Earthq
– year: 1999
– year: 2013
– volume: 49
  start-page: 2179
  issue: 6
  year: 2015
  end-page: 2196
  article-title: Modelling curved surface sliding bearings with bilinear constitutive law: effects on the response of seismically isolated buildings
  publication-title: Mater Struct.
– ident: e_1_2_10_31_1
  doi: 10.1002/eqe.2383
– ident: e_1_2_10_27_1
  doi: 10.1080/13632469.2020.1866122
– ident: e_1_2_10_39_1
  doi: 10.1002/stc.2926
– ident: e_1_2_10_62_1
  doi: 10.2174/1874836801206010346
– ident: e_1_2_10_51_1
  doi: 10.1061/(ASCE)0733‐9445(2004)130:3(433
– ident: e_1_2_10_5_1
  doi: 10.1016/j.soildyn.2017.11.030
– ident: e_1_2_10_16_1
  doi: 10.1016/j.soildyn.2020.106123
– ident: e_1_2_10_41_1
  doi: 10.1002/stc.188
– ident: e_1_2_10_49_1
– ident: e_1_2_10_10_1
  doi: 10.1061/(ASCE)0733‐9399(2004)130:9(1032
– ident: e_1_2_10_40_1
  doi: 10.1002/stc.2683
– ident: e_1_2_10_50_1
  doi: 10.1016/j.engstruct.2007.02.019
– ident: e_1_2_10_15_1
  doi: 10.1016/j.engstruct.2019.05.003
– ident: e_1_2_10_14_1
  doi: 10.1002/eqe.3184
– ident: e_1_2_10_22_1
  doi: 10.1785/0120150226
– ident: e_1_2_10_20_1
  doi: 10.1016/j.soildyn.2013.02.017
– ident: e_1_2_10_25_1
  doi: 10.1016/j.engstruct.2009.03.024
– ident: e_1_2_10_34_1
– ident: e_1_2_10_52_1
  doi: 10.1002/eqe.545
– ident: e_1_2_10_37_1
  doi: 10.7763/IJET.2013.V5.585
– ident: e_1_2_10_8_1
  doi: 10.1016/j.soildyn.2017.02.013
– ident: e_1_2_10_26_1
  doi: 10.1016/j.engstruct.2018.02.038
– ident: e_1_2_10_38_1
  doi: 10.1007/s10518‐020‐00961‐6
– ident: e_1_2_10_42_1
  doi: 10.1002/stc.1870
– ident: e_1_2_10_23_1
  doi: 10.1002/eqe.2989
– ident: e_1_2_10_59_1
– ident: e_1_2_10_12_1
  doi: 10.1785/0120130191
– ident: e_1_2_10_43_1
  doi: 10.1002/stc.2331
– ident: e_1_2_10_13_1
  doi: 10.1016/j.soildyn.2020.106240
– ident: e_1_2_10_48_1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.soildyn.2010.08.006
– ident: e_1_2_10_47_1
– ident: e_1_2_10_33_1
– ident: e_1_2_10_61_1
  doi: 10.1785/0120120320
– ident: e_1_2_10_29_1
  doi: 10.1002/stc.1746
– ident: e_1_2_10_53_1
  doi: 10.1002/eqe.2524
– ident: e_1_2_10_57_1
  doi: 10.1080/13632469.2014.924890
– ident: e_1_2_10_11_1
  doi: 10.1002/eqe.2901
– ident: e_1_2_10_44_1
  doi: 10.1016/j.soildyn.2017.05.028
– ident: e_1_2_10_32_1
– ident: e_1_2_10_2_1
  doi: 10.1016/j.soildyn.2017.06.022
– ident: e_1_2_10_46_1
– ident: e_1_2_10_21_1
  doi: 10.1002/eqe.2758
– ident: e_1_2_10_19_1
  doi: 10.1016/j.soildyn.2021.106626
– ident: e_1_2_10_24_1
– ident: e_1_2_10_55_1
  doi: 10.1061/(ASCE)0733-9445(1990)116:2(455)
– ident: e_1_2_10_6_1
  doi: 10.1016/j.engstruct.2020.111504
– ident: e_1_2_10_30_1
  doi: 10.1002/stc.1661
– ident: e_1_2_10_7_1
  doi: 10.1002/eqe.3261
– ident: e_1_2_10_28_1
  doi: 10.1016/j.engstruct.2006.03.036
– ident: e_1_2_10_3_1
  doi: 10.1785/0120060255
– ident: e_1_2_10_35_1
  doi: 10.1016/j.engstruct.2009.01.016
– ident: e_1_2_10_4_1
  doi: 10.1002/eqe.1126
– ident: e_1_2_10_18_1
  doi: 10.1002/eqe.2446
– ident: e_1_2_10_9_1
  doi: 10.1002/eqe.4290060105
– volume-title: Guide specification for seismic isolation design
  year: 1999
  ident: e_1_2_10_45_1
– ident: e_1_2_10_60_1
  doi: 10.1111/mice.12437
– ident: e_1_2_10_36_1
  doi: 10.1002/eqe.2848
– ident: e_1_2_10_56_1
  doi: 10.1016/j.soildyn.2018.01.044
– ident: e_1_2_10_58_1
  doi: 10.1617/s11527‐015‐0642‐2
– ident: e_1_2_10_54_1
  doi: 10.1080/13632469.2013.814611
SSID ssj0026285
Score 2.4121888
Snippet Summary Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo...
Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acceleration
Algorithms
Axial loads
Buildings
Coefficient of friction
concave surface sliders
Concrete
Concrete construction
Earthquakes
fixed‐base and base‐isolated structures
Frame structures
Friction
in‐plan irregular structures
near‐fault acceleration and non‐acceleration pulses
Pounding
Reinforced concrete
Retrofitting
Seismic activity
Seismic engineering
seismic pounding
Seismic zones
Sliders
Sliding
Stiffness
Subsoils
Superstructures
Velocity
Wavelet analysis
Title Effects of near‐fault acceleration and non‐acceleration pulses on pounding between in‐plan irregular fixed‐base and base‐isolated buildings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2992
https://www.proquest.com/docview/2700436894
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  issn: 1545-2255
  databaseCode: ADMLS
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1545-2255
  databaseCode: DR2
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  eissn: 1545-2263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026285
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PS8MwFA8yL3oQ_-J0SgTRU9maJs16lOkYgiK6wW4lzR8YjDnWDTz6Ebz4Bf0kvpe2mwMFL22SvgTa99L3e23ye4RcGoAMUmUusNwmEKCEcZDFzgScZ5FxzlrlNf3wGPcG_H4ohuWqStwLU_BDLD-44czw72uc4CrLmyvS0BwZCJMEXr-bIcAYtG7Gn5bBFm4N9FypXARgs6Iinm2xZtVz3RWt8OVPlOrdTHeX7JT4kN4UCt0jG3ayT7Z_sAYekM-CcTinr45OwFC_3j-cWoznVGkNTqRQKVUTQyG0h4trzdMF-ELoCiVMqAQD0nKpFh2h8HSsoDSb-RT1M-pGb9ZAMzo7PyQWoD4CkwWUCvUyrXZ-SAbdu36nF5TZFQINLp4FceS01hLCDRdlPEx0KIxQTEoXRwpQWsIyKa217bZQVklhpDQtphAighrjdnREanAb9phQE2YsdIAEEsx6ZAWEgIDDnNAwUMuFrE6uqwed6pJ6HDNgjNOCNJmloJIUVVInF0vJaUG38YtMo9JVWk64PMX_50imn_A6ufL6-7N_-tLv4Pnkv4KnZIvhpge_sqxBavPZwp4BFJln597m4Hj7zL4BYAHjcA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD-pBfGK1agTR02I3m2y6eJJiqVpFsIK3JZsHFEotfYBHf4IX_6C_xJnsbltBwdNms5PA7kwy32STbwg5NQAZpMpcYLlNIEAJ4yCLnQk4zyLjnLXKa_r-IW4_89sX8VIhl-VZmJwfYrbghiPDz9c4wHFB-mLOGjpGCsIkgfl3mcdhjJEX44-zaAvPBnqyVC4CMFpRMs_W2UXZ8qcvmgPMRZjq_Uxrg6wXAJFe5RrdJBU72CJrC7SB2-Qzpxwe01dHB2CpX-8fTk37E6q0Bi-S65SqgaEQ28PDH9XDKThDaAolzKgEHdJirxbtofCwr6A0Gvkc9SPqem_WQDV6O98lFuC-BzYLMBXui7za4x3y3LruNttBkV4h0ODjWRBHTmstId5wUcbDRIfCCMWkdHGkAKYlLJPSWttoCGWVFEZKU2cKMSLoMW5Eu2QJXsPuEWrCjIUOoECCaY-sgBgQgJgTGjqqu5BVyXn5oVNdcI9jCox-mrMmsxRUkqJKquRkJjnM-TZ-kamVukqLETdO8Qc6suknvErOvP7-bJ8-dZt43f-v4DFZaXfvO2nn5uHugKwyPAHht5nVyNJkNLWHgEsm2ZG3v29CU-Xz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WFEJ7aJO0odvmoUBJT07WsmWt6SnsZsmrIeQBORSMrEdZujjLrg2lp_yEXPoH-0s648dmExoIPVmWJWFJM5pP9ugbgE8GIYNUqfNsaGPcoPiRl0bOeGGYBsY5a1U5019Po4Or8OhaXLfgS3MWpuKHmH1wI80o12tScDs2bveeNXRKFIRxjOvvi1DEXfLn65_PuKM4nQ0syVJD4aHQioZ5tsN3m5oPbdE9wJyHqaWdGbyBb80bVu4lP3aKPN3Rvx6RN_5nF5bgdY0_2V4lMMvQstkKvJpjJXwLvytG4ym7cSxDRfhze-dUMcqZ0hqNVCUyTGWGZTcZPnyQPS7Q1mJVTFHAJmyQ1a5gbEiFxyOFqcnEfif_V-aGP63BbDKmZZOUwPshqgSiYLyvw3ZP38HVYP-yd-DV0Rs8jRCCe1HgtNYStzMuSEM_1r4wQnEpXRQoRIExT6W01na7QlklhZHSdLgiCIpiEnWDVVjAbtj3wIyfct8h0ogpqpIVuMVEnOeExoY6zudt-NzMY6JranOKsDFKKlJmnuBAJzTQbdialRxXdB7_KLPWiEJSK_Q0of_zRNYfh23YLuf0yfrJxWWPrh-eW3ATFs_6g-Tk8PT4I7zkdL6idGJbg4V8Uth1RD15ulFK91-HkgYZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+near%E2%80%90fault+acceleration+and+non%E2%80%90acceleration+pulses+on+pounding+between+in%E2%80%90plan+irregular+fixed%E2%80%90base+and+base%E2%80%90isolated+buildings&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Mazza%2C+Fabio&rft.au=Labernarda%2C+Rodolfo&rft.date=2022-09-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon