Effects of near‐fault acceleration and non‐acceleration pulses on pounding between in‐plan irregular fixed‐base and base‐isolated buildings
Summary Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of...
Saved in:
| Published in | Structural control and health monitoring Vol. 29; no. 9 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Pavia
John Wiley & Sons, Inc
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-2255 1545-2263 |
| DOI | 10.1002/stc.2992 |
Cover
| Abstract | Summary
Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses. |
|---|---|
| AbstractList | Summary
Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses. Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant seismic pounding due to torsional displacements. This is because during the sliding phase there is coincidence between the projection of the gravity mass centre of the superstructure and the stiffness centre of the CSSs. However, unexpected torsional pounding, with amplification in a near‐fault site, may be induced by variability of friction force and lateral stiffness of the CSSs, depending on the axial load and friction coefficient changes during an earthquake. In this work, structural pounding between fixed‐base and base‐isolated reinforced concrete (RC) L‐shaped buildings, placed adjacent to form T‐ and C‐shaped plans, is investigated. A simulated design of the original fixed‐base framed structures is preliminarily carried out in accordance to a former Italian code, for a medium‐risk seismic zone and a typical subsoil class. Then, seismic retrofitting with CSSs is carried out, to attain performance levels imposed by the current Italian code in a high‐risk seismic zone and for moderately‐soft subsoil. A computer code for the pounding analysis between fixed‐base and base‐isolated test structures is developed, in order to compare effects of nonlinear models of the CSSs that consider constant and variable axial load combined with friction coefficient at breakaway and stick–slip and as function of the sliding velocity, axial pressure and rising temperature at the sliding interface. Attention is focused on the pulse‐type nature of near‐fault earthquakes generally observed in the velocity time histories but largely overlooked in the acceleration ones. To this end, automated classification algorithms using wavelet analysis are adopted to compile three datasets of seismic input distinguishing between no‐pulse and velocity‐pulse, the latter further categorised into non‐acceleration and acceleration pulses and rotated along the direction most likely to contain strong pulses. |
| Author | Labernarda, Rodolfo Mazza, Fabio |
| Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0003-1019-1333 surname: Mazza fullname: Mazza, Fabio email: fabio.mazza@unical.it organization: Università della Calabria – sequence: 2 givenname: Rodolfo orcidid: 0000-0002-7628-1465 surname: Labernarda fullname: Labernarda, Rodolfo email: rodolfo.labernarda@unical.it organization: Università della Calabria |
| BookMark | eNp1kMFqGzEURUVxoUla6CcMZNPNOCPJkmaWxThNIJBF0vXwRvNkZFSNI2lwvMsnZNMf7JdUY5dAQrrSfU_n3gf3lMz84JGQr7Sa06piFzHpOWsa9oGcULEQJWOSz160EJ_IaYybTEpWixPye2UM6hSLwRQeIfx5ejYwulSA1ugwQLKDL8D3Rb6TP1-tt6OLmK1ZDaPvrV8XHaYdoi_sBG8dZBUCrkcHoTD2Efu87iDiIXISebZxcJAwz6N1U0r8TD4ayNlf_r1n5Ofl6n55Vd7c_rhefr8pNWs4KyU3WmulZG14t6CNpqIXwJQykgOVvGGdUohY1wIQlOiV6isGFZW0472s-Rk5P-Zuw_AwYkztZhiDzydbpqpqwWXdLDI1P1I6DDEGNK226dBACmBdS6t2qr7N1bdT9dnw7Y1hG-wvCPv30PKI7qzD_X-59u5-eeD_AvXSnI4 |
| CitedBy_id | crossref_primary_10_1016_j_prostr_2023_01_020 crossref_primary_10_1080_13632469_2023_2234500 crossref_primary_10_1007_s42417_023_00938_0 crossref_primary_10_1080_13467581_2023_2278455 crossref_primary_10_3390_buildings13020445 crossref_primary_10_1007_s10518_024_01963_4 crossref_primary_10_1007_s11831_024_10114_6 crossref_primary_10_1016_j_soildyn_2022_107715 crossref_primary_10_1016_j_engstruct_2022_114854 crossref_primary_10_1016_j_soildyn_2024_108667 crossref_primary_10_1016_j_istruc_2024_107544 crossref_primary_10_1002_eqe_4053 crossref_primary_10_3390_infrastructures9090143 crossref_primary_10_1007_s10518_023_01849_x crossref_primary_10_1177_10775463241290398 crossref_primary_10_1155_2024_8845965 crossref_primary_10_1002_eqe_4146 |
| Cites_doi | 10.1002/eqe.2383 10.1080/13632469.2020.1866122 10.1002/stc.2926 10.2174/1874836801206010346 10.1061/(ASCE)0733‐9445(2004)130:3(433 10.1016/j.soildyn.2017.11.030 10.1016/j.soildyn.2020.106123 10.1002/stc.188 10.1061/(ASCE)0733‐9399(2004)130:9(1032 10.1002/stc.2683 10.1016/j.engstruct.2007.02.019 10.1016/j.engstruct.2019.05.003 10.1002/eqe.3184 10.1785/0120150226 10.1016/j.soildyn.2013.02.017 10.1016/j.engstruct.2009.03.024 10.1002/eqe.545 10.7763/IJET.2013.V5.585 10.1016/j.soildyn.2017.02.013 10.1016/j.engstruct.2018.02.038 10.1007/s10518‐020‐00961‐6 10.1002/stc.1870 10.1002/eqe.2989 10.1785/0120130191 10.1002/stc.2331 10.1016/j.soildyn.2020.106240 10.1016/j.soildyn.2010.08.006 10.1785/0120120320 10.1002/stc.1746 10.1002/eqe.2524 10.1080/13632469.2014.924890 10.1002/eqe.2901 10.1016/j.soildyn.2017.05.028 10.1016/j.soildyn.2017.06.022 10.1002/eqe.2758 10.1016/j.soildyn.2021.106626 10.1061/(ASCE)0733-9445(1990)116:2(455) 10.1016/j.engstruct.2020.111504 10.1002/stc.1661 10.1002/eqe.3261 10.1016/j.engstruct.2006.03.036 10.1785/0120060255 10.1016/j.engstruct.2009.01.016 10.1002/eqe.1126 10.1002/eqe.2446 10.1002/eqe.4290060105 10.1111/mice.12437 10.1002/eqe.2848 10.1016/j.soildyn.2018.01.044 10.1617/s11527‐015‐0642‐2 10.1080/13632469.2013.814611 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
| DOI | 10.1002/stc.2992 |
| DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1545-2263 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_stc_2992 STC2992 |
| Genre | article |
| GrantInformation_xml | – fundername: Re.L.U.I.S. |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAMMB AAYXX ABJCF ADMLS AEFGJ AEUYN AFKRA AGQPQ AGXDD AIDQK AIDYY BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c2932-63fccc7768f3b419c15d5a277f63a16392b77eee885aea75d77d02a0161b3d683 |
| IEDL.DBID | 24P |
| ISSN | 1545-2255 |
| IngestDate | Wed Aug 13 07:54:15 EDT 2025 Wed Oct 01 04:44:11 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2932-63fccc7768f3b419c15d5a277f63a16392b77eee885aea75d77d02a0161b3d683 |
| Notes | Funding information Re.L.U.I.S. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7628-1465 0000-0003-1019-1333 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2992 |
| PQID | 2700436894 |
| PQPubID | 2034347 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2700436894 crossref_citationtrail_10_1002_stc_2992 crossref_primary_10_1002_stc_2992 wiley_primary_10_1002_stc_2992_STC2992 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Pavia |
| PublicationPlace_xml | – name: Pavia |
| PublicationTitle | Structural control and health monitoring |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2018; 163 2006; 35 2021; 28 2017; 46 2016; 106 2008; 30 2013; 5 1978; 6 2018; 47 2022; 29 2020; 18 2007; 29 2015; 49 2013; 17 2004; 130 2013; 50 2019; 26 2020; 49 1986 2020; 133 2019; 119 2014; 18 2020; 136 2019; 193 2016; 45 2018; 108 2021; 149 2019; 34 2021; 228 2011; 31 2009 1996 2013; 103 2005 2007; 97 2007; 14 2014; 44 2014; 43 31 1999 2017; 96 1990; 116 2009; 31 2021 2019; 48 2015; 22 2017 2014 2013 2017; 100 2012; 6 2017; 101 2014; 104 2016; 24 2012; 41 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 AASHTO (e_1_2_10_45_1) 1999 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 46 start-page: 2185 issue: 13 year: 2017 end-page: 2207 article-title: Accidental eccentricity in symmetric buildings due to wave passage effects arising from near‐fault pulse‐like ground motions publication-title: Earthq Eng Struct Dyn – year: 2009 – volume: 100 start-page: 144 year: 2017 end-page: 158 article-title: Sensitivity to modelling and design of curved surface sliding bearings in the nonlinear seismic analysis of base‐isolated r.c. framed buildings publication-title: Soil Dyn. Earthq – volume: 106 start-page: 1011 issue: 3 year: 2016 end-page: 1023 article-title: A simple and quantitative algorithm for identifying pulse‐like ground motions based on zero velocity point method publication-title: Bull Seismol Soc Am – year: 2005 – volume: 22 start-page: 1295 issue: 11 year: 2015 end-page: 1324 article-title: Elimination of torsion and pounding of isolated asymmetric structures under near‐fault ground motions publication-title: Struct Control Health Monit – volume: 31 start-page: 1217 issue: 5 end-page: 1229 article-title: Evaluation of current criteria in predicting the separation necessary to prevent seismic pounding between nonlinear hysteretic structural systems publication-title: Eng Struct – volume: 31 start-page: 1851 issue: 8 year: 2009 end-page: 1864 article-title: Non‐linear FEM analysis of earthquake‐induced pounding between the main building and the stairway tower of the Olive View Hospital publication-title: Eng Struct – volume: 96 start-page: 115 year: 2017 end-page: 127 article-title: Structural and non‐structural intensity measures for the assessment of base‐isolated structures subjected to pulse‐like near‐fault earthquakes publication-title: Soil Dyn. Earthq – volume: 29 start-page: 237 issue: 2 year: 2007 end-page: 247 article-title: Torsional amplifications in asymmetric base‐isolated structures publication-title: Eng Struct – volume: 103 start-page: 2591 issue: 5 year: 2013 end-page: 2603 article-title: Quantitative identification of near‐fault pulse‐type ground motions based on energy publication-title: Bull Seismol Soc Am – volume: 50 start-page: 1 year: 2013 end-page: 15 article-title: Directivity pulses in near‐fault ground motions—I: identification, extraction and modeling publication-title: Soil Dyn. Earthq – volume: 47 start-page: 757 issue: 3 year: 2018 end-page: 771 article-title: An efficient algorithm for identifying pulse‐like ground motions based on significant velocity half‐cycles publication-title: Earthq Eng Struct Dyn – volume: 28 issue: 3 year: 2021 article-title: Dissipative steel exoskeletons for the seismic control of reinforced concrete framed buildings publication-title: Struct Control Health Monit – volume: 41 start-page: 211 issue: 2 year: 2012 end-page: 232 article-title: Effects of near‐fault ground motions on the nonlinear dynamic response of base‐isolated r.c. framed buildings publication-title: Earthq Eng Struct Dyn – year: 2014 – volume: 18 start-page: 6795 issue: 15 year: 2020 end-page: 6824 article-title: Magnetic damped links to reduce internal seismic pounding in base‐isolated buildings publication-title: Bull. Earthq. Eng. – volume: 26 issue: 4 year: 2019 article-title: Effects of the long‐term behaviour of isolation devices on the seismic response of base‐isolated buildings publication-title: Struct Control Health Monit – volume: 119 start-page: 433 year: 2019 end-page: 453 article-title: A novel OpenSees element for single curved surface sliding isolators publication-title: Soil Dyn. Earthq – volume: 45 start-page: 2405 issue: 1 year: 2016 end-page: 2411 article-title: An improved energy‐based approach for selecting pulse‐like ground motions publication-title: Earthq Eng Struct Dyn – volume: 130 start-page: 1032 issue: 9 year: 2004 end-page: 1044 article-title: Evaluation of peak ground velocity as a “good” intensity measure for near‐source ground motions publication-title: J Eng Mech – volume: 43 start-page: 985 issue: 7 year: 2014 end-page: 1003 article-title: An efficient methodology for simulating earthquake‐induced 3D pounding of buildings publication-title: Earthq Eng Struct Dyn – volume: 31 start-page: 59 issue: 1 year: 2011 end-page: 76 article-title: Response spectrum‐oriented pulse identification and magnitude scaling of forward directivity pulses in near‐fault ground motions publication-title: Soil Dyn. Earthq – volume: 34 start-page: 569 issue: 7 year: 2019 end-page: 585 article-title: Automated classification of near‐fault acceleration pulses using wavelet packets publication-title: Comput Aided Civ Inf Eng. – volume: 108 start-page: 111 year: 2018 end-page: 129 article-title: Seismic demand of base‐isolated irregular structures subjected to pulse‐type earthquakes publication-title: Soil Dyn. Earthq – volume: 29 issue: 5 year: 2022 article-title: Seismic performance assessment of adjacent building structures connected with superelastic shape memory alloy damper and comparison with yield damper publication-title: Struct Control Health Monit – volume: 6 start-page: 346 issue: 1 year: 2012 end-page: 354 article-title: Nonlinear modeling and analysis of r.c. framed buildings located in a near‐fault area publication-title: Open Constr Build Technol J. – volume: 130 start-page: 433 issue: 3 year: 2004 end-page: 442 article-title: Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation publication-title: J. Struct. Eng. – volume: 17 start-page: 1162 issue: 8 year: 2013 end-page: 1191 article-title: Friction model for sliding bearings under seismic excitation publication-title: J. Earthq. Eng. – volume: 48 start-page: 1256 issue: 11 year: 2019 end-page: 1276 article-title: Near‐fault acceleration pulses and non‐acceleration pulses: effects on the inelastic displacement ratio publication-title: Earthq Eng Struct Dyn – volume: 44 start-page: 1409 issue: 9 year: 2014 end-page: 1425 article-title: Characterizing friction in sliding isolation bearings publication-title: Earthq Eng Struct Dyn – volume: 5 start-page: 406 year: 2013 end-page: 412 article-title: Damped interconnection‐based mitigation of seismic pounding between adjacent R/C buildings publication-title: Int. J. Eng. Sci. – volume: 104 start-page: 2456 issue: 5 year: 2014 end-page: 2466 article-title: An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions publication-title: Bull Seismol Soc Am – year: 1996 – volume: 35 start-page: 577 issue: 5 year: 2006 end-page: 593 article-title: Uplift‐restraining friction pendulum seismic isolation system publication-title: Earthq Eng Struct Dyn – start-page: 1 year: 2021 end-page: 29 article-title: Internal pounding between structural parts of seismically isolated buildings publication-title: J. Earthq. Eng. – volume: 24 issue: 2 year: 2016 article-title: Experimental investigation of the re‐centring capability of curved surface sliders publication-title: Struct Control Health Monit – volume: 49 start-page: 716 issue: 7 year: 2020 end-page: 734 article-title: A vector‐valued intensity measure for near‐fault ground motions publication-title: Earthq Eng Struct Dyn – volume: 163 start-page: 93 year: 2018 end-page: 111 article-title: Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction publication-title: Eng Struct – volume: 14 start-page: 895 issue: 6 year: 2007 end-page: 914 article-title: Self‐centring capacity of seismic isolation systems publication-title: Struct Control Health Monit – volume: 18 start-page: 1198 issue: 8 year: 2014 end-page: 1216 article-title: Numerical assessment of frictional heating in sliding bearings for seismic isolation publication-title: J Earthq Eng. – volume: 30 start-page: 110 issue: 1 year: 2008 end-page: 125 article-title: Base‐structure interaction of linearly isolated structures with lateral‐torsional coupling publication-title: Eng Struct – volume: 116 start-page: 455 issue: 2 year: 1990 end-page: 474 article-title: Teflon bearings in base isolation. II: modeling publication-title: J. Struct. Eng. – volume: 133 year: 2020 article-title: Detection and extraction of velocity pulses of near‐fault ground motions using asymmetric Gaussian chirplet model publication-title: Soil Dyn. Earthq – start-page: 2004 – volume: 46 start-page: 1141 issue: 7 year: 2017 end-page: 1159 article-title: Damage‐based seismic planar pounding analysis of adjacent symmetric buildings considering inelastic structure‐soil‐structure interaction publication-title: Earthq Eng Struct Dyn – volume: 97 start-page: 1486 issue: 5 year: 2007 end-page: 1501 article-title: Quantitative classification of near‐fault ground motions using wavelet analysis publication-title: Bull Seismol Soc Am – volume: 43 start-page: 2261 issue: 15 year: 2014 end-page: 2281 article-title: Explicit determination of the pulse inherent in pulse‐like ground motions publication-title: Earthq Eng Struct Dyn – volume: 22 start-page: 71 issue: 1 year: 2015 end-page: 90 article-title: Seismic response analyses of an asymmetric base‐isolated building during the 2011 Great East Japan (Tohoku) Earthquake publication-title: Struct Control Health Monit – volume: 6 start-page: 31 issue: 1 year: 1978 end-page: 42 article-title: Aseismic design implications of near‐fault San Fernando earthquake records publication-title: Earthq Eng Struct Dyn – volume: 136 year: 2020 article-title: Orientation of the strongest velocity pulses and the maximum structural response to pulse‐like ground motions publication-title: Soil Dyn. Earthq – volume: 149 year: 2021 article-title: Automated detection of velocity pulses in ground motions based on adaptive similarity search in response spectrum publication-title: Soil Dyn. Earthq – year: 2017 – volume: 193 start-page: 121 year: 2019 end-page: 135 article-title: Analysis of near‐fault pulse‐like seismic signals through variational mode decomposition technique publication-title: Eng Struct – volume: 228 year: 2021 article-title: Base‐isolation of a hospital pavilion against in‐plane‐out‐of‐plane seismic collapse of masonry infills publication-title: Eng. Struct. – start-page: 264 year: 1986 end-page: 287 – volume: 101 start-page: 90 year: 2017 end-page: 104 article-title: Near‐fault fling‐step ground motions: characteristics and simulation publication-title: Soil Dyn. Earthq – year: 1999 – year: 2013 – volume: 49 start-page: 2179 issue: 6 year: 2015 end-page: 2196 article-title: Modelling curved surface sliding bearings with bilinear constitutive law: effects on the response of seismically isolated buildings publication-title: Mater Struct. – ident: e_1_2_10_31_1 doi: 10.1002/eqe.2383 – ident: e_1_2_10_27_1 doi: 10.1080/13632469.2020.1866122 – ident: e_1_2_10_39_1 doi: 10.1002/stc.2926 – ident: e_1_2_10_62_1 doi: 10.2174/1874836801206010346 – ident: e_1_2_10_51_1 doi: 10.1061/(ASCE)0733‐9445(2004)130:3(433 – ident: e_1_2_10_5_1 doi: 10.1016/j.soildyn.2017.11.030 – ident: e_1_2_10_16_1 doi: 10.1016/j.soildyn.2020.106123 – ident: e_1_2_10_41_1 doi: 10.1002/stc.188 – ident: e_1_2_10_49_1 – ident: e_1_2_10_10_1 doi: 10.1061/(ASCE)0733‐9399(2004)130:9(1032 – ident: e_1_2_10_40_1 doi: 10.1002/stc.2683 – ident: e_1_2_10_50_1 doi: 10.1016/j.engstruct.2007.02.019 – ident: e_1_2_10_15_1 doi: 10.1016/j.engstruct.2019.05.003 – ident: e_1_2_10_14_1 doi: 10.1002/eqe.3184 – ident: e_1_2_10_22_1 doi: 10.1785/0120150226 – ident: e_1_2_10_20_1 doi: 10.1016/j.soildyn.2013.02.017 – ident: e_1_2_10_25_1 doi: 10.1016/j.engstruct.2009.03.024 – ident: e_1_2_10_34_1 – ident: e_1_2_10_52_1 doi: 10.1002/eqe.545 – ident: e_1_2_10_37_1 doi: 10.7763/IJET.2013.V5.585 – ident: e_1_2_10_8_1 doi: 10.1016/j.soildyn.2017.02.013 – ident: e_1_2_10_26_1 doi: 10.1016/j.engstruct.2018.02.038 – ident: e_1_2_10_38_1 doi: 10.1007/s10518‐020‐00961‐6 – ident: e_1_2_10_42_1 doi: 10.1002/stc.1870 – ident: e_1_2_10_23_1 doi: 10.1002/eqe.2989 – ident: e_1_2_10_59_1 – ident: e_1_2_10_12_1 doi: 10.1785/0120130191 – ident: e_1_2_10_43_1 doi: 10.1002/stc.2331 – ident: e_1_2_10_13_1 doi: 10.1016/j.soildyn.2020.106240 – ident: e_1_2_10_48_1 – ident: e_1_2_10_17_1 doi: 10.1016/j.soildyn.2010.08.006 – ident: e_1_2_10_47_1 – ident: e_1_2_10_33_1 – ident: e_1_2_10_61_1 doi: 10.1785/0120120320 – ident: e_1_2_10_29_1 doi: 10.1002/stc.1746 – ident: e_1_2_10_53_1 doi: 10.1002/eqe.2524 – ident: e_1_2_10_57_1 doi: 10.1080/13632469.2014.924890 – ident: e_1_2_10_11_1 doi: 10.1002/eqe.2901 – ident: e_1_2_10_44_1 doi: 10.1016/j.soildyn.2017.05.028 – ident: e_1_2_10_32_1 – ident: e_1_2_10_2_1 doi: 10.1016/j.soildyn.2017.06.022 – ident: e_1_2_10_46_1 – ident: e_1_2_10_21_1 doi: 10.1002/eqe.2758 – ident: e_1_2_10_19_1 doi: 10.1016/j.soildyn.2021.106626 – ident: e_1_2_10_24_1 – ident: e_1_2_10_55_1 doi: 10.1061/(ASCE)0733-9445(1990)116:2(455) – ident: e_1_2_10_6_1 doi: 10.1016/j.engstruct.2020.111504 – ident: e_1_2_10_30_1 doi: 10.1002/stc.1661 – ident: e_1_2_10_7_1 doi: 10.1002/eqe.3261 – ident: e_1_2_10_28_1 doi: 10.1016/j.engstruct.2006.03.036 – ident: e_1_2_10_3_1 doi: 10.1785/0120060255 – ident: e_1_2_10_35_1 doi: 10.1016/j.engstruct.2009.01.016 – ident: e_1_2_10_4_1 doi: 10.1002/eqe.1126 – ident: e_1_2_10_18_1 doi: 10.1002/eqe.2446 – ident: e_1_2_10_9_1 doi: 10.1002/eqe.4290060105 – volume-title: Guide specification for seismic isolation design year: 1999 ident: e_1_2_10_45_1 – ident: e_1_2_10_60_1 doi: 10.1111/mice.12437 – ident: e_1_2_10_36_1 doi: 10.1002/eqe.2848 – ident: e_1_2_10_56_1 doi: 10.1016/j.soildyn.2018.01.044 – ident: e_1_2_10_58_1 doi: 10.1617/s11527‐015‐0642‐2 – ident: e_1_2_10_54_1 doi: 10.1080/13632469.2013.814611 |
| SSID | ssj0026285 |
| Score | 2.4121888 |
| Snippet | Summary
Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo... Concave surface sliders (CSSs) are considered as an effective solution for retrofitting adjacent buildings irregular in plan that could undergo significant... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Acceleration Algorithms Axial loads Buildings Coefficient of friction concave surface sliders Concrete Concrete construction Earthquakes fixed‐base and base‐isolated structures Frame structures Friction in‐plan irregular structures near‐fault acceleration and non‐acceleration pulses Pounding Reinforced concrete Retrofitting Seismic activity Seismic engineering seismic pounding Seismic zones Sliders Sliding Stiffness Subsoils Superstructures Velocity Wavelet analysis |
| Title | Effects of near‐fault acceleration and non‐acceleration pulses on pounding between in‐plan irregular fixed‐base and base‐isolated buildings |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2992 https://www.proquest.com/docview/2700436894 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 issn: 1545-2255 databaseCode: ADMLS dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1545-2255 databaseCode: DR2 dateStart: 20020101 customDbUrl: isFulltext: true eissn: 1545-2263 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026285 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PS8MwFA8yL3oQ_-J0SgTRU9maJs16lOkYgiK6wW4lzR8YjDnWDTz6Ebz4Bf0kvpe2mwMFL22SvgTa99L3e23ye4RcGoAMUmUusNwmEKCEcZDFzgScZ5FxzlrlNf3wGPcG_H4ohuWqStwLU_BDLD-44czw72uc4CrLmyvS0BwZCJMEXr-bIcAYtG7Gn5bBFm4N9FypXARgs6Iinm2xZtVz3RWt8OVPlOrdTHeX7JT4kN4UCt0jG3ayT7Z_sAYekM-CcTinr45OwFC_3j-cWoznVGkNTqRQKVUTQyG0h4trzdMF-ELoCiVMqAQD0nKpFh2h8HSsoDSb-RT1M-pGb9ZAMzo7PyQWoD4CkwWUCvUyrXZ-SAbdu36nF5TZFQINLp4FceS01hLCDRdlPEx0KIxQTEoXRwpQWsIyKa217bZQVklhpDQtphAighrjdnREanAb9phQE2YsdIAEEsx6ZAWEgIDDnNAwUMuFrE6uqwed6pJ6HDNgjNOCNJmloJIUVVInF0vJaUG38YtMo9JVWk64PMX_50imn_A6ufL6-7N_-tLv4Pnkv4KnZIvhpge_sqxBavPZwp4BFJln597m4Hj7zL4BYAHjcA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD-pBfGK1agTR02I3m2y6eJJiqVpFsIK3JZsHFEotfYBHf4IX_6C_xJnsbltBwdNms5PA7kwy32STbwg5NQAZpMpcYLlNIEAJ4yCLnQk4zyLjnLXKa_r-IW4_89sX8VIhl-VZmJwfYrbghiPDz9c4wHFB-mLOGjpGCsIkgfl3mcdhjJEX44-zaAvPBnqyVC4CMFpRMs_W2UXZ8qcvmgPMRZjq_Uxrg6wXAJFe5RrdJBU72CJrC7SB2-Qzpxwe01dHB2CpX-8fTk37E6q0Bi-S65SqgaEQ28PDH9XDKThDaAolzKgEHdJirxbtofCwr6A0Gvkc9SPqem_WQDV6O98lFuC-BzYLMBXui7za4x3y3LruNttBkV4h0ODjWRBHTmstId5wUcbDRIfCCMWkdHGkAKYlLJPSWttoCGWVFEZKU2cKMSLoMW5Eu2QJXsPuEWrCjIUOoECCaY-sgBgQgJgTGjqqu5BVyXn5oVNdcI9jCox-mrMmsxRUkqJKquRkJjnM-TZ-kamVukqLETdO8Qc6suknvErOvP7-bJ8-dZt43f-v4DFZaXfvO2nn5uHugKwyPAHht5nVyNJkNLWHgEsm2ZG3v29CU-Xz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WFEJ7aJO0odvmoUBJT07WsmWt6SnsZsmrIeQBORSMrEdZujjLrg2lp_yEXPoH-0s648dmExoIPVmWJWFJM5pP9ugbgE8GIYNUqfNsaGPcoPiRl0bOeGGYBsY5a1U5019Po4Or8OhaXLfgS3MWpuKHmH1wI80o12tScDs2bveeNXRKFIRxjOvvi1DEXfLn65_PuKM4nQ0syVJD4aHQioZ5tsN3m5oPbdE9wJyHqaWdGbyBb80bVu4lP3aKPN3Rvx6RN_5nF5bgdY0_2V4lMMvQstkKvJpjJXwLvytG4ym7cSxDRfhze-dUMcqZ0hqNVCUyTGWGZTcZPnyQPS7Q1mJVTFHAJmyQ1a5gbEiFxyOFqcnEfif_V-aGP63BbDKmZZOUwPshqgSiYLyvw3ZP38HVYP-yd-DV0Rs8jRCCe1HgtNYStzMuSEM_1r4wQnEpXRQoRIExT6W01na7QlklhZHSdLgiCIpiEnWDVVjAbtj3wIyfct8h0ogpqpIVuMVEnOeExoY6zudt-NzMY6JranOKsDFKKlJmnuBAJzTQbdialRxXdB7_KLPWiEJSK_Q0of_zRNYfh23YLuf0yfrJxWWPrh-eW3ATFs_6g-Tk8PT4I7zkdL6idGJbg4V8Uth1RD15ulFK91-HkgYZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+near%E2%80%90fault+acceleration+and+non%E2%80%90acceleration+pulses+on+pounding+between+in%E2%80%90plan+irregular+fixed%E2%80%90base+and+base%E2%80%90isolated+buildings&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Mazza%2C+Fabio&rft.au=Labernarda%2C+Rodolfo&rft.date=2022-09-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2992 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |