An improved integrated Grid and MapReduce‐Hadoop architecture for spatial data: Hilbert TGS R‐Tree–based IGSIM
Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System...
Saved in:
| Published in | Concurrency and computation Vol. 31; no. 17 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
10.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.5202 |
Cover
| Abstract | Summary
Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work. |
|---|---|
| AbstractList | Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work. Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R ∗ ‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work. Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work. |
| Author | Singh, Hari Bawa, Seema |
| Author_xml | – sequence: 1 givenname: Hari orcidid: 0000-0003-0356-3813 surname: Singh fullname: Singh, Hari email: hari.singh@juit.ac.in, hsrawat2016@gmail.com organization: Jaypee University of Information Technology – sequence: 2 givenname: Seema surname: Bawa fullname: Bawa, Seema organization: Thapar University |
| BookMark | eNp1kE1OwzAQhS1UJMqPxBEssWHTYjv_7FAFaSUqEGQfTewxGIUkOA6oO46AxA05CS5FLBCsZhbfezPv7ZJR0zZIyCFnU86YOJEdTiPBxBYZ8ygQExYH4ehnF_EO2e37B8Y4ZwEfE3fWUPPY2fYZFTWNwzsLzq-5NYpCo-gSuhtUg8SP17c5qLbtKFh5bxxKN1ikurW078AZqKkCB6d0buoKraNFfktvvKqw6MXvFfTed5HfLpb7ZFtD3ePB99wjxcV5MZtPLq_yxezsciJF5t8NMRFxIkOlQlVxnulYJKFI01hrDTKrKsyyJAWdVlWqGYhIJJglCFnF0hB5sEeONrY-3tOAvSsf2sE2_mIpRCJ4FAZR4qnphpK27XuLupTG-Txt4yyYuuSsXBdb-mLLdbFecPxL0FnzCHb1FzrZoC-mxtW_XDm7Pv_iPwHiDYub |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_04_219 crossref_primary_10_1016_j_jag_2023_103298 crossref_primary_10_1007_s10586_024_04478_4 crossref_primary_10_3390_ijgi10110727 |
| Cites_doi | 10.1109/3PGCIC.2010.33 10.1016/j.ipl.2006.07.010 10.1109/CloudCom.2011.16 10.1002/cpe.3595 10.1016/j.ipm.2010.12.003 10.1145/93605.98741 10.1145/2766196.2766198 10.1145/1327452.1327492 10.1007/978-0-387-35973-1_620 10.1109/CCAA.2016.7813687 10.1145/170088.170403 10.1002/cpe.4015 10.1007/978-3-642-36071-8_8 10.1007/s11859-011-0790-3 10.1145/288692.288723 10.1109/IACS.2014.6841943 10.1109/GrC.2010.163 10.1007/3-540-45710-0_13 10.1109/NAS.2010.44 10.1504/IJCC.2013.055265 10.1023/A:1015617019423 10.1145/971699.318900 10.14778/2536274.2536283 10.1145/1559845.1559929 10.1109/ICDCS.2012.48 10.1016/j.future.2017.03.028 10.1109/ICCIS.2013.235 10.14778/1920841.1920903 10.1145/1328911.1328920 10.1002/cpe.3515 10.1007/s10586-011-0158-7 10.1002/cpe.3665 10.1145/2447481.2447489 10.1016/j.datak.2007.03.001 10.1145/971697.602266 10.14778/2536222.2536227 10.1145/1651263.1651266 10.1016/j.jnca.2009.04.002 10.4316/aece.2009.03002 10.1109/IPDPSW.2012.245 10.1109/CloudCom.2012.6427554 10.1002/cpe.3333 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.5202 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Architecture |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_5202 CPE5202 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2932-4e7267c4dd4db119f62742886fffac9bbe9978af8bb8f0a2527e97ea9b084e13 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Sun Jul 13 04:51:32 EDT 2025 Wed Oct 01 00:59:23 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Jan 22 16:40:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2932-4e7267c4dd4db119f62742886fffac9bbe9978af8bb8f0a2527e97ea9b084e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0356-3813 |
| PQID | 2272154357 |
| PQPubID | 2045170 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2272154357 crossref_citationtrail_10_1002_cpe_5202 crossref_primary_10_1002_cpe_5202 wiley_primary_10_1002_cpe_5202_CPE5202 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 September 2019 |
| PublicationDateYYYYMMDD | 2019-09-10 |
| PublicationDate_xml | – month: 09 year: 2019 text: 10 September 2019 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 101 2013; 2 2012 2011 2010 1990; 19 2002; 5 2013; 7753 2009 1998 2008 1994 2017; 29 2011; 34 1993 2012; 15 2002 2008; 4 2008; 51 2011; 16 2013; 6 2016; 14 2017; 73 2012; 3 2015; 27 2009; 32 2016; 3 2014; 2 1984; 14 1987 2009; 9 2017 2016 2014 2012; 48 2013 2007; 63 2010; 3 2016; 28 2014; 6 1985; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Arge L (e_1_2_8_49_1) 2008; 4 e_1_2_8_41_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_57_1 Singh H (e_1_2_8_3_1) 2016; 3 Khan BUI (e_1_2_8_17_1) 2014; 2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Rao BT (e_1_2_8_23_1) 2011; 34 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Singh H (e_1_2_8_38_1) 2016; 14 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Singh H (e_1_2_8_6_1) 2012; 3 Sellis T (e_1_2_8_51_1) 1987 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – year: 2011 – volume: 27 start-page: 4140 issue: 16 year: 2015 end-page: 4155 article-title: HybridMR: a new approach for hybrid MapReduce combining desktop grid and cloud infrastructures publication-title: Concurrency Computat Pract Exper – volume: 28 start-page: 2416 issue: 8 year: 2016 end-page: 2439 article-title: BIGhybrid: a simulator for MapReduce applications in hybrid distributed infrastructures validated with the Grid5000 experimental platform publication-title: Concurrency Computat Pract Exper – year: 2009 – volume: 3 start-page: 97 issue: 8 year: 2016 end-page: 103 article-title: Scalability and fault tolerance of MapReduce for spatial data publication-title: Glob J Eng Sci Res Manag – volume: 15 start-page: 145 issue: 2 year: 2012 end-page: 161 article-title: Reliable MapReduce computing on opportunistic resources publication-title: Clust Comput – volume: 48 start-page: 873 issue: 5 year: 2012 end-page: 888 article-title: MapReduce indexing strategies: studying scalability and efficiency publication-title: Inf Process Manag – volume: 63 start-page: 397 issue: 2 year: 2007 end-page: 413 article-title: WeR‐trees publication-title: Data Knowl Eng – volume: 32 start-page: 961 issue: 5 year: 2009 end-page: 975 article-title: BitDew: a data management and distribution service with multi‐protocol file transfer and metadata abstraction publication-title: J Netw Comput Appl – volume: 27 start-page: 5686 issue: 18 year: 2015 end-page: 5699 article-title: Evaluating map reduce tasks scheduling algorithms over cloud computing infrastructure publication-title: Concurrency Computat Pract Exper – volume: 6 start-page: 3 issue: 3 year: 2014 end-page: 10 article-title: The ecosystem of SpatialHadoop publication-title: SIGSPATIAL Special – volume: 2 start-page: 150 issue: 3 year: 2013 end-page: 170 article-title: Scalable data management for map‐reduce‐based data‐intensive applications: a view for cloud and hybrid infrastructure publication-title: Int J Cloud Comput – volume: 14 start-page: 302 issue: 11 year: 2016 end-page: 309 article-title: IGSIM: an integrated architecture for high performance spatial data analysis publication-title: Int J Comput Sci Inf Secur – volume: 4 start-page: Article No 9 issue: 1 year: 2008 article-title: The priority R‐tree: a practically efficient and worst‐case optimal R‐tree publication-title: ACM Trans Algorithms – volume: 3 start-page: 472 issue: 1‐2 year: 2010 end-page: 483 article-title: The performance of MapReduce: an in‐depth study publication-title: Proc VLDB Endowment – volume: 27 start-page: 1734 issue: 7 year: 2015 end-page: 1766 article-title: Modeling and optimizing MapReduce programs publication-title: Concurrency Computat Pract Exper – year: 2016 – volume: 6 start-page: 1230 issue: 12 year: 2013 end-page: 1233 article-title: A demonstration of SpatialHadoop: an efficient mapreduce framework for spatial data publication-title: Proc VLDB Endow – start-page: 543 year: 2008 end-page: 547 – year: 2014 – year: 1994 – volume: 3 start-page: 36 issue: 3 year: 2012 end-page: 40 article-title: Evolution of grid‐GIS systems publication-title: Int J Comput Sci Telecommun – year: 2010 – volume: 73 start-page: 32 year: 2017 end-page: 43 article-title: A MapReduce‐based scalable discovery and indexing of structured big data publication-title: Futur Gener Comput Syst – year: 1998 – year: 2012 – start-page: 507 year: 1987 end-page: 518 – volume: 14 start-page: 47 issue: 2 year: 1984 end-page: 57 article-title: R‐trees: a dynamic index structure for spatial searching publication-title: ACM SIGMOD Rec – volume: 29 start-page: 1 issue: 8 year: 2017 end-page: 12 article-title: A parallel C4.5 decision tree algorithm based on MapReduce publication-title: Concurrency Computat Pract Exper – volume: 19 start-page: 322 issue: 2 year: 1990 end-page: 331 article-title: The R ‐tree: an efficient and robust access method for points and rectangles publication-title: ACM SIGMOD Rec – volume: 5 start-page: 237 issue: 3 year: 2002 end-page: 246 article-title: Condor‐G: a computation management agent for multi‐institutional grids publication-title: Clust Comput – start-page: 149 year: 2002 end-page: 162 – year: 2008 – volume: 16 start-page: 513 issue: 6 year: 2011 end-page: 519 article-title: Parallel bulk‐loading of spatial data with MapReduce. an R‐tree case publication-title: Wuhan Univ J Nat Sci – volume: 7753 start-page: 115 year: 2013 end-page: 125 – volume: 6 start-page: 1009 issue: 11 year: 2013 end-page: 1020 article-title: Hadoop GIS: a high performance spatial data warehousing system over mapreduce publication-title: Proc VLDB Endow – volume: 101 start-page: 6 issue: 1 year: 2007 end-page: 12 article-title: Execution time analysis of a top‐down R‐tree construction algorithm publication-title: Inf Process Lett – volume: 2 start-page: 1 issue: 1 year: 2014 end-page: 7 article-title: Critical insight for MapReduce optimization in Hadoop publication-title: Int J Comput Sci Control Eng – volume: 51 start-page: 107 issue: 1958 year: 2008 end-page: 113 article-title: MapReduce: simplified data processing on large clusters publication-title: Mag Commun ACM – year: 2017 – year: 1993 – volume: 9 start-page: 7 issue: 3 year: 2009 end-page: 11 article-title: GEOBARN: a practical grid geospatial database system publication-title: Adv Electr Comput Eng – volume: 34 start-page: 28 issue: 9 year: 2011 end-page: 32 article-title: Survey on improved scheduling in Hadoop MapReduce in cloud environments publication-title: Int J Comput Appl – volume: 14 start-page: 17 issue: 4 year: 1985 end-page: 31 article-title: Direct spatial search on pictorial databases using packed R‐trees publication-title: ACM SIGMOD Rec – year: 2013 – ident: e_1_2_8_10_1 doi: 10.1109/3PGCIC.2010.33 – ident: e_1_2_8_45_1 – start-page: 507 volume-title: Proceedings of the 13th International Conference on Very Large Data Bases year: 1987 ident: e_1_2_8_51_1 – ident: e_1_2_8_41_1 doi: 10.1016/j.ipl.2006.07.010 – ident: e_1_2_8_24_1 doi: 10.1109/CloudCom.2011.16 – ident: e_1_2_8_26_1 doi: 10.1002/cpe.3595 – ident: e_1_2_8_20_1 doi: 10.1016/j.ipm.2010.12.003 – ident: e_1_2_8_50_1 doi: 10.1145/93605.98741 – ident: e_1_2_8_29_1 doi: 10.1145/2766196.2766198 – ident: e_1_2_8_5_1 doi: 10.1145/1327452.1327492 – ident: e_1_2_8_53_1 doi: 10.1007/978-0-387-35973-1_620 – volume: 3 start-page: 97 issue: 8 year: 2016 ident: e_1_2_8_3_1 article-title: Scalability and fault tolerance of MapReduce for spatial data publication-title: Glob J Eng Sci Res Manag – ident: e_1_2_8_4_1 doi: 10.1109/CCAA.2016.7813687 – ident: e_1_2_8_40_1 – volume: 14 start-page: 302 issue: 11 year: 2016 ident: e_1_2_8_38_1 article-title: IGSIM: an integrated architecture for high performance spatial data analysis publication-title: Int J Comput Sci Inf Secur – ident: e_1_2_8_48_1 doi: 10.1145/170088.170403 – ident: e_1_2_8_22_1 doi: 10.1002/cpe.4015 – ident: e_1_2_8_16_1 doi: 10.1007/978-3-642-36071-8_8 – ident: e_1_2_8_58_1 – ident: e_1_2_8_32_1 doi: 10.1007/s11859-011-0790-3 – ident: e_1_2_8_42_1 doi: 10.1145/288692.288723 – ident: e_1_2_8_25_1 doi: 10.1109/IACS.2014.6841943 – ident: e_1_2_8_30_1 doi: 10.1109/GrC.2010.163 – ident: e_1_2_8_44_1 doi: 10.1007/3-540-45710-0_13 – ident: e_1_2_8_31_1 doi: 10.1109/NAS.2010.44 – ident: e_1_2_8_8_1 doi: 10.1504/IJCC.2013.055265 – ident: e_1_2_8_55_1 doi: 10.1023/A:1015617019423 – ident: e_1_2_8_18_1 – volume: 34 start-page: 28 issue: 9 year: 2011 ident: e_1_2_8_23_1 article-title: Survey on improved scheduling in Hadoop MapReduce in cloud environments publication-title: Int J Comput Appl – ident: e_1_2_8_46_1 doi: 10.1145/971699.318900 – ident: e_1_2_8_28_1 doi: 10.14778/2536274.2536283 – ident: e_1_2_8_52_1 doi: 10.1145/1559845.1559929 – ident: e_1_2_8_11_1 doi: 10.1109/ICDCS.2012.48 – ident: e_1_2_8_19_1 doi: 10.1016/j.future.2017.03.028 – ident: e_1_2_8_34_1 doi: 10.1109/ICCIS.2013.235 – ident: e_1_2_8_15_1 doi: 10.14778/1920841.1920903 – volume: 4 start-page: Article No 9 issue: 1 year: 2008 ident: e_1_2_8_49_1 article-title: The priority R‐tree: a practically efficient and worst‐case optimal R‐tree publication-title: ACM Trans Algorithms doi: 10.1145/1328911.1328920 – ident: e_1_2_8_56_1 – ident: e_1_2_8_7_1 doi: 10.1002/cpe.3515 – volume: 3 start-page: 36 issue: 3 year: 2012 ident: e_1_2_8_6_1 article-title: Evolution of grid‐GIS systems publication-title: Int J Comput Sci Telecommun – ident: e_1_2_8_13_1 doi: 10.1007/s10586-011-0158-7 – ident: e_1_2_8_14_1 doi: 10.1002/cpe.3665 – ident: e_1_2_8_27_1 doi: 10.1145/2447481.2447489 – ident: e_1_2_8_54_1 doi: 10.1016/j.datak.2007.03.001 – ident: e_1_2_8_33_1 – ident: e_1_2_8_47_1 – ident: e_1_2_8_43_1 doi: 10.1145/971697.602266 – ident: e_1_2_8_35_1 doi: 10.14778/2536222.2536227 – ident: e_1_2_8_37_1 doi: 10.1145/1651263.1651266 – ident: e_1_2_8_2_1 – volume: 2 start-page: 1 issue: 1 year: 2014 ident: e_1_2_8_17_1 article-title: Critical insight for MapReduce optimization in Hadoop publication-title: Int J Comput Sci Control Eng – ident: e_1_2_8_9_1 doi: 10.1016/j.jnca.2009.04.002 – ident: e_1_2_8_57_1 – ident: e_1_2_8_39_1 doi: 10.4316/aece.2009.03002 – ident: e_1_2_8_36_1 doi: 10.1109/IPDPSW.2012.245 – ident: e_1_2_8_12_1 doi: 10.1109/CloudCom.2012.6427554 – ident: e_1_2_8_21_1 doi: 10.1002/cpe.3333 |
| SSID | ssj0011031 |
| Score | 2.2356741 |
| Snippet | Summary
Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data... Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Analytics Architecture Computational grids Computer networks Data analysis Distributed processing Efficiency Geographic information systems grid Hadoop MapReduce Programming environments Queries Spatial data spatial index spatial query |
| Title | An improved integrated Grid and MapReduce‐Hadoop architecture for spatial data: Hilbert TGS R‐Tree–based IGSIM |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5202 https://www.proquest.com/docview/2272154357 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSgMxFIaDdOXGesV6I4Loauokc8nEXSm9CRVpKwguhiSTQFGmpR03rnwEwTf0SUwyM20VBXE1mxzmkpycP5mT7wBwhjniXFKqPc0L9QIlEk7kGbx2GCCiDHrSNaeR-zdh986_vg_ui6xKcxYm50MsNtyMZ9j52jg44_PLJTRUTGU9wJYjibzQrqYGC3IUMtULclQqdlwt2kvurIsvS8OvkWgpL1dFqo0y7Sp4KJ8vTy55rD9nvC5evqEb__cCm2CjEJ-wkY-WLbAm021QLQs7wMLPd0DWSOHY7jbIBC6AEgnszMYJZGkC-2w6MMxX-fH6pueuyWQKV_9IQK2E4dzkauu7mRzUK9gdG5hWBkedIRxoq9FMauN3E0QT2OsMe_1dMGq3Rs2uU5RncITWCNjxJcEhEX6S-AlHiCpTxgdHUaiUYoLaIUAipiLOI-UyHGAiKZGMcjfyJfL2QCWdpHIfQIExDQVihBLsc-FSrpdRivme8rxQB5MauCh7KhYFutxU0HiKc-gyjvW3jM23rIHTRctpjuv4oc1R2dlx4bDzGGO9FA60diQ1cG577Vf7uHnbMteDvzY8BOtaZtnMNOQegUo2e5bHWspk_MQO2k_vVvHK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LbxMxEMdHUTnAhVIoItAWV0L0tOmu9-F1OVVVm6RtIpQsUg-VVmuvLUVFmyjdXjjxEZD4hnwSZvaRBgRS1dNePNqHPZ6_vePfAHzgylPKSIme5ke4QIm1E_uE145CT1hCT7p0Gnk0jgZfgvOr8KoDn9qzMDUfYrXhRp5Rzdfk4LQhfXhPDdUL0ws5gSSfBBEuU0gRTVbsKI_qF9SwVO64KNtb8qzLD1vLP2PRvcBcl6lVnDnbhOv2Cev0kpveXal6-ttf8MZHvsILeN7oT3ZcD5gt6JjiJWy2tR1Y4-qvoDwu2KzacDA5WzElctZfznKWFTkbZYsJYV_Nr-8_cPqazxds_acEQzHMbildG-9GaahHbDAjnlbJkv6UTdAqWRo0_klxNGfD_nQ42obk7DQ5GThNhQZHo0zgTmAEj4QO8jzIledJS5V8eBxH1tpMy2oUiDizsVKxdTMecmGkMJlUbhwYz38NG8W8MG-Aac5lpL1MSMEDpV2pcCVls8C3vh9hPOnCQdtVqW7o5VRE42tac5d5it8ypW_Zhf1Vy0VN7PhHm522t9PGZ29TznE1HKJ8FF34WHXbf-3Tk8-ndH370Ibv4ekgGV2ml8PxxTt4hqqrSlTz3B3YKJd3ZheVTan2qhH8Gw3i9es |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSxxBEMcLUQi5RI0J2fhIB4I5zTrT8-jueBJ1H9EVWTfgITBMv2AxzA7rePHkRxDyDf0kds1jNSGBkNNcuphHd3X9u6f6VwCfqAykNEI4TwsTt0DhyuMh4rWTOGAW0ZM-nkYenSWDb9HXy_hyCfbbszA1H2Kx4YaeUc3X6OCm0HbviRqqCtONKYIkV6JYcMznOxov2FEB1i-oYanU851sb8mzPt1rLX-NRU8C87lMreJMbxW-t09Yp5dcdW9K2VW3v8Eb__MV1uBVoz_JQT1g1mHJ5K9hta3tQBpX34DyICfTasPBaLJgSmjSn081yXJNRlkxRuyrebi7d9PXbFaQ5z8liBPD5BrTtd3dMA31CxlMkadVkkn_goyd1WRunPFPjKOaDPsXw9EbmPSOJ4cDr6nQ4CknE6gXGUYTpiKtIy2DQFis5EM5T6y1mRLVKGA8s1xKbv2MxpQZwUwmpM8jE4RvYTmf5eYdEEWpSFSQMcFoJJUvpFtJ2SwKbRgmLp504HPbValq6OVYRONHWnOXaeq-ZYrfsgMfFy2LmtjxhzZbbW-njc9ep5S61XDs5CPrwG7VbX-1Tw_Pj_H6_l8bfoAX50e99HR4drIJL53oqvLUAn8Llsv5jdl2wqaUO9UAfgTEOfVv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+integrated+Grid+and+MapReduce%E2%80%90Hadoop+architecture+for+spatial+data%3A+Hilbert+TGS+R%E2%80%90Tree%E2%80%93based+IGSIM&rft.jtitle=Concurrency+and+computation&rft.au=Singh%2C+Hari&rft.au=Bawa%2C+Seema&rft.date=2019-09-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=31&rft.issue=17&rft_id=info:doi/10.1002%2Fcpe.5202&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |