An improved integrated Grid and MapReduce‐Hadoop architecture for spatial data: Hilbert TGS R‐Tree–based IGSIM

Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 31; no. 17
Main Authors Singh, Hari, Bawa, Seema
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 10.09.2019
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.5202

Cover

Abstract Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work.
AbstractList Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work.
Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R ∗ ‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work.
Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data analysis. Grid computing and MapReduce technologies have provided a prodigious technological furtherance in the Geographic Information System (GIS) domain. The Grid is known for its high computing and the MapReduce implementation‐Hadoop is known for its data analytics. A lot of research exist to prove that the integration of Grid and MapReduce complements each other. In our earlier work, a novel architecture Integrated Grid and Spatially Indexed MapReduce (IGSIM) was proposed that integrates Grid and SpatialHadoop for fast spatial queries. The R‐Tree and the R∗‐Tree spatial indexes of SpatialHadoop were exploited for fast data accessing in the IGSIM. However, efficiency of spatial queries can be enhanced further by employing a better spatial indexing algorithm. In this paper, a thorough literature survey has been done on the available traditional spatial indexes from the serial programming environment and Hilbert TGS R‐Tree has been selected on the basis of several parameters for its parallel implementation and extending spatial query efficiency work of the IGSIM. The improved architecture is named as Hilbert TGS R‐Tree–based IGSIM. The experimental results demonstrate high efficiency of the proposed work.
Author Singh, Hari
Bawa, Seema
Author_xml – sequence: 1
  givenname: Hari
  orcidid: 0000-0003-0356-3813
  surname: Singh
  fullname: Singh, Hari
  email: hari.singh@juit.ac.in, hsrawat2016@gmail.com
  organization: Jaypee University of Information Technology
– sequence: 2
  givenname: Seema
  surname: Bawa
  fullname: Bawa, Seema
  organization: Thapar University
BookMark eNp1kE1OwzAQhS1UJMqPxBEssWHTYjv_7FAFaSUqEGQfTewxGIUkOA6oO46AxA05CS5FLBCsZhbfezPv7ZJR0zZIyCFnU86YOJEdTiPBxBYZ8ygQExYH4ehnF_EO2e37B8Y4ZwEfE3fWUPPY2fYZFTWNwzsLzq-5NYpCo-gSuhtUg8SP17c5qLbtKFh5bxxKN1ikurW078AZqKkCB6d0buoKraNFfktvvKqw6MXvFfTed5HfLpb7ZFtD3ePB99wjxcV5MZtPLq_yxezsciJF5t8NMRFxIkOlQlVxnulYJKFI01hrDTKrKsyyJAWdVlWqGYhIJJglCFnF0hB5sEeONrY-3tOAvSsf2sE2_mIpRCJ4FAZR4qnphpK27XuLupTG-Txt4yyYuuSsXBdb-mLLdbFecPxL0FnzCHb1FzrZoC-mxtW_XDm7Pv_iPwHiDYub
CitedBy_id crossref_primary_10_1016_j_procs_2024_04_219
crossref_primary_10_1016_j_jag_2023_103298
crossref_primary_10_1007_s10586_024_04478_4
crossref_primary_10_3390_ijgi10110727
Cites_doi 10.1109/3PGCIC.2010.33
10.1016/j.ipl.2006.07.010
10.1109/CloudCom.2011.16
10.1002/cpe.3595
10.1016/j.ipm.2010.12.003
10.1145/93605.98741
10.1145/2766196.2766198
10.1145/1327452.1327492
10.1007/978-0-387-35973-1_620
10.1109/CCAA.2016.7813687
10.1145/170088.170403
10.1002/cpe.4015
10.1007/978-3-642-36071-8_8
10.1007/s11859-011-0790-3
10.1145/288692.288723
10.1109/IACS.2014.6841943
10.1109/GrC.2010.163
10.1007/3-540-45710-0_13
10.1109/NAS.2010.44
10.1504/IJCC.2013.055265
10.1023/A:1015617019423
10.1145/971699.318900
10.14778/2536274.2536283
10.1145/1559845.1559929
10.1109/ICDCS.2012.48
10.1016/j.future.2017.03.028
10.1109/ICCIS.2013.235
10.14778/1920841.1920903
10.1145/1328911.1328920
10.1002/cpe.3515
10.1007/s10586-011-0158-7
10.1002/cpe.3665
10.1145/2447481.2447489
10.1016/j.datak.2007.03.001
10.1145/971697.602266
10.14778/2536222.2536227
10.1145/1651263.1651266
10.1016/j.jnca.2009.04.002
10.4316/aece.2009.03002
10.1109/IPDPSW.2012.245
10.1109/CloudCom.2012.6427554
10.1002/cpe.3333
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5202
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_5202
CPE5202
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-4e7267c4dd4db119f62742886fffac9bbe9978af8bb8f0a2527e97ea9b084e13
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Sun Jul 13 04:51:32 EDT 2025
Wed Oct 01 00:59:23 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Jan 22 16:40:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-4e7267c4dd4db119f62742886fffac9bbe9978af8bb8f0a2527e97ea9b084e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0356-3813
PQID 2272154357
PQPubID 2045170
PageCount 1
ParticipantIDs proquest_journals_2272154357
crossref_citationtrail_10_1002_cpe_5202
crossref_primary_10_1002_cpe_5202
wiley_primary_10_1002_cpe_5202_CPE5202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 September 2019
PublicationDateYYYYMMDD 2019-09-10
PublicationDate_xml – month: 09
  year: 2019
  text: 10 September 2019
  day: 10
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 101
2013; 2
2012
2011
2010
1990; 19
2002; 5
2013; 7753
2009
1998
2008
1994
2017; 29
2011; 34
1993
2012; 15
2002
2008; 4
2008; 51
2011; 16
2013; 6
2016; 14
2017; 73
2012; 3
2015; 27
2009; 32
2016; 3
2014; 2
1984; 14
1987
2009; 9
2017
2016
2014
2012; 48
2013
2007; 63
2010; 3
2016; 28
2014; 6
1985; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Arge L (e_1_2_8_49_1) 2008; 4
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_57_1
Singh H (e_1_2_8_3_1) 2016; 3
Khan BUI (e_1_2_8_17_1) 2014; 2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Rao BT (e_1_2_8_23_1) 2011; 34
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Singh H (e_1_2_8_38_1) 2016; 14
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Singh H (e_1_2_8_6_1) 2012; 3
Sellis T (e_1_2_8_51_1) 1987
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 27
  start-page: 4140
  issue: 16
  year: 2015
  end-page: 4155
  article-title: HybridMR: a new approach for hybrid MapReduce combining desktop grid and cloud infrastructures
  publication-title: Concurrency Computat Pract Exper
– volume: 28
  start-page: 2416
  issue: 8
  year: 2016
  end-page: 2439
  article-title: BIGhybrid: a simulator for MapReduce applications in hybrid distributed infrastructures validated with the Grid5000 experimental platform
  publication-title: Concurrency Computat Pract Exper
– year: 2009
– volume: 3
  start-page: 97
  issue: 8
  year: 2016
  end-page: 103
  article-title: Scalability and fault tolerance of MapReduce for spatial data
  publication-title: Glob J Eng Sci Res Manag
– volume: 15
  start-page: 145
  issue: 2
  year: 2012
  end-page: 161
  article-title: Reliable MapReduce computing on opportunistic resources
  publication-title: Clust Comput
– volume: 48
  start-page: 873
  issue: 5
  year: 2012
  end-page: 888
  article-title: MapReduce indexing strategies: studying scalability and efficiency
  publication-title: Inf Process Manag
– volume: 63
  start-page: 397
  issue: 2
  year: 2007
  end-page: 413
  article-title: WeR‐trees
  publication-title: Data Knowl Eng
– volume: 32
  start-page: 961
  issue: 5
  year: 2009
  end-page: 975
  article-title: BitDew: a data management and distribution service with multi‐protocol file transfer and metadata abstraction
  publication-title: J Netw Comput Appl
– volume: 27
  start-page: 5686
  issue: 18
  year: 2015
  end-page: 5699
  article-title: Evaluating map reduce tasks scheduling algorithms over cloud computing infrastructure
  publication-title: Concurrency Computat Pract Exper
– volume: 6
  start-page: 3
  issue: 3
  year: 2014
  end-page: 10
  article-title: The ecosystem of SpatialHadoop
  publication-title: SIGSPATIAL Special
– volume: 2
  start-page: 150
  issue: 3
  year: 2013
  end-page: 170
  article-title: Scalable data management for map‐reduce‐based data‐intensive applications: a view for cloud and hybrid infrastructure
  publication-title: Int J Cloud Comput
– volume: 14
  start-page: 302
  issue: 11
  year: 2016
  end-page: 309
  article-title: IGSIM: an integrated architecture for high performance spatial data analysis
  publication-title: Int J Comput Sci Inf Secur
– volume: 4
  start-page: Article No 9
  issue: 1
  year: 2008
  article-title: The priority R‐tree: a practically efficient and worst‐case optimal R‐tree
  publication-title: ACM Trans Algorithms
– volume: 3
  start-page: 472
  issue: 1‐2
  year: 2010
  end-page: 483
  article-title: The performance of MapReduce: an in‐depth study
  publication-title: Proc VLDB Endowment
– volume: 27
  start-page: 1734
  issue: 7
  year: 2015
  end-page: 1766
  article-title: Modeling and optimizing MapReduce programs
  publication-title: Concurrency Computat Pract Exper
– year: 2016
– volume: 6
  start-page: 1230
  issue: 12
  year: 2013
  end-page: 1233
  article-title: A demonstration of SpatialHadoop: an efficient mapreduce framework for spatial data
  publication-title: Proc VLDB Endow
– start-page: 543
  year: 2008
  end-page: 547
– year: 2014
– year: 1994
– volume: 3
  start-page: 36
  issue: 3
  year: 2012
  end-page: 40
  article-title: Evolution of grid‐GIS systems
  publication-title: Int J Comput Sci Telecommun
– year: 2010
– volume: 73
  start-page: 32
  year: 2017
  end-page: 43
  article-title: A MapReduce‐based scalable discovery and indexing of structured big data
  publication-title: Futur Gener Comput Syst
– year: 1998
– year: 2012
– start-page: 507
  year: 1987
  end-page: 518
– volume: 14
  start-page: 47
  issue: 2
  year: 1984
  end-page: 57
  article-title: R‐trees: a dynamic index structure for spatial searching
  publication-title: ACM SIGMOD Rec
– volume: 29
  start-page: 1
  issue: 8
  year: 2017
  end-page: 12
  article-title: A parallel C4.5 decision tree algorithm based on MapReduce
  publication-title: Concurrency Computat Pract Exper
– volume: 19
  start-page: 322
  issue: 2
  year: 1990
  end-page: 331
  article-title: The R ‐tree: an efficient and robust access method for points and rectangles
  publication-title: ACM SIGMOD Rec
– volume: 5
  start-page: 237
  issue: 3
  year: 2002
  end-page: 246
  article-title: Condor‐G: a computation management agent for multi‐institutional grids
  publication-title: Clust Comput
– start-page: 149
  year: 2002
  end-page: 162
– year: 2008
– volume: 16
  start-page: 513
  issue: 6
  year: 2011
  end-page: 519
  article-title: Parallel bulk‐loading of spatial data with MapReduce. an R‐tree case
  publication-title: Wuhan Univ J Nat Sci
– volume: 7753
  start-page: 115
  year: 2013
  end-page: 125
– volume: 6
  start-page: 1009
  issue: 11
  year: 2013
  end-page: 1020
  article-title: Hadoop GIS: a high performance spatial data warehousing system over mapreduce
  publication-title: Proc VLDB Endow
– volume: 101
  start-page: 6
  issue: 1
  year: 2007
  end-page: 12
  article-title: Execution time analysis of a top‐down R‐tree construction algorithm
  publication-title: Inf Process Lett
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  end-page: 7
  article-title: Critical insight for MapReduce optimization in Hadoop
  publication-title: Int J Comput Sci Control Eng
– volume: 51
  start-page: 107
  issue: 1958
  year: 2008
  end-page: 113
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Mag Commun ACM
– year: 2017
– year: 1993
– volume: 9
  start-page: 7
  issue: 3
  year: 2009
  end-page: 11
  article-title: GEOBARN: a practical grid geospatial database system
  publication-title: Adv Electr Comput Eng
– volume: 34
  start-page: 28
  issue: 9
  year: 2011
  end-page: 32
  article-title: Survey on improved scheduling in Hadoop MapReduce in cloud environments
  publication-title: Int J Comput Appl
– volume: 14
  start-page: 17
  issue: 4
  year: 1985
  end-page: 31
  article-title: Direct spatial search on pictorial databases using packed R‐trees
  publication-title: ACM SIGMOD Rec
– year: 2013
– ident: e_1_2_8_10_1
  doi: 10.1109/3PGCIC.2010.33
– ident: e_1_2_8_45_1
– start-page: 507
  volume-title: Proceedings of the 13th International Conference on Very Large Data Bases
  year: 1987
  ident: e_1_2_8_51_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ipl.2006.07.010
– ident: e_1_2_8_24_1
  doi: 10.1109/CloudCom.2011.16
– ident: e_1_2_8_26_1
  doi: 10.1002/cpe.3595
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ipm.2010.12.003
– ident: e_1_2_8_50_1
  doi: 10.1145/93605.98741
– ident: e_1_2_8_29_1
  doi: 10.1145/2766196.2766198
– ident: e_1_2_8_5_1
  doi: 10.1145/1327452.1327492
– ident: e_1_2_8_53_1
  doi: 10.1007/978-0-387-35973-1_620
– volume: 3
  start-page: 97
  issue: 8
  year: 2016
  ident: e_1_2_8_3_1
  article-title: Scalability and fault tolerance of MapReduce for spatial data
  publication-title: Glob J Eng Sci Res Manag
– ident: e_1_2_8_4_1
  doi: 10.1109/CCAA.2016.7813687
– ident: e_1_2_8_40_1
– volume: 14
  start-page: 302
  issue: 11
  year: 2016
  ident: e_1_2_8_38_1
  article-title: IGSIM: an integrated architecture for high performance spatial data analysis
  publication-title: Int J Comput Sci Inf Secur
– ident: e_1_2_8_48_1
  doi: 10.1145/170088.170403
– ident: e_1_2_8_22_1
  doi: 10.1002/cpe.4015
– ident: e_1_2_8_16_1
  doi: 10.1007/978-3-642-36071-8_8
– ident: e_1_2_8_58_1
– ident: e_1_2_8_32_1
  doi: 10.1007/s11859-011-0790-3
– ident: e_1_2_8_42_1
  doi: 10.1145/288692.288723
– ident: e_1_2_8_25_1
  doi: 10.1109/IACS.2014.6841943
– ident: e_1_2_8_30_1
  doi: 10.1109/GrC.2010.163
– ident: e_1_2_8_44_1
  doi: 10.1007/3-540-45710-0_13
– ident: e_1_2_8_31_1
  doi: 10.1109/NAS.2010.44
– ident: e_1_2_8_8_1
  doi: 10.1504/IJCC.2013.055265
– ident: e_1_2_8_55_1
  doi: 10.1023/A:1015617019423
– ident: e_1_2_8_18_1
– volume: 34
  start-page: 28
  issue: 9
  year: 2011
  ident: e_1_2_8_23_1
  article-title: Survey on improved scheduling in Hadoop MapReduce in cloud environments
  publication-title: Int J Comput Appl
– ident: e_1_2_8_46_1
  doi: 10.1145/971699.318900
– ident: e_1_2_8_28_1
  doi: 10.14778/2536274.2536283
– ident: e_1_2_8_52_1
  doi: 10.1145/1559845.1559929
– ident: e_1_2_8_11_1
  doi: 10.1109/ICDCS.2012.48
– ident: e_1_2_8_19_1
  doi: 10.1016/j.future.2017.03.028
– ident: e_1_2_8_34_1
  doi: 10.1109/ICCIS.2013.235
– ident: e_1_2_8_15_1
  doi: 10.14778/1920841.1920903
– volume: 4
  start-page: Article No 9
  issue: 1
  year: 2008
  ident: e_1_2_8_49_1
  article-title: The priority R‐tree: a practically efficient and worst‐case optimal R‐tree
  publication-title: ACM Trans Algorithms
  doi: 10.1145/1328911.1328920
– ident: e_1_2_8_56_1
– ident: e_1_2_8_7_1
  doi: 10.1002/cpe.3515
– volume: 3
  start-page: 36
  issue: 3
  year: 2012
  ident: e_1_2_8_6_1
  article-title: Evolution of grid‐GIS systems
  publication-title: Int J Comput Sci Telecommun
– ident: e_1_2_8_13_1
  doi: 10.1007/s10586-011-0158-7
– ident: e_1_2_8_14_1
  doi: 10.1002/cpe.3665
– ident: e_1_2_8_27_1
  doi: 10.1145/2447481.2447489
– ident: e_1_2_8_54_1
  doi: 10.1016/j.datak.2007.03.001
– ident: e_1_2_8_33_1
– ident: e_1_2_8_47_1
– ident: e_1_2_8_43_1
  doi: 10.1145/971697.602266
– ident: e_1_2_8_35_1
  doi: 10.14778/2536222.2536227
– ident: e_1_2_8_37_1
  doi: 10.1145/1651263.1651266
– ident: e_1_2_8_2_1
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_8_17_1
  article-title: Critical insight for MapReduce optimization in Hadoop
  publication-title: Int J Comput Sci Control Eng
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jnca.2009.04.002
– ident: e_1_2_8_57_1
– ident: e_1_2_8_39_1
  doi: 10.4316/aece.2009.03002
– ident: e_1_2_8_36_1
  doi: 10.1109/IPDPSW.2012.245
– ident: e_1_2_8_12_1
  doi: 10.1109/CloudCom.2012.6427554
– ident: e_1_2_8_21_1
  doi: 10.1002/cpe.3333
SSID ssj0011031
Score 2.2356741
Snippet Summary Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data...
Variegated distributed computing technologies have been used in recent years of revolutionary phase for efficiently and logically planned spatial data...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analytics
Architecture
Computational grids
Computer networks
Data analysis
Distributed processing
Efficiency
Geographic information systems
grid
Hadoop
MapReduce
Programming environments
Queries
Spatial data
spatial index
spatial query
Title An improved integrated Grid and MapReduce‐Hadoop architecture for spatial data: Hilbert TGS R‐Tree–based IGSIM
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5202
https://www.proquest.com/docview/2272154357
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSgMxFIaDdOXGesV6I4Loauokc8nEXSm9CRVpKwguhiSTQFGmpR03rnwEwTf0SUwyM20VBXE1mxzmkpycP5mT7wBwhjniXFKqPc0L9QIlEk7kGbx2GCCiDHrSNaeR-zdh986_vg_ui6xKcxYm50MsNtyMZ9j52jg44_PLJTRUTGU9wJYjibzQrqYGC3IUMtULclQqdlwt2kvurIsvS8OvkWgpL1dFqo0y7Sp4KJ8vTy55rD9nvC5evqEb__cCm2CjEJ-wkY-WLbAm021QLQs7wMLPd0DWSOHY7jbIBC6AEgnszMYJZGkC-2w6MMxX-fH6pueuyWQKV_9IQK2E4dzkauu7mRzUK9gdG5hWBkedIRxoq9FMauN3E0QT2OsMe_1dMGq3Rs2uU5RncITWCNjxJcEhEX6S-AlHiCpTxgdHUaiUYoLaIUAipiLOI-UyHGAiKZGMcjfyJfL2QCWdpHIfQIExDQVihBLsc-FSrpdRivme8rxQB5MauCh7KhYFutxU0HiKc-gyjvW3jM23rIHTRctpjuv4oc1R2dlx4bDzGGO9FA60diQ1cG577Vf7uHnbMteDvzY8BOtaZtnMNOQegUo2e5bHWspk_MQO2k_vVvHK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LbxMxEMdHUTnAhVIoItAWV0L0tOmu9-F1OVVVm6RtIpQsUg-VVmuvLUVFmyjdXjjxEZD4hnwSZvaRBgRS1dNePNqHPZ6_vePfAHzgylPKSIme5ke4QIm1E_uE145CT1hCT7p0Gnk0jgZfgvOr8KoDn9qzMDUfYrXhRp5Rzdfk4LQhfXhPDdUL0ws5gSSfBBEuU0gRTVbsKI_qF9SwVO64KNtb8qzLD1vLP2PRvcBcl6lVnDnbhOv2Cev0kpveXal6-ttf8MZHvsILeN7oT3ZcD5gt6JjiJWy2tR1Y4-qvoDwu2KzacDA5WzElctZfznKWFTkbZYsJYV_Nr-8_cPqazxds_acEQzHMbildG-9GaahHbDAjnlbJkv6UTdAqWRo0_klxNGfD_nQ42obk7DQ5GThNhQZHo0zgTmAEj4QO8jzIledJS5V8eBxH1tpMy2oUiDizsVKxdTMecmGkMJlUbhwYz38NG8W8MG-Aac5lpL1MSMEDpV2pcCVls8C3vh9hPOnCQdtVqW7o5VRE42tac5d5it8ypW_Zhf1Vy0VN7PhHm522t9PGZ29TznE1HKJ8FF34WHXbf-3Tk8-ndH370Ibv4ekgGV2ml8PxxTt4hqqrSlTz3B3YKJd3ZheVTan2qhH8Gw3i9es
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSxxBEMcLUQi5RI0J2fhIB4I5zTrT8-jueBJ1H9EVWTfgITBMv2AxzA7rePHkRxDyDf0kds1jNSGBkNNcuphHd3X9u6f6VwCfqAykNEI4TwsTt0DhyuMh4rWTOGAW0ZM-nkYenSWDb9HXy_hyCfbbszA1H2Kx4YaeUc3X6OCm0HbviRqqCtONKYIkV6JYcMznOxov2FEB1i-oYanU851sb8mzPt1rLX-NRU8C87lMreJMbxW-t09Yp5dcdW9K2VW3v8Eb__MV1uBVoz_JQT1g1mHJ5K9hta3tQBpX34DyICfTasPBaLJgSmjSn081yXJNRlkxRuyrebi7d9PXbFaQ5z8liBPD5BrTtd3dMA31CxlMkadVkkn_goyd1WRunPFPjKOaDPsXw9EbmPSOJ4cDr6nQ4CknE6gXGUYTpiKtIy2DQFis5EM5T6y1mRLVKGA8s1xKbv2MxpQZwUwmpM8jE4RvYTmf5eYdEEWpSFSQMcFoJJUvpFtJ2SwKbRgmLp504HPbValq6OVYRONHWnOXaeq-ZYrfsgMfFy2LmtjxhzZbbW-njc9ep5S61XDs5CPrwG7VbX-1Tw_Pj_H6_l8bfoAX50e99HR4drIJL53oqvLUAn8Llsv5jdl2wqaUO9UAfgTEOfVv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+integrated+Grid+and+MapReduce%E2%80%90Hadoop+architecture+for+spatial+data%3A+Hilbert+TGS+R%E2%80%90Tree%E2%80%93based+IGSIM&rft.jtitle=Concurrency+and+computation&rft.au=Singh%2C+Hari&rft.au=Bawa%2C+Seema&rft.date=2019-09-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=31&rft.issue=17&rft_id=info:doi/10.1002%2Fcpe.5202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon