Toward intelligent resource management in dynamic Fog Computing‐based Internet of Things environment with Deep Reinforcement Learning: A survey

Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 36; no. 4
Main Authors Gupta, Shally, Singh, Nanhay
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 10.03.2023
Subjects
Online AccessGet full text
ISSN1074-5351
1099-1131
DOI10.1002/dac.5411

Cover

Abstract Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance. As the fog computing industry continues to grow, there is a growing need for automated fog resource management solutions. Reinforcement learning (RL) and deep reinforcement learning (DRL) algorithms have shown significant promise in addressing the problem of managing resources in the fog environment. We examine current research in this area, comparing RL and DRL approaches with traditional algorithmic methods for managing resources in fog computing environments. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing resource management.
AbstractList Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance.
Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance. As the fog computing industry continues to grow, there is a growing need for automated fog resource management solutions. Reinforcement learning (RL) and deep reinforcement learning (DRL) algorithms have shown significant promise in addressing the problem of managing resources in the fog environment. We examine current research in this area, comparing RL and DRL approaches with traditional algorithmic methods for managing resources in fog computing environments. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing resource management.
Author Singh, Nanhay
Gupta, Shally
Author_xml – sequence: 1
  givenname: Shally
  orcidid: 0000-0001-5757-8063
  surname: Gupta
  fullname: Gupta, Shally
  organization: Netaji Subhash University of Technology East Campus (formerly AIACTR)
– sequence: 2
  givenname: Nanhay
  surname: Singh
  fullname: Singh, Nanhay
  email: nsingh1973@gmail.com
  organization: Netaji Subhash University of Technology East Campus (formerly AIACTR)
BookMark eNp1kM9KAzEQxoNUsFXBRwh48bI1yW52G2-l_oWCIPW8ZLOzNWU3qUlq6c1H0Ff0SUxbT6KnGWZ-3zfMN0A9Yw0gdEbJkBLCLmuphjyj9AD1KREioTSlvW1fZAlPOT1CA-8XhJARy3kffc7sWroaaxOgbfUcTMAOvF05BbiTRs6h2860wfXGyE4rfGvneGK75SpoM_96_6ikhxo_RANnIGDb4NlL3HgM5k07a3b6tQ4v-BpgiZ9Am8ZG-918CtKZSF_hMfYr9wabE3TYyNbD6U89Rs-3N7PJfTJ9vHuYjKeJYiKlScOgaHhWAagqr4qcjVKej2QlKs4aCoTmRGRZzaVihAsuiGBKjGSdA4VMFDQ9Rud736WzryvwoVzEr008WbKioJlICc8jNdxTylnvHTSl0kEGbU1wUrclJeU29jLGXm5jj4KLX4Kl0510m7_QZI-udQubf7nyejzZ8d9D_ZXk
CitedBy_id crossref_primary_10_1016_j_cja_2024_09_006
crossref_primary_10_1007_s41870_024_01817_x
crossref_primary_10_3390_electronics13071281
crossref_primary_10_1007_s11227_024_06379_0
crossref_primary_10_3390_s25030687
crossref_primary_10_1109_ACCESS_2024_3447097
crossref_primary_10_1007_s11042_024_18123_0
crossref_primary_10_1007_s42979_024_03175_8
crossref_primary_10_1007_s00607_023_01199_1
Cites_doi 10.1109/JSAC.2021.3088625
10.1109/TVT.2021.3074304
10.1109/WCNC.2019.8885745
10.1145/3394171.3413702
10.1117/12.2306095
10.1145/3317572
10.1109/JIOT.2018.2882783
10.1109/ICC.2019.8762052
10.1109/JSAC.2022.3143252
10.1186/s13174‐018‐0086‐3
10.1007/s10723‐019‐09491‐1
10.1007/s12652‐020‐01768‐8
10.1109/JIOT.2019.2896311
10.1145/1160633.1160935
10.1145/3005745.3005750
10.14569/IJACSA.2021.0120308
10.1109/JIOT.2019.2935056
10.1109/CCNC.2019.8651835
10.1145/3325730.3325731
10.1016/j.jss.2019.04.058
10.1145/3325730.3325732
10.1155/2019/1798391
10.1109/TWC.2019.2901850
10.1109/ICC45855.2022.9838383
10.1145/3403955
10.1109/SEC.2016.35
10.1016/j.comcom.2020.07.028
10.1109/CloudCom.2017.62
10.1109/MCOM.001.1900136
10.1109/ACCESS.2022.3143793
10.1109/ACCESS.2019.2947542
10.1109/ATSIP49331.2020.9231685
10.1016/j.future.2019.10.018
10.1109/ICC.2019.8761626
10.1109/TSC.2017.2753775
10.2991/ijndc.k.210111.001
10.1109/JIOT.2021.3049239
10.1016/j.jpdc.2018.03.004
10.1109/TII.2020.2978946
10.1109/JIOT.2021.3078514
10.1109/COMST.2020.2988367
10.1109/JIOT.2017.2780236
10.1145/3234463
10.1109/CloudNet47604.2019.9064110
10.4018/IJSSCI.304440
10.1145/3459991
10.23919/JCC.2020.09.017
10.1109/ACCESS.2021.3051695
10.1109/FMEC.2017.7946419
10.3390/app11052163
10.1109/JIOT.2018.2875493
10.1109/JPROC.2019.2957798
10.3390/s21051832
10.21203/rs.3.rs-709807/v1
10.1109/JIOT.2021.3088279
10.1155/2019/6215454
10.1016/j.jnca.2019.02.021
10.1007/s10723‐020‐09512‐4
10.1109/JSAC.2020.2986615
10.1109/MobServ.2014.17
10.1007/978-981-16-3448-2_1
10.1109/CloudCom.2017.50
10.1109/FiCloud.2014.52
10.1145/3404397.3404475
10.14419/ijet.v7i4.12831
10.1109/TII.2018.2851241
10.1145/3017116.3022871
10.1145/2124295.2124328
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.5411
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_5411
DAC5411
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c2931-f2e7f54beecb6b76283568ab9b52f1e0160944d5ac205959092c98ad6e1e49713
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Fri Jul 25 12:17:28 EDT 2025
Wed Oct 01 03:18:05 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Wed Jan 22 16:17:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-f2e7f54beecb6b76283568ab9b52f1e0160944d5ac205959092c98ad6e1e49713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5757-8063
PQID 2771493056
PQPubID 996367
PageCount 27
ParticipantIDs proquest_journals_2771493056
crossref_citationtrail_10_1002_dac_5411
crossref_primary_10_1002_dac_5411
wiley_primary_10_1002_dac_5411_DAC5411
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 March 2023
PublicationDateYYYYMMDD 2023-03-10
PublicationDate_xml – month: 03
  year: 2023
  text: 10 March 2023
  day: 10
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2017; 5
2021; 8
2019; 7
2019; 2019
2021; 21
2019; 6
2012
2019; 10
2020; 161
2020; 104
2020; 17
2020; 38
2019; 19
2020; 58
2006
2019; 108
2020; 11
2021; 70
2020; 18
2018; 7
2018; 6
2018; 9
2018; 132
2021; 54
2021; 12
2021; 11
2020; 53
2022
2019; 22
2021
2020
2022; 40
2021; 39
2017; 13
2020; 9
2019
2018
2019; 135
2022; 14
2017
2016
2017; 18
2014
2022; 10
2018; 14
2019; 154
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Hong C‐H (e_1_2_8_21_1) 2018
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Stein S (e_1_2_8_43_1) 2020
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Santos J (e_1_2_8_54_1) 2021
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 5
  start-page: 283
  issue: 1
  year: 2017
  end-page: 294
  article-title: Multi‐objective optimization for computation offloading in fog computing
  publication-title: IEEE Internet Things J
– volume: 14
  start-page: 4712
  issue: 10
  year: 2018
  end-page: 4721
  article-title: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacture
  publication-title: IEEE Trans Industr Inform
– volume: 17
  start-page: 3348
  issue: 5
  year: 2020
  end-page: 3357
  article-title: Dynamic resource allocation and computation offloading for IoT fog computing system
  publication-title: IEEE Trans Industr Inform
– volume: 19
  issue: 2
  year: 2019
  article-title: Deep reinforcement scheduling for mobile crowdsensing in fog computing
  publication-title: ACM Trans Internet Technol
– volume: 13
  start-page: 1086
  issue: 6
  year: 2017
  end-page: 1099
  article-title: ENORM: a framework for edge NOde resource management
  publication-title: IEEE Trans Serv Comput
– volume: 22
  start-page: 1722
  issue: 3
  year: 2019
  end-page: 1760
  article-title: Deep reinforcement learning for autonomous internet of things: model, applications and challenges
  publication-title: IEEE Commun Surv Tutor
– volume: 12
  start-page: 56
  issue: 3
  year: 2021
  end-page: 61
  article-title: Comprehensive analysis of resource allocation and service placement in fog and cloud computing
  publication-title: Int J Adv Comput Sci Appl (IJACSA)
– start-page: 1
  year: 2019
  end-page: 6
– start-page: 119
  year: 2018
  end-page: 128
– year: 2021
– volume: 40
  start-page: 1441
  issue: 5
  year: 2022
  end-page: 1456
  article-title: Age of information in energy harvesting aided massive multiple access networks
  publication-title: IEEE J Sel Areas Commun
– volume: 21
  issue: 5
  year: 2021
  article-title: Resource management techniques for cloud/fog and edge computing: an evaluation framework and classification
  publication-title: Sensors
– volume: 6
  start-page: 1741
  issue: 2
  year: 2018
  end-page: 1753
  article-title: Joint UAV hovering altitude and power control for space‐air‐ground IoT networks
  publication-title: IEEE Internet Things J
– volume: 17
  start-page: 220
  issue: 9
  year: 2020
  end-page: 236
  article-title: Multi‐agent reinforcement learning for resource allocation in IoT networks with edge computing
  publication-title: China Commun
– year: 2018
– volume: 154
  start-page: 125
  year: 2019
  end-page: 138
  article-title: ROUTER: fog enabled cloud‐based intelligent resource management approach for smart home IoT devices
  publication-title: J Syst Softw
– volume: 18
  start-page: 2244
  issue: 4
  year: 2017
  end-page: 2258
  article-title: An online optimization framework for distributed fog network formation with minimal latency
  publication-title: IEEE Trans Wirel Commun
– volume: 18
  start-page: 181
  issue: 2
  year: 2020
  end-page: 195
  article-title: Modeling‐learning‐based actor‐critic algorithm with Gaussian process approximator
  publication-title: J Grid Computing
– volume: 132
  start-page: 190
  year: 2018
  end-page: 203
  article-title: Quality of Experience (QoE)‐aware placement of applications in Fog computing environments
  publication-title: J Parallel Distrib Comput
– volume: 9
  start-page: 12706
  year: 2021
  end-page: 12716
  article-title: Reinforcement learning‐based resource management model for fog radio access network architectures in 5G
  publication-title: IEEE Access
– volume: 104
  start-page: 131
  year: 2020
  end-page: 141
  article-title: Deadline‐based dynamic resource allocation and provisioning algorithms in a fog‐cloud environment
  publication-title: Future Gener Comput Syst
– volume: 6
  start-page: 10028
  issue: 6
  year: 2019
  end-page: 10040
  article-title: Joint container placement and task provisioning in dynamic fog computing
  publication-title: IEEE Internet Things J
– start-page: 1 1
  year: 2019
  end-page: 7 7
– volume: 9
  start-page: 1
  year: 2021
  end-page: 59
  article-title: Scheduling algorithms in fog computing: a survey
  publication-title: Int J Networked Distrib Comput
– start-page: 1572
  year: 2006
  end-page: 1579
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Fog orchestration for the internet of everything: state‐of‐the‐art and research challenges
  publication-title: J Internet Serv Appl
– year: 2022
– volume: 10
  start-page: 12548
  year: 2022
  end-page: 12563
  article-title: FETCH: a deep learning‐based fog computing and IoT integrated environment for healthcare monitoring and diagnosis
  publication-title: IEEE Access
– start-page: 253
  year: 2012
  end-page: 262
– volume: 10
  issue: 6
  year: 2019
  article-title: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system
  publication-title: ACM Trans Intell Syst Technol
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Task placement on fog computing made efficient for IoT application provision
  publication-title: Wirel Commun Mob Comput
– volume: 53
  start-page: 1
  issue: 4
  year: 2020
  end-page: 43
  article-title: Application management in fog computing environments: a taxonomy
  publication-title: Rev Future Direct
– start-page: 55
  year: 2014
  end-page: 62
– start-page: 28
  year: 2016
  end-page: 40
– start-page: 431
  year: 2021
  end-page: 437
– volume: 161
  start-page: 109
  year: 2020
  end-page: 131
  article-title: Resource provisioning for IoT services in the fog computing environment: an autonomic approach
  publication-title: Comput Commun
– start-page: 50
  year: 2016
  end-page: 56
– volume: 9
  start-page: 1775
  issue: 3
  year: 2021
  end-page: 1789
  article-title: Stochastic optimization aided energy‐efficient information collection in internet of underwater things networks
  publication-title: IEEE Internet Things J
– start-page: 3256
  year: 2020
  end-page: 3264
– volume: 108
  start-page: 341
  issue: 2
  year: 2019
  end-page: 356
  article-title: Deep‐learning‐based wireless resource allocation with application to vehicular networks
  publication-title: Proc IEEE
– volume: 11
  issue: 5
  year: 2021
  article-title: Deep reinforcement learning based resource management in UAV‐assisted IoT networks
  publication-title: Appl Sci
– volume: 135
  start-page: 11
  year: 2019
  end-page: 19
  article-title: Coupling resource management based on fog computing in smart city systems
  publication-title: J Netw Comput Appl
– volume: 6
  start-page: 5080
  issue: 3
  year: 2019
  end-page: 5096
  article-title: FogPlan: a lightweight QoS‐aware dynamic fog service provisioning framework
  publication-title: IEEE Internet Things J
– start-page: 66
  year: 2019
  end-page: 70
– start-page: 90
  year: 2019
  end-page: 94
– volume: 8
  start-page: 14559
  issue: 19
  year: 2021
  end-page: 14571
  article-title: AoI‐inspired collaborative information collection for AUV‐assisted internet of underwater things
  publication-title: IEEE Internet Things J
– volume: 6
  start-page: 4436
  issue: 3
  year: 2018
  end-page: 4447
  article-title: Dynamic edge computation offloading for Internet of Things with energy harvesting: a learning method
  publication-title: IEEE Internet Things J
– volume: 11
  start-page: 4951
  issue: 11
  year: 2020
  end-page: 4966
  article-title: A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment
  publication-title: J Ambient Intell Humaniz Comput
– start-page: 127
  year: 2017
  end-page: 132
– start-page: 223
  year: 2017
  end-page: 226
– start-page: 5688
  year: 2022
  end-page: 5693
– volume: 70
  start-page: 5003
  issue: 5
  year: 2021
  end-page: 5015
  article-title: Sustainable task offloading in UAV networks via multi‐agent reinforcement learning
  publication-title: IEEE Trans Veh Technol
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  end-page: 42
  article-title: Resource management approaches in fog computing: a comprehensive review
  publication-title: J Grid Comput
– start-page: 231
  year: 2017
  end-page: 234
– start-page: 288
  year: 2014
  end-page: 295
– volume: 38
  start-page: 1133
  issue: 6
  year: 2020
  end-page: 1146
  article-title: Resource allocation based on deep reinforcement learning in IoT edge computing
  publication-title: IEEE J Sel Areas Commun
– volume: 7
  start-page: 153123
  year: 2019
  end-page: 153140
  article-title: A review of fog computing and machine learning: concepts, applications, challenges, and open issues
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 7
– volume: 54
  issue: 6
  year: 2021
  article-title: A survey of reinforcement learning algorithms for dynamically varying environments
  publication-title: ACM Comput Surv
– year: 2020
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  article-title: Dynamic resource provisioning on fog landscapes
  publication-title: Secur Commun Netw
– volume: 9
  start-page: 1053
  issue: 2
  year: 2020
  end-page: 1067
  article-title: Federated multi‐agent actor–critic learning for age sensitive mobile‐edge computing
  publication-title: IEEE Internet Things J
– volume: 58
  start-page: 82
  issue: 3
  year: 2020
  end-page: 88
  article-title: A machine‐learning‐based auction for resource trading in fog computing
  publication-title: IEEE Commun Mag
– volume: 39
  start-page: 3425
  issue: 11
  year: 2021
  end-page: 3443
  article-title: AoI‐driven statistical delay and error‐rate bounded QoS provisioning for mURLLC over UAV‐multimedia 6G Mobile networks using FBC
  publication-title: IEEE J Sel Areas Commun
– start-page: 1
  year: 2020
  end-page: 6
– volume: 7
  start-page: 3761
  issue: 4
  year: 2018
  end-page: 3765
  article-title: Survey of resource management techniques in fog computing
  publication-title: Int J Eng Technol
– start-page: 1
  year: 2016
  end-page: 6
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  end-page: 24
  article-title: Resource scheduling in fog environment using optimization algorithms for 6G networks
  publication-title: Inte J Softw Sci Comput Intell (IJSSCI)
– start-page: 1296
  year: 2020
  end-page: 1304
– start-page: 1
  year: 2020
  end-page: 11
– ident: e_1_2_8_9_1
  doi: 10.1109/JSAC.2021.3088625
– ident: e_1_2_8_46_1
  doi: 10.1109/TVT.2021.3074304
– ident: e_1_2_8_18_1
  doi: 10.1109/WCNC.2019.8885745
– ident: e_1_2_8_3_1
– ident: e_1_2_8_70_1
  doi: 10.1145/3394171.3413702
– ident: e_1_2_8_32_1
  doi: 10.1117/12.2306095
– ident: e_1_2_8_61_1
  doi: 10.1145/3317572
– volume-title: Resource Management in Fog/Edge Computing: A Survey
  year: 2018
  ident: e_1_2_8_21_1
– ident: e_1_2_8_20_1
  doi: 10.1109/JIOT.2018.2882783
– ident: e_1_2_8_49_1
  doi: 10.1109/ICC.2019.8762052
– ident: e_1_2_8_11_1
  doi: 10.1109/JSAC.2022.3143252
– ident: e_1_2_8_67_1
  doi: 10.1186/s13174‐018‐0086‐3
– ident: e_1_2_8_23_1
  doi: 10.1007/s10723‐019‐09491‐1
– ident: e_1_2_8_47_1
  doi: 10.1007/s12652‐020‐01768‐8
– ident: e_1_2_8_33_1
  doi: 10.1109/JIOT.2019.2896311
– ident: e_1_2_8_74_1
  doi: 10.1145/1160633.1160935
– ident: e_1_2_8_7_1
  doi: 10.1145/3005745.3005750
– ident: e_1_2_8_12_1
  doi: 10.14569/IJACSA.2021.0120308
– ident: e_1_2_8_37_1
  doi: 10.1109/JIOT.2019.2935056
– ident: e_1_2_8_44_1
  doi: 10.1109/CCNC.2019.8651835
– ident: e_1_2_8_63_1
  doi: 10.1145/3325730.3325731
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jss.2019.04.058
– ident: e_1_2_8_60_1
  doi: 10.1145/3325730.3325732
– ident: e_1_2_8_35_1
  doi: 10.1155/2019/1798391
– ident: e_1_2_8_52_1
  doi: 10.1109/TWC.2019.2901850
– ident: e_1_2_8_5_1
  doi: 10.1109/ICC45855.2022.9838383
– ident: e_1_2_8_64_1
  doi: 10.1145/3403955
– ident: e_1_2_8_2_1
  doi: 10.1109/SEC.2016.35
– ident: e_1_2_8_40_1
  doi: 10.1016/j.comcom.2020.07.028
– ident: e_1_2_8_4_1
  doi: 10.1109/CloudCom.2017.62
– ident: e_1_2_8_16_1
  doi: 10.1109/MCOM.001.1900136
– ident: e_1_2_8_59_1
  doi: 10.1109/ACCESS.2022.3143793
– ident: e_1_2_8_17_1
  doi: 10.1109/ACCESS.2019.2947542
– ident: e_1_2_8_27_1
  doi: 10.1109/ATSIP49331.2020.9231685
– ident: e_1_2_8_41_1
  doi: 10.1016/j.future.2019.10.018
– ident: e_1_2_8_53_1
  doi: 10.1109/ICC.2019.8761626
– ident: e_1_2_8_34_1
  doi: 10.1109/TSC.2017.2753775
– start-page: 1296
  volume-title: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS'20)
  year: 2020
  ident: e_1_2_8_43_1
– ident: e_1_2_8_6_1
– ident: e_1_2_8_22_1
  doi: 10.2991/ijndc.k.210111.001
– ident: e_1_2_8_10_1
  doi: 10.1109/JIOT.2021.3049239
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jpdc.2018.03.004
– ident: e_1_2_8_48_1
  doi: 10.1109/TII.2020.2978946
– ident: e_1_2_8_56_1
  doi: 10.1109/JIOT.2021.3078514
– ident: e_1_2_8_28_1
  doi: 10.1109/COMST.2020.2988367
– ident: e_1_2_8_15_1
  doi: 10.1109/JIOT.2017.2780236
– ident: e_1_2_8_55_1
  doi: 10.1145/3234463
– ident: e_1_2_8_19_1
  doi: 10.1109/CloudNet47604.2019.9064110
– ident: e_1_2_8_57_1
  doi: 10.4018/IJSSCI.304440
– ident: e_1_2_8_71_1
  doi: 10.1145/3459991
– ident: e_1_2_8_45_1
  doi: 10.23919/JCC.2020.09.017
– ident: e_1_2_8_62_1
  doi: 10.1109/ACCESS.2021.3051695
– ident: e_1_2_8_72_1
  doi: 10.1109/FMEC.2017.7946419
– ident: e_1_2_8_13_1
  doi: 10.3390/app11052163
– ident: e_1_2_8_14_1
  doi: 10.1109/JIOT.2018.2875493
– ident: e_1_2_8_29_1
  doi: 10.1109/JPROC.2019.2957798
– start-page: 431
  volume-title: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM)
  year: 2021
  ident: e_1_2_8_54_1
– ident: e_1_2_8_25_1
  doi: 10.3390/s21051832
– ident: e_1_2_8_73_1
  doi: 10.21203/rs.3.rs-709807/v1
– ident: e_1_2_8_8_1
  doi: 10.1109/JIOT.2021.3088279
– ident: e_1_2_8_36_1
  doi: 10.1155/2019/6215454
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jnca.2019.02.021
– ident: e_1_2_8_31_1
  doi: 10.1007/s10723‐020‐09512‐4
– ident: e_1_2_8_65_1
  doi: 10.1109/JSAC.2020.2986615
– ident: e_1_2_8_42_1
  doi: 10.1109/MobServ.2014.17
– ident: e_1_2_8_58_1
  doi: 10.1007/978-981-16-3448-2_1
– ident: e_1_2_8_66_1
  doi: 10.1109/CloudCom.2017.50
– ident: e_1_2_8_30_1
  doi: 10.1109/FiCloud.2014.52
– ident: e_1_2_8_68_1
  doi: 10.1145/3404397.3404475
– ident: e_1_2_8_24_1
  doi: 10.14419/ijet.v7i4.12831
– ident: e_1_2_8_50_1
  doi: 10.1109/TII.2018.2851241
– ident: e_1_2_8_69_1
  doi: 10.1145/3017116.3022871
– ident: e_1_2_8_26_1
  doi: 10.1145/2124295.2124328
SSID ssj0008265
Score 2.3584075
Snippet Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale,...
Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
AoI (age of information)
Cloud computing
Deep learning
deep reinforcement learning (DRL)
fog computing (FC)
Graph theory
Internet of Things
Internet of Things (IoT)
Machine learning
Markov decision process
Q‐learning
Resource management
Resource scheduling
Title Toward intelligent resource management in dynamic Fog Computing‐based Internet of Things environment with Deep Reinforcement Learning: A survey
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5411
https://www.proquest.com/docview/2771493056
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-1131
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: ABDBF
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1074-5351
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfXFCKKnatMm7dbb4rqIoIdFQfBQmmQqou4uu11BT_4E_Yv-EvNod1dREE89NEmbZJL5Zpj5hpBdiWEWo0mOQaUNFB6HXhbW0cuZL7V-iRVlJlH4_CI6vWJn1_y6jKo0uTCOH2LkcDMnw97X5oBnYnA4Jg1V-nuc2bReGkbWmmqPmaM0auZVuCEPOa14Z_3gsOr4VRON4eUkSLVapjVPbqr_c8El9wfDQhzIl2_Ujf-bwAKZK8EnNJy0LJIp7CyR2QlKwmXyfmnjaOFuRNVZQL908cPjKFZGvwflitlDq3sLrjiEHuHj9c0oRgXO1YgFdHNwxUFhIqkOjP8Xmog9aKMlb5Vu3JLv9fYIGjAY9p_weYVctU4uj0-9smyDJzV2oF4eYJxzJhCliIS-bDXIi-qZSAQPcoqG0i5hTHFDDskTnvhJIJN6piKkyBJtNK-S6U63g2sEfCq4Fh0V08xnse6HOVIZZrzuM6XvoxrZr7YwlSWnuSmt8ZA6NuYg1YucmkWukZ1Ry57j8fihzWYlBWl5kgdpEMfaiDSGVo3s2e38tX_abByb5_pfG26QGVO93rPhgZtkuugPcUtjnEJsW2n-BN-v-qA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5FcKA9QGmpCNB2KiE4Gfyza8f0FJFGaQscUJA4IFn27jhCQIKCgwSnPkJ5xT5JZ712klZFqnrywbtr7-7szjejmW8AthUFaUQmOYY0GygyCpw0aJGTC1exfom0J0yi8PFJ2DsTX8_leQM-1bkwlh9i6nAzJ6O8r80BNw7p_RlrqOYPSmHyehdFyGaKQUSnM-4oxs2yDjiUgfRq5lnX3697_q6LZgBzHqaWeqa7Ahf1H9rwkqu9SZHtqcc_yBv_cwqvYLnCn9i2ArMKDRq-hpdzrIRv4KlfhtLi5ZSts8Bx5eXHm2m4DL9HbevZY3c0QFsfgkf4-f2H0Y0arbeRChzlaOuD4lxeHRoXMHaIbvGUSv5WZcetKF8HB9jGu8n4nh7W4Kz7uX_Yc6rKDY5i-OA5uU9RLkVGpLIw4_uWcV7YSrM4k37ukWG1i4XQ0vBDyljGbuyruJXqkDwSMdvNb2FhOBrSOqDrZZKlR0de6oqI-1FOngpS2XKF5iupCbv1HiaqojU31TWuE0vI7Ce8yIlZ5CZ8nLa8tVQef2mzVYtBUh3mu8SPIrYjja3VhJ1yP5_tn3Tah-a58a8NP8BSr398lBx9Ofm2CS9MMXunjBbcgoViPKF3DHmK7H0p2r8AiaD-wQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hkNDugdeyolBgVkJwCuRhNwmcqpYKlocQAokDUpTYE4SAtiopEpz4CfAX-SXYcdIWBNJqTznEdmJ77PlmNPMNwJogL_ZJJ8eQVAYK9z0r9gKyUmYLpV986TCdKHx0XNs7Z38v-MUY7JS5MIYfYuBw0ycjv6_1AaeuTLeGrKFSfZAzndc7wXgY6Hi-5umQO0rhZl4GHHKPOyXzrO1ulT0_6qIhwByFqbmeaU3DZfmHJrzkZrOfJZvi6RN5439OYQamCvyJdSMwszBG7Tn4OcJK-Atez_JQWrwesHVm2Cu8_Hg3CJdR71GaevbY6lyhqQ-hRnh7ftG6UaLxNlKGnRRNfVAcyatD7QLGJlEXTynnbxVm3ILy9Wob63jf7z3Q4zyct3bPGntWUbnBEgo-OFbqkp9ylhCJpJao-1bhvFoQJ2HC3dQhzWoXMia55ofkIQ_t0BVhEMsaOcRCZTf_hvF2p00LgLaTcCU90ndim_mqH6XkCC_mgc2kupIqsFHuYSQKWnNdXeM2MoTMbqQWOdKLXIE_g5ZdQ-XxRZtqKQZRcZjvI9f3lR2pba0KrOf7-W3_qFlv6OfivzZchcmTZis63D8-WIIfupa9lQcLVmE86_VpWSGeLFnJJfsdNAX-RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+intelligent+resource+management+in+dynamic+Fog+Computing%E2%80%90based+Internet+of+Things+environment+with+Deep+Reinforcement+Learning%3A+A+survey&rft.jtitle=International+journal+of+communication+systems&rft.au=Gupta%2C+Shally&rft.au=Singh%2C+Nanhay&rft.date=2023-03-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=36&rft.issue=4&rft_id=info:doi/10.1002%2Fdac.5411&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon