Toward intelligent resource management in dynamic Fog Computing‐based Internet of Things environment with Deep Reinforcement Learning: A survey
Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related t...
Saved in:
| Published in | International journal of communication systems Vol. 36; no. 4 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester
Wiley Subscription Services, Inc
10.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1074-5351 1099-1131 |
| DOI | 10.1002/dac.5411 |
Cover
| Abstract | Summary
Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance.
As the fog computing industry continues to grow, there is a growing need for automated fog resource management solutions. Reinforcement learning (RL) and deep reinforcement learning (DRL) algorithms have shown significant promise in addressing the problem of managing resources in the fog environment. We examine current research in this area, comparing RL and DRL approaches with traditional algorithmic methods for managing resources in fog computing environments. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing resource management. |
|---|---|
| AbstractList | Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance. Summary Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale, virtualized, and elastic computing environment. Resource management (RM) is one of the key challenges in fog computing which is also related to the success of fog computing. Deep learning has been applied to the fog computing field for some time, and it is widely used in large‐scale network RM. Reinforcement learning (RL) is a type of machine learning algorithms, and it can be used to learn and make decisions based on reward signals that are obtained from interactions with the environment. We examine current research in this area, comparing RL and deep reinforcement learning (DRL) approaches with traditional algorithmic methods such as graph theory, heuristics, and greedy for managing resources in fog computing environments (published between 2013 and 2022) illustrating how RL and DRL algorithms can be more effective than conventional techniques. Various algorithms based on DRL has been shown to be applicable to RM problem and proved that it has a lot of potential in fog computing. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing RM. The positive impact of this work is that it can successfully provide a resource manager to efficiently schedule resources and maximize the overall performance. As the fog computing industry continues to grow, there is a growing need for automated fog resource management solutions. Reinforcement learning (RL) and deep reinforcement learning (DRL) algorithms have shown significant promise in addressing the problem of managing resources in the fog environment. We examine current research in this area, comparing RL and DRL approaches with traditional algorithmic methods for managing resources in fog computing environments. A new microservice model based on the DRL framework is proposed to achieve the goal of efficient fog computing resource management. |
| Author | Singh, Nanhay Gupta, Shally |
| Author_xml | – sequence: 1 givenname: Shally orcidid: 0000-0001-5757-8063 surname: Gupta fullname: Gupta, Shally organization: Netaji Subhash University of Technology East Campus (formerly AIACTR) – sequence: 2 givenname: Nanhay surname: Singh fullname: Singh, Nanhay email: nsingh1973@gmail.com organization: Netaji Subhash University of Technology East Campus (formerly AIACTR) |
| BookMark | eNp1kM9KAzEQxoNUsFXBRwh48bI1yW52G2-l_oWCIPW8ZLOzNWU3qUlq6c1H0Ff0SUxbT6KnGWZ-3zfMN0A9Yw0gdEbJkBLCLmuphjyj9AD1KREioTSlvW1fZAlPOT1CA-8XhJARy3kffc7sWroaaxOgbfUcTMAOvF05BbiTRs6h2860wfXGyE4rfGvneGK75SpoM_96_6ikhxo_RANnIGDb4NlL3HgM5k07a3b6tQ4v-BpgiZ9Am8ZG-918CtKZSF_hMfYr9wabE3TYyNbD6U89Rs-3N7PJfTJ9vHuYjKeJYiKlScOgaHhWAagqr4qcjVKej2QlKs4aCoTmRGRZzaVihAsuiGBKjGSdA4VMFDQ9Rud736WzryvwoVzEr008WbKioJlICc8jNdxTylnvHTSl0kEGbU1wUrclJeU29jLGXm5jj4KLX4Kl0510m7_QZI-udQubf7nyejzZ8d9D_ZXk |
| CitedBy_id | crossref_primary_10_1016_j_cja_2024_09_006 crossref_primary_10_1007_s41870_024_01817_x crossref_primary_10_3390_electronics13071281 crossref_primary_10_1007_s11227_024_06379_0 crossref_primary_10_3390_s25030687 crossref_primary_10_1109_ACCESS_2024_3447097 crossref_primary_10_1007_s11042_024_18123_0 crossref_primary_10_1007_s42979_024_03175_8 crossref_primary_10_1007_s00607_023_01199_1 |
| Cites_doi | 10.1109/JSAC.2021.3088625 10.1109/TVT.2021.3074304 10.1109/WCNC.2019.8885745 10.1145/3394171.3413702 10.1117/12.2306095 10.1145/3317572 10.1109/JIOT.2018.2882783 10.1109/ICC.2019.8762052 10.1109/JSAC.2022.3143252 10.1186/s13174‐018‐0086‐3 10.1007/s10723‐019‐09491‐1 10.1007/s12652‐020‐01768‐8 10.1109/JIOT.2019.2896311 10.1145/1160633.1160935 10.1145/3005745.3005750 10.14569/IJACSA.2021.0120308 10.1109/JIOT.2019.2935056 10.1109/CCNC.2019.8651835 10.1145/3325730.3325731 10.1016/j.jss.2019.04.058 10.1145/3325730.3325732 10.1155/2019/1798391 10.1109/TWC.2019.2901850 10.1109/ICC45855.2022.9838383 10.1145/3403955 10.1109/SEC.2016.35 10.1016/j.comcom.2020.07.028 10.1109/CloudCom.2017.62 10.1109/MCOM.001.1900136 10.1109/ACCESS.2022.3143793 10.1109/ACCESS.2019.2947542 10.1109/ATSIP49331.2020.9231685 10.1016/j.future.2019.10.018 10.1109/ICC.2019.8761626 10.1109/TSC.2017.2753775 10.2991/ijndc.k.210111.001 10.1109/JIOT.2021.3049239 10.1016/j.jpdc.2018.03.004 10.1109/TII.2020.2978946 10.1109/JIOT.2021.3078514 10.1109/COMST.2020.2988367 10.1109/JIOT.2017.2780236 10.1145/3234463 10.1109/CloudNet47604.2019.9064110 10.4018/IJSSCI.304440 10.1145/3459991 10.23919/JCC.2020.09.017 10.1109/ACCESS.2021.3051695 10.1109/FMEC.2017.7946419 10.3390/app11052163 10.1109/JIOT.2018.2875493 10.1109/JPROC.2019.2957798 10.3390/s21051832 10.21203/rs.3.rs-709807/v1 10.1109/JIOT.2021.3088279 10.1155/2019/6215454 10.1016/j.jnca.2019.02.021 10.1007/s10723‐020‐09512‐4 10.1109/JSAC.2020.2986615 10.1109/MobServ.2014.17 10.1007/978-981-16-3448-2_1 10.1109/CloudCom.2017.50 10.1109/FiCloud.2014.52 10.1145/3404397.3404475 10.14419/ijet.v7i4.12831 10.1109/TII.2018.2851241 10.1145/3017116.3022871 10.1145/2124295.2124328 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/dac.5411 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_5411 DAC5411 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c2931-f2e7f54beecb6b76283568ab9b52f1e0160944d5ac205959092c98ad6e1e49713 |
| IEDL.DBID | DR2 |
| ISSN | 1074-5351 |
| IngestDate | Fri Jul 25 12:17:28 EDT 2025 Wed Oct 01 03:18:05 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Wed Jan 22 16:17:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2931-f2e7f54beecb6b76283568ab9b52f1e0160944d5ac205959092c98ad6e1e49713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5757-8063 |
| PQID | 2771493056 |
| PQPubID | 996367 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2771493056 crossref_citationtrail_10_1002_dac_5411 crossref_primary_10_1002_dac_5411 wiley_primary_10_1002_dac_5411_DAC5411 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 March 2023 |
| PublicationDateYYYYMMDD | 2023-03-10 |
| PublicationDate_xml | – month: 03 year: 2023 text: 10 March 2023 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2017; 5 2021; 8 2019; 7 2019; 2019 2021; 21 2019; 6 2012 2019; 10 2020; 161 2020; 104 2020; 17 2020; 38 2019; 19 2020; 58 2006 2019; 108 2020; 11 2021; 70 2020; 18 2018; 7 2018; 6 2018; 9 2018; 132 2021; 54 2021; 12 2021; 11 2020; 53 2022 2019; 22 2021 2020 2022; 40 2021; 39 2017; 13 2020; 9 2019 2018 2019; 135 2022; 14 2017 2016 2017; 18 2014 2022; 10 2018; 14 2019; 154 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Hong C‐H (e_1_2_8_21_1) 2018 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Stein S (e_1_2_8_43_1) 2020 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Santos J (e_1_2_8_54_1) 2021 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 5 start-page: 283 issue: 1 year: 2017 end-page: 294 article-title: Multi‐objective optimization for computation offloading in fog computing publication-title: IEEE Internet Things J – volume: 14 start-page: 4712 issue: 10 year: 2018 end-page: 4721 article-title: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacture publication-title: IEEE Trans Industr Inform – volume: 17 start-page: 3348 issue: 5 year: 2020 end-page: 3357 article-title: Dynamic resource allocation and computation offloading for IoT fog computing system publication-title: IEEE Trans Industr Inform – volume: 19 issue: 2 year: 2019 article-title: Deep reinforcement scheduling for mobile crowdsensing in fog computing publication-title: ACM Trans Internet Technol – volume: 13 start-page: 1086 issue: 6 year: 2017 end-page: 1099 article-title: ENORM: a framework for edge NOde resource management publication-title: IEEE Trans Serv Comput – volume: 22 start-page: 1722 issue: 3 year: 2019 end-page: 1760 article-title: Deep reinforcement learning for autonomous internet of things: model, applications and challenges publication-title: IEEE Commun Surv Tutor – volume: 12 start-page: 56 issue: 3 year: 2021 end-page: 61 article-title: Comprehensive analysis of resource allocation and service placement in fog and cloud computing publication-title: Int J Adv Comput Sci Appl (IJACSA) – start-page: 1 year: 2019 end-page: 6 – start-page: 119 year: 2018 end-page: 128 – year: 2021 – volume: 40 start-page: 1441 issue: 5 year: 2022 end-page: 1456 article-title: Age of information in energy harvesting aided massive multiple access networks publication-title: IEEE J Sel Areas Commun – volume: 21 issue: 5 year: 2021 article-title: Resource management techniques for cloud/fog and edge computing: an evaluation framework and classification publication-title: Sensors – volume: 6 start-page: 1741 issue: 2 year: 2018 end-page: 1753 article-title: Joint UAV hovering altitude and power control for space‐air‐ground IoT networks publication-title: IEEE Internet Things J – volume: 17 start-page: 220 issue: 9 year: 2020 end-page: 236 article-title: Multi‐agent reinforcement learning for resource allocation in IoT networks with edge computing publication-title: China Commun – year: 2018 – volume: 154 start-page: 125 year: 2019 end-page: 138 article-title: ROUTER: fog enabled cloud‐based intelligent resource management approach for smart home IoT devices publication-title: J Syst Softw – volume: 18 start-page: 2244 issue: 4 year: 2017 end-page: 2258 article-title: An online optimization framework for distributed fog network formation with minimal latency publication-title: IEEE Trans Wirel Commun – volume: 18 start-page: 181 issue: 2 year: 2020 end-page: 195 article-title: Modeling‐learning‐based actor‐critic algorithm with Gaussian process approximator publication-title: J Grid Computing – volume: 132 start-page: 190 year: 2018 end-page: 203 article-title: Quality of Experience (QoE)‐aware placement of applications in Fog computing environments publication-title: J Parallel Distrib Comput – volume: 9 start-page: 12706 year: 2021 end-page: 12716 article-title: Reinforcement learning‐based resource management model for fog radio access network architectures in 5G publication-title: IEEE Access – volume: 104 start-page: 131 year: 2020 end-page: 141 article-title: Deadline‐based dynamic resource allocation and provisioning algorithms in a fog‐cloud environment publication-title: Future Gener Comput Syst – volume: 6 start-page: 10028 issue: 6 year: 2019 end-page: 10040 article-title: Joint container placement and task provisioning in dynamic fog computing publication-title: IEEE Internet Things J – start-page: 1 1 year: 2019 end-page: 7 7 – volume: 9 start-page: 1 year: 2021 end-page: 59 article-title: Scheduling algorithms in fog computing: a survey publication-title: Int J Networked Distrib Comput – start-page: 1572 year: 2006 end-page: 1579 – volume: 9 start-page: 1 year: 2018 end-page: 14 article-title: Fog orchestration for the internet of everything: state‐of‐the‐art and research challenges publication-title: J Internet Serv Appl – year: 2022 – volume: 10 start-page: 12548 year: 2022 end-page: 12563 article-title: FETCH: a deep learning‐based fog computing and IoT integrated environment for healthcare monitoring and diagnosis publication-title: IEEE Access – start-page: 253 year: 2012 end-page: 262 – volume: 10 issue: 6 year: 2019 article-title: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system publication-title: ACM Trans Intell Syst Technol – volume: 2019 start-page: 1 year: 2019 end-page: 17 article-title: Task placement on fog computing made efficient for IoT application provision publication-title: Wirel Commun Mob Comput – volume: 53 start-page: 1 issue: 4 year: 2020 end-page: 43 article-title: Application management in fog computing environments: a taxonomy publication-title: Rev Future Direct – start-page: 55 year: 2014 end-page: 62 – start-page: 28 year: 2016 end-page: 40 – start-page: 431 year: 2021 end-page: 437 – volume: 161 start-page: 109 year: 2020 end-page: 131 article-title: Resource provisioning for IoT services in the fog computing environment: an autonomic approach publication-title: Comput Commun – start-page: 50 year: 2016 end-page: 56 – volume: 9 start-page: 1775 issue: 3 year: 2021 end-page: 1789 article-title: Stochastic optimization aided energy‐efficient information collection in internet of underwater things networks publication-title: IEEE Internet Things J – start-page: 3256 year: 2020 end-page: 3264 – volume: 108 start-page: 341 issue: 2 year: 2019 end-page: 356 article-title: Deep‐learning‐based wireless resource allocation with application to vehicular networks publication-title: Proc IEEE – volume: 11 issue: 5 year: 2021 article-title: Deep reinforcement learning based resource management in UAV‐assisted IoT networks publication-title: Appl Sci – volume: 135 start-page: 11 year: 2019 end-page: 19 article-title: Coupling resource management based on fog computing in smart city systems publication-title: J Netw Comput Appl – volume: 6 start-page: 5080 issue: 3 year: 2019 end-page: 5096 article-title: FogPlan: a lightweight QoS‐aware dynamic fog service provisioning framework publication-title: IEEE Internet Things J – start-page: 66 year: 2019 end-page: 70 – start-page: 90 year: 2019 end-page: 94 – volume: 8 start-page: 14559 issue: 19 year: 2021 end-page: 14571 article-title: AoI‐inspired collaborative information collection for AUV‐assisted internet of underwater things publication-title: IEEE Internet Things J – volume: 6 start-page: 4436 issue: 3 year: 2018 end-page: 4447 article-title: Dynamic edge computation offloading for Internet of Things with energy harvesting: a learning method publication-title: IEEE Internet Things J – volume: 11 start-page: 4951 issue: 11 year: 2020 end-page: 4966 article-title: A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment publication-title: J Ambient Intell Humaniz Comput – start-page: 127 year: 2017 end-page: 132 – start-page: 223 year: 2017 end-page: 226 – start-page: 5688 year: 2022 end-page: 5693 – volume: 70 start-page: 5003 issue: 5 year: 2021 end-page: 5015 article-title: Sustainable task offloading in UAV networks via multi‐agent reinforcement learning publication-title: IEEE Trans Veh Technol – volume: 18 start-page: 1 issue: 1 year: 2020 end-page: 42 article-title: Resource management approaches in fog computing: a comprehensive review publication-title: J Grid Comput – start-page: 231 year: 2017 end-page: 234 – start-page: 288 year: 2014 end-page: 295 – volume: 38 start-page: 1133 issue: 6 year: 2020 end-page: 1146 article-title: Resource allocation based on deep reinforcement learning in IoT edge computing publication-title: IEEE J Sel Areas Commun – volume: 7 start-page: 153123 year: 2019 end-page: 153140 article-title: A review of fog computing and machine learning: concepts, applications, challenges, and open issues publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 7 – volume: 54 issue: 6 year: 2021 article-title: A survey of reinforcement learning algorithms for dynamically varying environments publication-title: ACM Comput Surv – year: 2020 – volume: 2019 start-page: 1 year: 2019 end-page: 15 article-title: Dynamic resource provisioning on fog landscapes publication-title: Secur Commun Netw – volume: 9 start-page: 1053 issue: 2 year: 2020 end-page: 1067 article-title: Federated multi‐agent actor–critic learning for age sensitive mobile‐edge computing publication-title: IEEE Internet Things J – volume: 58 start-page: 82 issue: 3 year: 2020 end-page: 88 article-title: A machine‐learning‐based auction for resource trading in fog computing publication-title: IEEE Commun Mag – volume: 39 start-page: 3425 issue: 11 year: 2021 end-page: 3443 article-title: AoI‐driven statistical delay and error‐rate bounded QoS provisioning for mURLLC over UAV‐multimedia 6G Mobile networks using FBC publication-title: IEEE J Sel Areas Commun – start-page: 1 year: 2020 end-page: 6 – volume: 7 start-page: 3761 issue: 4 year: 2018 end-page: 3765 article-title: Survey of resource management techniques in fog computing publication-title: Int J Eng Technol – start-page: 1 year: 2016 end-page: 6 – volume: 14 start-page: 1 issue: 1 year: 2022 end-page: 24 article-title: Resource scheduling in fog environment using optimization algorithms for 6G networks publication-title: Inte J Softw Sci Comput Intell (IJSSCI) – start-page: 1296 year: 2020 end-page: 1304 – start-page: 1 year: 2020 end-page: 11 – ident: e_1_2_8_9_1 doi: 10.1109/JSAC.2021.3088625 – ident: e_1_2_8_46_1 doi: 10.1109/TVT.2021.3074304 – ident: e_1_2_8_18_1 doi: 10.1109/WCNC.2019.8885745 – ident: e_1_2_8_3_1 – ident: e_1_2_8_70_1 doi: 10.1145/3394171.3413702 – ident: e_1_2_8_32_1 doi: 10.1117/12.2306095 – ident: e_1_2_8_61_1 doi: 10.1145/3317572 – volume-title: Resource Management in Fog/Edge Computing: A Survey year: 2018 ident: e_1_2_8_21_1 – ident: e_1_2_8_20_1 doi: 10.1109/JIOT.2018.2882783 – ident: e_1_2_8_49_1 doi: 10.1109/ICC.2019.8762052 – ident: e_1_2_8_11_1 doi: 10.1109/JSAC.2022.3143252 – ident: e_1_2_8_67_1 doi: 10.1186/s13174‐018‐0086‐3 – ident: e_1_2_8_23_1 doi: 10.1007/s10723‐019‐09491‐1 – ident: e_1_2_8_47_1 doi: 10.1007/s12652‐020‐01768‐8 – ident: e_1_2_8_33_1 doi: 10.1109/JIOT.2019.2896311 – ident: e_1_2_8_74_1 doi: 10.1145/1160633.1160935 – ident: e_1_2_8_7_1 doi: 10.1145/3005745.3005750 – ident: e_1_2_8_12_1 doi: 10.14569/IJACSA.2021.0120308 – ident: e_1_2_8_37_1 doi: 10.1109/JIOT.2019.2935056 – ident: e_1_2_8_44_1 doi: 10.1109/CCNC.2019.8651835 – ident: e_1_2_8_63_1 doi: 10.1145/3325730.3325731 – ident: e_1_2_8_38_1 doi: 10.1016/j.jss.2019.04.058 – ident: e_1_2_8_60_1 doi: 10.1145/3325730.3325732 – ident: e_1_2_8_35_1 doi: 10.1155/2019/1798391 – ident: e_1_2_8_52_1 doi: 10.1109/TWC.2019.2901850 – ident: e_1_2_8_5_1 doi: 10.1109/ICC45855.2022.9838383 – ident: e_1_2_8_64_1 doi: 10.1145/3403955 – ident: e_1_2_8_2_1 doi: 10.1109/SEC.2016.35 – ident: e_1_2_8_40_1 doi: 10.1016/j.comcom.2020.07.028 – ident: e_1_2_8_4_1 doi: 10.1109/CloudCom.2017.62 – ident: e_1_2_8_16_1 doi: 10.1109/MCOM.001.1900136 – ident: e_1_2_8_59_1 doi: 10.1109/ACCESS.2022.3143793 – ident: e_1_2_8_17_1 doi: 10.1109/ACCESS.2019.2947542 – ident: e_1_2_8_27_1 doi: 10.1109/ATSIP49331.2020.9231685 – ident: e_1_2_8_41_1 doi: 10.1016/j.future.2019.10.018 – ident: e_1_2_8_53_1 doi: 10.1109/ICC.2019.8761626 – ident: e_1_2_8_34_1 doi: 10.1109/TSC.2017.2753775 – start-page: 1296 volume-title: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS'20) year: 2020 ident: e_1_2_8_43_1 – ident: e_1_2_8_6_1 – ident: e_1_2_8_22_1 doi: 10.2991/ijndc.k.210111.001 – ident: e_1_2_8_10_1 doi: 10.1109/JIOT.2021.3049239 – ident: e_1_2_8_51_1 doi: 10.1016/j.jpdc.2018.03.004 – ident: e_1_2_8_48_1 doi: 10.1109/TII.2020.2978946 – ident: e_1_2_8_56_1 doi: 10.1109/JIOT.2021.3078514 – ident: e_1_2_8_28_1 doi: 10.1109/COMST.2020.2988367 – ident: e_1_2_8_15_1 doi: 10.1109/JIOT.2017.2780236 – ident: e_1_2_8_55_1 doi: 10.1145/3234463 – ident: e_1_2_8_19_1 doi: 10.1109/CloudNet47604.2019.9064110 – ident: e_1_2_8_57_1 doi: 10.4018/IJSSCI.304440 – ident: e_1_2_8_71_1 doi: 10.1145/3459991 – ident: e_1_2_8_45_1 doi: 10.23919/JCC.2020.09.017 – ident: e_1_2_8_62_1 doi: 10.1109/ACCESS.2021.3051695 – ident: e_1_2_8_72_1 doi: 10.1109/FMEC.2017.7946419 – ident: e_1_2_8_13_1 doi: 10.3390/app11052163 – ident: e_1_2_8_14_1 doi: 10.1109/JIOT.2018.2875493 – ident: e_1_2_8_29_1 doi: 10.1109/JPROC.2019.2957798 – start-page: 431 volume-title: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM) year: 2021 ident: e_1_2_8_54_1 – ident: e_1_2_8_25_1 doi: 10.3390/s21051832 – ident: e_1_2_8_73_1 doi: 10.21203/rs.3.rs-709807/v1 – ident: e_1_2_8_8_1 doi: 10.1109/JIOT.2021.3088279 – ident: e_1_2_8_36_1 doi: 10.1155/2019/6215454 – ident: e_1_2_8_39_1 doi: 10.1016/j.jnca.2019.02.021 – ident: e_1_2_8_31_1 doi: 10.1007/s10723‐020‐09512‐4 – ident: e_1_2_8_65_1 doi: 10.1109/JSAC.2020.2986615 – ident: e_1_2_8_42_1 doi: 10.1109/MobServ.2014.17 – ident: e_1_2_8_58_1 doi: 10.1007/978-981-16-3448-2_1 – ident: e_1_2_8_66_1 doi: 10.1109/CloudCom.2017.50 – ident: e_1_2_8_30_1 doi: 10.1109/FiCloud.2014.52 – ident: e_1_2_8_68_1 doi: 10.1145/3404397.3404475 – ident: e_1_2_8_24_1 doi: 10.14419/ijet.v7i4.12831 – ident: e_1_2_8_50_1 doi: 10.1109/TII.2018.2851241 – ident: e_1_2_8_69_1 doi: 10.1145/3017116.3022871 – ident: e_1_2_8_26_1 doi: 10.1145/2124295.2124328 |
| SSID | ssj0008265 |
| Score | 2.3584075 |
| Snippet | Summary
Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale,... Fog computing has already started to gain a lot of momentum in the industry for its ability to turn scattered computing resources into a large‐scale,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms AoI (age of information) Cloud computing Deep learning deep reinforcement learning (DRL) fog computing (FC) Graph theory Internet of Things Internet of Things (IoT) Machine learning Markov decision process Q‐learning Resource management Resource scheduling |
| Title | Toward intelligent resource management in dynamic Fog Computing‐based Internet of Things environment with Deep Reinforcement Learning: A survey |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5411 https://www.proquest.com/docview/2771493056 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-1131 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0008265 issn: 1074-5351 databaseCode: ABDBF dateStart: 19940101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1074-5351 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfXFCKKnatMm7dbb4rqIoIdFQfBQmmQqou4uu11BT_4E_Yv-EvNod1dREE89NEmbZJL5Zpj5hpBdiWEWo0mOQaUNFB6HXhbW0cuZL7V-iRVlJlH4_CI6vWJn1_y6jKo0uTCOH2LkcDMnw97X5oBnYnA4Jg1V-nuc2bReGkbWmmqPmaM0auZVuCEPOa14Z_3gsOr4VRON4eUkSLVapjVPbqr_c8El9wfDQhzIl2_Ujf-bwAKZK8EnNJy0LJIp7CyR2QlKwmXyfmnjaOFuRNVZQL908cPjKFZGvwflitlDq3sLrjiEHuHj9c0oRgXO1YgFdHNwxUFhIqkOjP8Xmog9aKMlb5Vu3JLv9fYIGjAY9p_weYVctU4uj0-9smyDJzV2oF4eYJxzJhCliIS-bDXIi-qZSAQPcoqG0i5hTHFDDskTnvhJIJN6piKkyBJtNK-S6U63g2sEfCq4Fh0V08xnse6HOVIZZrzuM6XvoxrZr7YwlSWnuSmt8ZA6NuYg1YucmkWukZ1Ry57j8fihzWYlBWl5kgdpEMfaiDSGVo3s2e38tX_abByb5_pfG26QGVO93rPhgZtkuugPcUtjnEJsW2n-BN-v-qA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5FcKA9QGmpCNB2KiE4Gfyza8f0FJFGaQscUJA4IFn27jhCQIKCgwSnPkJ5xT5JZ712klZFqnrywbtr7-7szjejmW8AthUFaUQmOYY0GygyCpw0aJGTC1exfom0J0yi8PFJ2DsTX8_leQM-1bkwlh9i6nAzJ6O8r80BNw7p_RlrqOYPSmHyehdFyGaKQUSnM-4oxs2yDjiUgfRq5lnX3697_q6LZgBzHqaWeqa7Ahf1H9rwkqu9SZHtqcc_yBv_cwqvYLnCn9i2ArMKDRq-hpdzrIRv4KlfhtLi5ZSts8Bx5eXHm2m4DL9HbevZY3c0QFsfgkf4-f2H0Y0arbeRChzlaOuD4lxeHRoXMHaIbvGUSv5WZcetKF8HB9jGu8n4nh7W4Kz7uX_Yc6rKDY5i-OA5uU9RLkVGpLIw4_uWcV7YSrM4k37ukWG1i4XQ0vBDyljGbuyruJXqkDwSMdvNb2FhOBrSOqDrZZKlR0de6oqI-1FOngpS2XKF5iupCbv1HiaqojU31TWuE0vI7Ce8yIlZ5CZ8nLa8tVQef2mzVYtBUh3mu8SPIrYjja3VhJ1yP5_tn3Tah-a58a8NP8BSr398lBx9Ofm2CS9MMXunjBbcgoViPKF3DHmK7H0p2r8AiaD-wQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hkNDugdeyolBgVkJwCuRhNwmcqpYKlocQAokDUpTYE4SAtiopEpz4CfAX-SXYcdIWBNJqTznEdmJ77PlmNPMNwJogL_ZJJ8eQVAYK9z0r9gKyUmYLpV986TCdKHx0XNs7Z38v-MUY7JS5MIYfYuBw0ycjv6_1AaeuTLeGrKFSfZAzndc7wXgY6Hi-5umQO0rhZl4GHHKPOyXzrO1ulT0_6qIhwByFqbmeaU3DZfmHJrzkZrOfJZvi6RN5439OYQamCvyJdSMwszBG7Tn4OcJK-Atez_JQWrwesHVm2Cu8_Hg3CJdR71GaevbY6lyhqQ-hRnh7ftG6UaLxNlKGnRRNfVAcyatD7QLGJlEXTynnbxVm3ILy9Wob63jf7z3Q4zyct3bPGntWUbnBEgo-OFbqkp9ylhCJpJao-1bhvFoQJ2HC3dQhzWoXMia55ofkIQ_t0BVhEMsaOcRCZTf_hvF2p00LgLaTcCU90ndim_mqH6XkCC_mgc2kupIqsFHuYSQKWnNdXeM2MoTMbqQWOdKLXIE_g5ZdQ-XxRZtqKQZRcZjvI9f3lR2pba0KrOf7-W3_qFlv6OfivzZchcmTZis63D8-WIIfupa9lQcLVmE86_VpWSGeLFnJJfsdNAX-RQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+intelligent+resource+management+in+dynamic+Fog+Computing%E2%80%90based+Internet+of+Things+environment+with+Deep+Reinforcement+Learning%3A+A+survey&rft.jtitle=International+journal+of+communication+systems&rft.au=Gupta%2C+Shally&rft.au=Singh%2C+Nanhay&rft.date=2023-03-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=36&rft.issue=4&rft_id=info:doi/10.1002%2Fdac.5411&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |