Human machine interfacing technique for diagnosis of ventricular arrhythmia using supervisory machine learning algorithms

Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal a...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 33; no. 4
Main Authors Karnan, Hemalatha, Natarajan, Sivakumaran, Manivel, Rajajeyakumar
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.02.2021
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.5001

Cover

Abstract Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG.
AbstractList The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG.
Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG.
Author Karnan, Hemalatha
Natarajan, Sivakumaran
Manivel, Rajajeyakumar
Author_xml – sequence: 1
  givenname: Hemalatha
  orcidid: 0000-0001-8155-3587
  surname: Karnan
  fullname: Karnan, Hemalatha
  organization: Department of Instrumentation and Control Engineering National Institute of Technology
– sequence: 2
  givenname: Sivakumaran
  surname: Natarajan
  fullname: Natarajan, Sivakumaran
  email: nsk@nitt.edu
  organization: Department of Instrumentation and Control Engineering National Institute of Technology
– sequence: 3
  givenname: Rajajeyakumar
  surname: Manivel
  fullname: Manivel, Rajajeyakumar
  organization: Department of Physiology Trichy, SRM Medical College Hospital & Research Centre (Affiliated to TN Dr MGR Medical University, Chennai) Irungalur
BookMark eNp1kEFLwzAUx4NMcJuCHyHgxUtn0nRtepQxnTDQg57L4_V1y-iSmbRKv72tkx1ET3mQ3___eL8JG1lnibFrKWZSiPgODzSbCyHP2FjOVRyJVCWj0xynF2wSwq4HpFByzLpVuwfL94BbY4kb25CvAI3d8IZwa817S7xynpcGNtYFE7ir-AfZxhtsa_AcvN92zXZvgLdhyIX2QP7DBOe7U29N4O3wCfXGedPj4ZKdV1AHuvp5p-ztYfm6WEXr58enxf06wjhXMtKAqYRSVEQiBsw1ikzPMU8pSXJIdKZESQgV6TxVaZaKBEuVixIx0Qorrabs5th78K4_JjTFzrXe9iuLONFC6yzLB-r2SKF3IXiqioM3e_BdIUUxiC16scUgtkdnv1A0DTTG9U7A1H8FomPg09TU_VtcLF6W3_wXQsOOUg
CitedBy_id crossref_primary_10_1080_17455030_2023_2178827
crossref_primary_10_1142_S0217979222501740
crossref_primary_10_1109_ACCESS_2024_3408282
crossref_primary_10_1111_exsy_13298
crossref_primary_10_1002_cpe_5273
crossref_primary_10_1016_j_matcom_2023_12_024
crossref_primary_10_1080_01496395_2025_2452425
crossref_primary_10_1002_cpe_5529
crossref_primary_10_2196_26964
crossref_primary_10_3390_s22134960
Cites_doi 10.1109/TBME.2006.880909
10.1186/1475-925X-9-43
10.1023/A:1009715923555
10.1016/j.ins.2017.04.012
10.1109/TBME.2013.2290800
10.1016/j.ijcac.2015.12.001
10.1109/10.759055
10.1016/j.artmed.2012.02.001
10.1016/S0031-3203(04)00276-6
10.1016/j.eswa.2015.06.046
10.1038/srep41011
10.1007/s00034-014-9864-8
10.1007/s11704-014-2398-1
10.1016/j.cmpb.2015.12.008
10.11648/j.com.20150305.21
10.1007/s10586-017-1530-z
10.1155/2016/6305043
10.1016/j.eswa.2010.10.041
10.1016/0141-5425(89)90067-8
10.1017/CBO9780511801389
10.1109/ROBIO.2009.5420764
10.1080/03091900701507183
10.1016/j.bspc.2015.10.008
10.1016/j.bspc.2014.10.013
10.1016/j.eswa.2010.04.087
10.1016/j.advengsoft.2013.12.007
10.1186/1475-925X-4-60
10.1016/j.procs.2015.03.201
10.1109/10.58594
10.1177/1176934317729413
10.1109/10.55668
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_5001
CPE5001
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2931-8ac61ad0fee02ac98c0785c96e449a48730decafe896367604cd390dcc483cf83
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 05:25:12 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Wed Oct 01 00:59:22 EDT 2025
Wed Jan 22 16:30:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-8ac61ad0fee02ac98c0785c96e449a48730decafe896367604cd390dcc483cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8155-3587
PQID 2480887798
PQPubID 2045170
PageCount 1
ParticipantIDs proquest_journals_2480887798
crossref_primary_10_1002_cpe_5001
crossref_citationtrail_10_1002_cpe_5001
wiley_primary_10_1002_cpe_5001_CPE5001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 February 2021
PublicationDateYYYYMMDD 2021-02-25
PublicationDate_xml – month: 02
  year: 2021
  text: 25 February 2021
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
2017; 7
2015; 6
2010; 37
2015; 19
2015; 3
1990; 37
2017; 28
1999; 46
2009
1998
1997
2014; 69
2006
2008; 32
2005
2005; 61
2011; 38
2007; 54
2013; 5
2012; 55
1978
2017; 405
2015; 47
1989; 11
1982; 29
1990
2000
2015; 42
2014; 16
2018
2017
2016
1998; 2
2014
2005; 38
2010; 2
2014; 8
2010; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Vapnik VN (e_1_2_6_43_1) 1998
Khazaee A (e_1_2_6_8_1) 2013; 5
e_1_2_6_19_1
Kaya Y (e_1_2_6_2_1) 2015; 6
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Clifford GD (e_1_2_6_28_1) 2006
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Subramanian B (e_1_2_6_3_1) 2017
Kuo S (e_1_2_6_35_1) 1978
e_1_2_6_9_1
Lin L‐C (e_1_2_6_12_1) 2014; 16
e_1_2_6_4_1
Amuthadevi C (e_1_2_6_5_1) 2017
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
Murugan S (e_1_2_6_13_1) 2010; 2
e_1_2_6_24_1
Mark RG (e_1_2_6_29_1) 1982; 29
e_1_2_6_23_1
e_1_2_6_44_1
e_1_2_6_45_1
Kaya Y (e_1_2_6_22_1) 2017; 28
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
References_xml – volume: 11
  start-page: 320
  year: 1989
  end-page: 328
  article-title: Algorithmic sequential decision‐making in the frequency domain for life threatening ventricular arrhythmias and an imitative artefacts: a diagnostic system
  publication-title: J Biomed Eng
– year: 2009
– year: 2017
  article-title: A modified mean gray wolf optimization approach for benchmark and biomedical problems
  publication-title: Evol Bioinforma
– volume: 38
  start-page: 5197
  year: 2011
  end-page: 5204
  article-title: Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes
  publication-title: Expert Syst Appl
– volume: 34
  start-page: 513
  year: 2015
  end-page: 533
  article-title: Effect of multiscale PCA de‐noising in ECG beat classification for diagnosis of cardiovascular diseases
  publication-title: Circuits Syst Signal Process
– year: 2018
  article-title: An optimal criterion feature selection method for prediction and effective analysis of heart disease
  publication-title: Clust Comput
– start-page: 2747
  year: 1978
  end-page: 2750
  article-title: Computer detection of ventricular fibrillation
  publication-title: Comput Cardiol
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf Sci
– volume: 29
  start-page: 600
  issue: 8
  year: 1982
  article-title: An annotated ECG database for evaluating arrhythmia detectors
  publication-title: IEEE Trans Biomed Eng
– start-page: 307
  year: 2017
  end-page: 314
  article-title: Effective ECG beat classification using colliding bodies
  publication-title: Biomed Res
– volume: 37
  start-page: 640
  year: 1990
  end-page: 646
  article-title: The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest
  publication-title: IEEE Trans Biomed Eng
– year: 2000
– volume: 42
  start-page: 8361
  year: 2015
  end-page: 8368
  article-title: A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines
  publication-title: Expert Syst Appl
– volume: 37
  start-page: 7563
  year: 2010
  end-page: 7569
  article-title: ECG beat classification using particle swarm optimization and radial basis function neural network
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 1532
  issue: 5
  year: 2010
  end-page: 1538
  article-title: Improving ischemic beat classification using fuzzy‐genetic based PCA and ICA
  publication-title: Int J Comput Sci Eng
– volume: 28
  start-page: 7594
  issue: 17
  year: 2017
  end-page: 7603
  article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection
  publication-title: Biomed Res
– volume: 19
  start-page: 130
  year: 2015
  end-page: 136
  article-title: Genetic algorithm‐based method for mitigating label noise issue in ECG signal classification
  publication-title: Biomed Signal Process Control
– year: 2016
  article-title: An optimal SVM with feature selection using multiobjective PSO
  publication-title: J Optim
– year: 1990
– volume: 37
  start-page: 837
  year: 1990
  end-page: 843
  article-title: Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm
  publication-title: IEEE Trans Biomed Eng
– year: 2005
  article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators
  publication-title: Biomed Eng Online
– year: 2014
– volume: 9
  start-page: 43
  year: 2010
  article-title: Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions
  publication-title: Biomed Eng Online
– year: 1998
– volume: 5
  start-page: 25
  year: 2013
  article-title: Heart beat classification using particle swarm optimization
  publication-title: Int J Intell Syst Appl
– volume: 8
  start-page: 217
  issue: 2
  year: 2014
  end-page: 231
  article-title: ECG beat classification using particle swarm optimization and support vector machine
  publication-title: Front Comput Sci
– volume: 3
  start-page: 150
  year: 2015
  end-page: 157
  article-title: Optimization of multi‐layer perceptron neural network using genetic algorithm for arrhythmia classification
  publication-title: Communications
– start-page: 3187
  year: 2017
  end-page: 3193
  article-title: ECG signal classification and parameter estimation using multiwavelet transform
  publication-title: Biomed Res
– year: 2016
  article-title: ECG‐based heartbeat classification for arrhythmia detection: a survey
  publication-title: Comput Methods Programs Biomed
– volume: 46
  start-page: 548
  year: 1999
  end-page: 555
  article-title: Detecting ventricular tachycardia and fibrillation by complexity measure
  publication-title: IEEE Trans Biomed Eng
– volume: 47
  start-page: 222
  year: 2015
  end-page: 228
  article-title: Naïve Bayes classifier for ECG abnormalities using multivariate maximal time series motif
  publication-title: Procedia Comput Sci
– year: 2016
  article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block
  publication-title: Int J Cardiovasc Acad
– year: 2016
  article-title: A new personalized ECG signal classification algorithm using block‐based neural network and particle swarm optimization
  publication-title: Biomed Signal Process Control
– year: 2006
– year: 1997
– volume: 32
  start-page: 206
  year: 2008
  end-page: 215
  article-title: Detection of QRS complexes in electrocardiogram using support vector machine
  publication-title: J Med Eng Technol
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Disc
– volume: 38
  start-page: 199
  year: 2005
  end-page: 208
  article-title: ECG beat classifier designed by combined neural network model
  publication-title: Pattern Recogn
– volume: 16
  start-page: 483
  year: 2014
  end-page: 496
  article-title: Feature selection algorithm for ECG signals and its application on heartbeat case determining
  publication-title: Int J Fuzzy Syst
– volume: 55
  start-page: 117
  issue: 2
  year: 2012
  end-page: 126
  article-title: Channel selection and classification of electro‐encephalogram signals: an artificial neural network and genetic algorithm‐based approach
  publication-title: Artif Intell Med
– volume: 6
  start-page: 34
  issue: 7
  year: 2015
  end-page: 40
  article-title: Classification of premature ventricular contraction in ECG
  publication-title: Int J Adv Comput Sci Appl
– volume: 61
  start-page: 832
  year: 2005
  end-page: 840
  article-title: Detection of life‐threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE Trans Biomed Eng
– volume: 7
  year: 2017
  article-title: Genetic algorithm for the optimization of features and neural networks in ECG signals classification
  publication-title: Sci Rep
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 54
  start-page: 174
  year: 2007
  end-page: 177
  article-title: Detecting ventricular fibrillation by time‐delay methods
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_6_39_1
  doi: 10.1109/TBME.2006.880909
– ident: e_1_2_6_34_1
  doi: 10.1186/1475-925X-9-43
– ident: e_1_2_6_41_1
  doi: 10.1023/A:1009715923555
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ins.2017.04.012
– ident: e_1_2_6_32_1
  doi: 10.1109/TBME.2013.2290800
– volume-title: Statistical Learning Theory
  year: 1998
  ident: e_1_2_6_43_1
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ijcac.2015.12.001
– ident: e_1_2_6_38_1
  doi: 10.1109/10.759055
– ident: e_1_2_6_46_1
  doi: 10.1016/j.artmed.2012.02.001
– ident: e_1_2_6_7_1
  doi: 10.1016/S0031-3203(04)00276-6
– ident: e_1_2_6_4_1
  doi: 10.1016/j.eswa.2015.06.046
– volume: 5
  start-page: 25
  year: 2013
  ident: e_1_2_6_8_1
  article-title: Heart beat classification using particle swarm optimization
  publication-title: Int J Intell Syst Appl
– volume: 2
  start-page: 1532
  issue: 5
  year: 2010
  ident: e_1_2_6_13_1
  article-title: Improving ischemic beat classification using fuzzy‐genetic based PCA and ICA
  publication-title: Int J Comput Sci Eng
– volume: 29
  start-page: 600
  issue: 8
  year: 1982
  ident: e_1_2_6_29_1
  article-title: An annotated ECG database for evaluating arrhythmia detectors
  publication-title: IEEE Trans Biomed Eng
– volume: 16
  start-page: 483
  year: 2014
  ident: e_1_2_6_12_1
  article-title: Feature selection algorithm for ECG signals and its application on heartbeat case determining
  publication-title: Int J Fuzzy Syst
– ident: e_1_2_6_23_1
  doi: 10.1038/srep41011
– ident: e_1_2_6_10_1
  doi: 10.1007/s00034-014-9864-8
– ident: e_1_2_6_20_1
  doi: 10.1007/s11704-014-2398-1
– volume: 6
  start-page: 34
  issue: 7
  year: 2015
  ident: e_1_2_6_2_1
  article-title: Classification of premature ventricular contraction in ECG
  publication-title: Int J Adv Comput Sci Appl
– ident: e_1_2_6_27_1
  doi: 10.1016/j.cmpb.2015.12.008
– ident: e_1_2_6_25_1
– ident: e_1_2_6_15_1
  doi: 10.11648/j.com.20150305.21
– ident: e_1_2_6_11_1
  doi: 10.1007/s10586-017-1530-z
– ident: e_1_2_6_21_1
  doi: 10.1155/2016/6305043
– ident: e_1_2_6_24_1
  doi: 10.1016/j.eswa.2010.10.041
– start-page: 2747
  year: 1978
  ident: e_1_2_6_35_1
  article-title: Computer detection of ventricular fibrillation
  publication-title: Comput Cardiol
– ident: e_1_2_6_30_1
– ident: e_1_2_6_36_1
  doi: 10.1016/0141-5425(89)90067-8
– ident: e_1_2_6_42_1
  doi: 10.1017/CBO9780511801389
– start-page: 307
  year: 2017
  ident: e_1_2_6_5_1
  article-title: Effective ECG beat classification using colliding bodies
  publication-title: Biomed Res
– volume-title: Advanced Methods and Tools for ECG Data Analysis
  year: 2006
  ident: e_1_2_6_28_1
– ident: e_1_2_6_40_1
  doi: 10.1109/ROBIO.2009.5420764
– ident: e_1_2_6_17_1
  doi: 10.1080/03091900701507183
– ident: e_1_2_6_19_1
  doi: 10.1016/j.bspc.2015.10.008
– ident: e_1_2_6_14_1
  doi: 10.1016/j.bspc.2014.10.013
– ident: e_1_2_6_18_1
  doi: 10.1016/j.eswa.2010.04.087
– ident: e_1_2_6_44_1
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 3187
  year: 2017
  ident: e_1_2_6_3_1
  article-title: ECG signal classification and parameter estimation using multiwavelet transform
  publication-title: Biomed Res
– ident: e_1_2_6_31_1
  doi: 10.1186/1475-925X-4-60
– ident: e_1_2_6_9_1
  doi: 10.1016/j.procs.2015.03.201
– volume: 28
  start-page: 7594
  issue: 17
  year: 2017
  ident: e_1_2_6_22_1
  article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection
  publication-title: Biomed Res
– ident: e_1_2_6_33_1
  doi: 10.1109/10.58594
– ident: e_1_2_6_6_1
– ident: e_1_2_6_45_1
  doi: 10.1177/1176934317729413
– ident: e_1_2_6_37_1
  doi: 10.1109/10.55668
SSID ssj0011031
Score 2.3182786
Snippet Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and...
The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Arrhythmia
Cardiac arrhythmia
Diagnosis
electrocardiogram
Electrocardiography
Estimates
Feature extraction
Iterative methods
Machine learning
mean grey wolf algorithm
Optimization
Parameter estimation
Parametric analysis
Particle swarm optimization
ranking score
Reducing agents
Signal classification
Support vector machines
ventricular arrhythmias
Title Human machine interfacing technique for diagnosis of ventricular arrhythmia using supervisory machine learning algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5001
https://www.proquest.com/docview/2480887798
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7SkxfrE6tVIoiets1mH80eRSxFUEQUBA9LdpK0xbZbdttD_fUm2UdVFMTTXibLbiYz-RK--Qahc-IlLuVSOH6k3aDPG8JJiJs4KmAySSinPWEKhe_uw8Gzf_sSvJSsSlMLU-hD1BduJjJsvjYBzpO8uxYNhbnsBMSWbrleaE9Tj7VylGu6FxRSqdQhGrRXurOEdquBX3eiNbz8DFLtLtNvotfq-wpyyVtnuUg68P5NuvF_P7CNtkrwia-K1bKDNuRsFzWrxg64jPM9tLJX-3hqiZYSG0mJTHHQuxyuNV-xRrtYFES9cY5ThQ1z0l4n8gzzLButFqPpmGPDrB_ifDk3WSlPs1X93rJjxRDzyTDNxto830fP_Zun64FT9mhwQAMF12EcQpcLoqQklEPEQGOOAKJQ-n7E9WnII0ICV5LpSA97IfFBeBERAD7zQDHvADVm6UweIkyVxh7SgD4FvqKMu0T0IIiYFKAI91rosvJXDKWAuemjMYkL6WUa6xmNzYy20FltOS9EO36waVcuj8uwzWPqM5N1exFroQvru1_Hx9cPN-Z59FfDY7RJDR_GlMMHbdRYZEt5ogHNIjm1S_cDH4D1_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLSXAn2oWyi4UtWesjiOk3XEqUKg5amqAolDpcgZ28uqsLtKdg_Lr8eTF6VqJdRTLuMo8XhmPo9mvgH4zKM8FNqaQKZeDf6-YYKch3ngYmXzXGgxMNQofH6RDK_kyXV8vQL7bS9MzQ_RJdzIMip_TQZOCem9R9ZQnNl-zKl3a00m_ppCiOhHxx0V0vyCmixVBNzD9pZ5lou9duXTWPQIMH-HqVWcOVqHn-0X1uUlv_qLed7H-z_IG__zFzbgVYM_2bf6wGzCip28hvV2tgNrTP0NLKvsPrurai0tI1aJwmn0gY51tK_MA15m6lq9ccmmjlHxZJVR1AXTRXGznN_cjTWj4voRKxczckzltFh2722GVoyYvh1Ni7EXL9_C1dHh5cEwaMY0BOixQhgojUmoDXfWcqExVehhR4xpYqVMtb8QRdxY1M4qb-zJIOESTZRygyhVhE5F72B1Mp3Y98CE8_DDEu5zKJ1QOuRmgHGqrEHHddSDr63CMmw4zGmUxm1Wsy-LzO9oRjvag0-d5Kzm7fiLzHar86yx3DITUpHjHaSqB18q5f1zfXbw_ZCeH54ruAsvhpfnZ9nZ8cXpFrwUVB5D3fHxNqzOi4X96PHNPN-pzvEDe7n6Hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAqWXJumDbvNSobQnb2RZ9srkFJIs6SuE0kAOBSOPpM3SZHexdw-bXx-NX0lDCqUnX0bG1mhGn8Q33wB84FEeCm1NIFPvBn_eMEHOwzxwsbJ5LrQYGCoU_n6WnF7IL5fx5QoctLUwtT5Ed-FGkVHlawpwOzNu_141FGe2H3Oq3VqTcaqIz3f8o9OOCql_QS2WKgLuYXurPMvFfjvyz73oHmA-hKnVPjNch1_tF9b0kt_9xTzv4-0j8cb__IUNeNHgT3ZYL5hNWLGTl7De9nZgTai_gmV1u89uKq6lZaQqUTiNfqNjnewr84CXmZqrNy7Z1DEiT1Y3irpguiiulvOrm7FmRK4fsXIxo8RUTotl996macWI6evRtBh78_I1XAxPfh6dBk2bhgA9VggDpTEJteHOWi40pgo97IgxTayUqfYHoogbi9pZ5YM9GSRcoolSbhClitCp6A2sTqYT-xaYcB5-WMJ9DqUTSofcDNA71xp0XEc9-NQ6LMNGw5xaaVxntfqyyPyMZjSjPXjfWc5q3Y4nbLZbn2dN5JaZkIoS7yBVPfhYOe-v47Oj8xN6vvtXwz14dn48zL59Pvu6Bc8FsWOoOD7ehtV5sbA7Ht7M891qGd8BLSP5ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+machine+interfacing+technique+for+diagnosis+of+ventricular+arrhythmia+using+supervisory+machine+learning+algorithms&rft.jtitle=Concurrency+and+computation&rft.au=Karnan%2C+Hemalatha&rft.au=Natarajan%2C+Sivakumaran&rft.au=Manivel%2C+Rajajeyakumar&rft.date=2021-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=4&rft_id=info:doi/10.1002%2Fcpe.5001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon