Human machine interfacing technique for diagnosis of ventricular arrhythmia using supervisory machine learning algorithms
Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal a...
        Saved in:
      
    
          | Published in | Concurrency and computation Vol. 33; no. 4 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          Wiley Subscription Services, Inc
    
        25.02.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1532-0626 1532-0634  | 
| DOI | 10.1002/cpe.5001 | 
Cover
| Abstract | Summary
The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG. | 
    
|---|---|
| AbstractList | The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG. Summary The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate clinical interpretation. The electrocardiogram (ECG) signal plays a vital role in revealing the possible data towards categorizing normal and abnormal cardiac functioning. The fatal conditions exhibited by ventricular arrhythmias (VA) pose a remarkable change in the feature set of the ECG signals. In this work, a novel approach to segregate the superior feature toward the ventricular arrhythmias are extracted using feature ranking score algorithm (FRSA). The FRSA collects feature vectors in three different domains and ranks it to find out the more prevalent feature for diagnosis of VA. The Support Vector Machine (SVM) classifier is administered by supervisory machine learning optimization algorithm Mean Grey Wolf Optimization (MGWO). The performance estimates of SVM‐MGWO is compared for classification of VA signals with other optimization also like SVM‐Particle Swarm Optimization (SVM‐PSO) and SVM‐Grey Wolf Optimization (SVM‐GWO). The non‐parametric and parametric analysis evidently shows the improved performance of feature parameter estimates for classification. The accuracy of classification for SVM‐MGWO attains 100% for finding test data with VA at a minimal convergence iteration while comparing it with the other mentioned supervisory algorithms. The standard deviation during parametric analysis is negligible, which reveals the fact that reductant feature extracted and utilized for testing of ECG data is minimal. The performance estimates attained by the proposed algorithm shows the selection of optimal feature for the findings of VA through ECG. The man‐machine interface aides in the early diagnosis of ventricular arrhythmias using non‐invasive diagnosing tool, the ECG.  | 
    
| Author | Karnan, Hemalatha Natarajan, Sivakumaran Manivel, Rajajeyakumar  | 
    
| Author_xml | – sequence: 1 givenname: Hemalatha orcidid: 0000-0001-8155-3587 surname: Karnan fullname: Karnan, Hemalatha organization: Department of Instrumentation and Control Engineering National Institute of Technology – sequence: 2 givenname: Sivakumaran surname: Natarajan fullname: Natarajan, Sivakumaran email: nsk@nitt.edu organization: Department of Instrumentation and Control Engineering National Institute of Technology – sequence: 3 givenname: Rajajeyakumar surname: Manivel fullname: Manivel, Rajajeyakumar organization: Department of Physiology Trichy, SRM Medical College Hospital & Research Centre (Affiliated to TN Dr MGR Medical University, Chennai) Irungalur  | 
    
| BookMark | eNp1kEFLwzAUx4NMcJuCHyHgxUtn0nRtepQxnTDQg57L4_V1y-iSmbRKv72tkx1ET3mQ3___eL8JG1lnibFrKWZSiPgODzSbCyHP2FjOVRyJVCWj0xynF2wSwq4HpFByzLpVuwfL94BbY4kb25CvAI3d8IZwa817S7xynpcGNtYFE7ir-AfZxhtsa_AcvN92zXZvgLdhyIX2QP7DBOe7U29N4O3wCfXGedPj4ZKdV1AHuvp5p-ztYfm6WEXr58enxf06wjhXMtKAqYRSVEQiBsw1ikzPMU8pSXJIdKZESQgV6TxVaZaKBEuVixIx0Qorrabs5th78K4_JjTFzrXe9iuLONFC6yzLB-r2SKF3IXiqioM3e_BdIUUxiC16scUgtkdnv1A0DTTG9U7A1H8FomPg09TU_VtcLF6W3_wXQsOOUg | 
    
| CitedBy_id | crossref_primary_10_1080_17455030_2023_2178827 crossref_primary_10_1142_S0217979222501740 crossref_primary_10_1109_ACCESS_2024_3408282 crossref_primary_10_1111_exsy_13298 crossref_primary_10_1002_cpe_5273 crossref_primary_10_1016_j_matcom_2023_12_024 crossref_primary_10_1080_01496395_2025_2452425 crossref_primary_10_1002_cpe_5529 crossref_primary_10_2196_26964 crossref_primary_10_3390_s22134960  | 
    
| Cites_doi | 10.1109/TBME.2006.880909 10.1186/1475-925X-9-43 10.1023/A:1009715923555 10.1016/j.ins.2017.04.012 10.1109/TBME.2013.2290800 10.1016/j.ijcac.2015.12.001 10.1109/10.759055 10.1016/j.artmed.2012.02.001 10.1016/S0031-3203(04)00276-6 10.1016/j.eswa.2015.06.046 10.1038/srep41011 10.1007/s00034-014-9864-8 10.1007/s11704-014-2398-1 10.1016/j.cmpb.2015.12.008 10.11648/j.com.20150305.21 10.1007/s10586-017-1530-z 10.1155/2016/6305043 10.1016/j.eswa.2010.10.041 10.1016/0141-5425(89)90067-8 10.1017/CBO9780511801389 10.1109/ROBIO.2009.5420764 10.1080/03091900701507183 10.1016/j.bspc.2015.10.008 10.1016/j.bspc.2014.10.013 10.1016/j.eswa.2010.04.087 10.1016/j.advengsoft.2013.12.007 10.1186/1475-925X-4-60 10.1016/j.procs.2015.03.201 10.1109/10.58594 10.1177/1176934317729413 10.1109/10.55668  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/cpe.5001 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1532-0634 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_cpe_5001 CPE5001  | 
    
| Genre | article | 
    
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2931-8ac61ad0fee02ac98c0785c96e449a48730decafe896367604cd390dcc483cf83 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1532-0626 | 
    
| IngestDate | Fri Jul 25 05:25:12 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Wed Oct 01 00:59:22 EDT 2025 Wed Jan 22 16:30:10 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2931-8ac61ad0fee02ac98c0785c96e449a48730decafe896367604cd390dcc483cf83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8155-3587 | 
    
| PQID | 2480887798 | 
    
| PQPubID | 2045170 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_journals_2480887798 crossref_primary_10_1002_cpe_5001 crossref_citationtrail_10_1002_cpe_5001 wiley_primary_10_1002_cpe_5001_CPE5001  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 25 February 2021 | 
    
| PublicationDateYYYYMMDD | 2021-02-25 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 25 February 2021 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Concurrency and computation | 
    
| PublicationYear | 2021 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2015; 34 2017; 7 2015; 6 2010; 37 2015; 19 2015; 3 1990; 37 2017; 28 1999; 46 2009 1998 1997 2014; 69 2006 2008; 32 2005 2005; 61 2011; 38 2007; 54 2013; 5 2012; 55 1978 2017; 405 2015; 47 1989; 11 1982; 29 1990 2000 2015; 42 2014; 16 2018 2017 2016 1998; 2 2014 2005; 38 2010; 2 2014; 8 2010; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Vapnik VN (e_1_2_6_43_1) 1998 Khazaee A (e_1_2_6_8_1) 2013; 5 e_1_2_6_19_1 Kaya Y (e_1_2_6_2_1) 2015; 6 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Clifford GD (e_1_2_6_28_1) 2006 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Subramanian B (e_1_2_6_3_1) 2017 Kuo S (e_1_2_6_35_1) 1978 e_1_2_6_9_1 Lin L‐C (e_1_2_6_12_1) 2014; 16 e_1_2_6_4_1 Amuthadevi C (e_1_2_6_5_1) 2017 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 Murugan S (e_1_2_6_13_1) 2010; 2 e_1_2_6_24_1 Mark RG (e_1_2_6_29_1) 1982; 29 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_45_1 Kaya Y (e_1_2_6_22_1) 2017; 28 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1  | 
    
| References_xml | – volume: 11 start-page: 320 year: 1989 end-page: 328 article-title: Algorithmic sequential decision‐making in the frequency domain for life threatening ventricular arrhythmias and an imitative artefacts: a diagnostic system publication-title: J Biomed Eng – year: 2009 – year: 2017 article-title: A modified mean gray wolf optimization approach for benchmark and biomedical problems publication-title: Evol Bioinforma – volume: 38 start-page: 5197 year: 2011 end-page: 5204 article-title: Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes publication-title: Expert Syst Appl – volume: 34 start-page: 513 year: 2015 end-page: 533 article-title: Effect of multiscale PCA de‐noising in ECG beat classification for diagnosis of cardiovascular diseases publication-title: Circuits Syst Signal Process – year: 2018 article-title: An optimal criterion feature selection method for prediction and effective analysis of heart disease publication-title: Clust Comput – start-page: 2747 year: 1978 end-page: 2750 article-title: Computer detection of ventricular fibrillation publication-title: Comput Cardiol – volume: 405 start-page: 81 year: 2017 end-page: 90 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf Sci – volume: 29 start-page: 600 issue: 8 year: 1982 article-title: An annotated ECG database for evaluating arrhythmia detectors publication-title: IEEE Trans Biomed Eng – start-page: 307 year: 2017 end-page: 314 article-title: Effective ECG beat classification using colliding bodies publication-title: Biomed Res – volume: 37 start-page: 640 year: 1990 end-page: 646 article-title: The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest publication-title: IEEE Trans Biomed Eng – year: 2000 – volume: 42 start-page: 8361 year: 2015 end-page: 8368 article-title: A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines publication-title: Expert Syst Appl – volume: 37 start-page: 7563 year: 2010 end-page: 7569 article-title: ECG beat classification using particle swarm optimization and radial basis function neural network publication-title: Expert Syst Appl – volume: 2 start-page: 1532 issue: 5 year: 2010 end-page: 1538 article-title: Improving ischemic beat classification using fuzzy‐genetic based PCA and ICA publication-title: Int J Comput Sci Eng – volume: 28 start-page: 7594 issue: 17 year: 2017 end-page: 7603 article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection publication-title: Biomed Res – volume: 19 start-page: 130 year: 2015 end-page: 136 article-title: Genetic algorithm‐based method for mitigating label noise issue in ECG signal classification publication-title: Biomed Signal Process Control – year: 2016 article-title: An optimal SVM with feature selection using multiobjective PSO publication-title: J Optim – year: 1990 – volume: 37 start-page: 837 year: 1990 end-page: 843 article-title: Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm publication-title: IEEE Trans Biomed Eng – year: 2005 article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators publication-title: Biomed Eng Online – year: 2014 – volume: 9 start-page: 43 year: 2010 article-title: Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions publication-title: Biomed Eng Online – year: 1998 – volume: 5 start-page: 25 year: 2013 article-title: Heart beat classification using particle swarm optimization publication-title: Int J Intell Syst Appl – volume: 8 start-page: 217 issue: 2 year: 2014 end-page: 231 article-title: ECG beat classification using particle swarm optimization and support vector machine publication-title: Front Comput Sci – volume: 3 start-page: 150 year: 2015 end-page: 157 article-title: Optimization of multi‐layer perceptron neural network using genetic algorithm for arrhythmia classification publication-title: Communications – start-page: 3187 year: 2017 end-page: 3193 article-title: ECG signal classification and parameter estimation using multiwavelet transform publication-title: Biomed Res – year: 2016 article-title: ECG‐based heartbeat classification for arrhythmia detection: a survey publication-title: Comput Methods Programs Biomed – volume: 46 start-page: 548 year: 1999 end-page: 555 article-title: Detecting ventricular tachycardia and fibrillation by complexity measure publication-title: IEEE Trans Biomed Eng – volume: 47 start-page: 222 year: 2015 end-page: 228 article-title: Naïve Bayes classifier for ECG abnormalities using multivariate maximal time series motif publication-title: Procedia Comput Sci – year: 2016 article-title: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block publication-title: Int J Cardiovasc Acad – year: 2016 article-title: A new personalized ECG signal classification algorithm using block‐based neural network and particle swarm optimization publication-title: Biomed Signal Process Control – year: 2006 – year: 1997 – volume: 32 start-page: 206 year: 2008 end-page: 215 article-title: Detection of QRS complexes in electrocardiogram using support vector machine publication-title: J Med Eng Technol – volume: 2 start-page: 121 year: 1998 end-page: 167 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Disc – volume: 38 start-page: 199 year: 2005 end-page: 208 article-title: ECG beat classifier designed by combined neural network model publication-title: Pattern Recogn – volume: 16 start-page: 483 year: 2014 end-page: 496 article-title: Feature selection algorithm for ECG signals and its application on heartbeat case determining publication-title: Int J Fuzzy Syst – volume: 55 start-page: 117 issue: 2 year: 2012 end-page: 126 article-title: Channel selection and classification of electro‐encephalogram signals: an artificial neural network and genetic algorithm‐based approach publication-title: Artif Intell Med – volume: 6 start-page: 34 issue: 7 year: 2015 end-page: 40 article-title: Classification of premature ventricular contraction in ECG publication-title: Int J Adv Comput Sci Appl – volume: 61 start-page: 832 year: 2005 end-page: 840 article-title: Detection of life‐threatening arrhythmias using feature selection and support vector machines publication-title: IEEE Trans Biomed Eng – volume: 7 year: 2017 article-title: Genetic algorithm for the optimization of features and neural networks in ECG signals classification publication-title: Sci Rep – volume: 69 start-page: 46 year: 2014 end-page: 61 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 54 start-page: 174 year: 2007 end-page: 177 article-title: Detecting ventricular fibrillation by time‐delay methods publication-title: IEEE Trans Biomed Eng – ident: e_1_2_6_39_1 doi: 10.1109/TBME.2006.880909 – ident: e_1_2_6_34_1 doi: 10.1186/1475-925X-9-43 – ident: e_1_2_6_41_1 doi: 10.1023/A:1009715923555 – ident: e_1_2_6_16_1 doi: 10.1016/j.ins.2017.04.012 – ident: e_1_2_6_32_1 doi: 10.1109/TBME.2013.2290800 – volume-title: Statistical Learning Theory year: 1998 ident: e_1_2_6_43_1 – ident: e_1_2_6_26_1 doi: 10.1016/j.ijcac.2015.12.001 – ident: e_1_2_6_38_1 doi: 10.1109/10.759055 – ident: e_1_2_6_46_1 doi: 10.1016/j.artmed.2012.02.001 – ident: e_1_2_6_7_1 doi: 10.1016/S0031-3203(04)00276-6 – ident: e_1_2_6_4_1 doi: 10.1016/j.eswa.2015.06.046 – volume: 5 start-page: 25 year: 2013 ident: e_1_2_6_8_1 article-title: Heart beat classification using particle swarm optimization publication-title: Int J Intell Syst Appl – volume: 2 start-page: 1532 issue: 5 year: 2010 ident: e_1_2_6_13_1 article-title: Improving ischemic beat classification using fuzzy‐genetic based PCA and ICA publication-title: Int J Comput Sci Eng – volume: 29 start-page: 600 issue: 8 year: 1982 ident: e_1_2_6_29_1 article-title: An annotated ECG database for evaluating arrhythmia detectors publication-title: IEEE Trans Biomed Eng – volume: 16 start-page: 483 year: 2014 ident: e_1_2_6_12_1 article-title: Feature selection algorithm for ECG signals and its application on heartbeat case determining publication-title: Int J Fuzzy Syst – ident: e_1_2_6_23_1 doi: 10.1038/srep41011 – ident: e_1_2_6_10_1 doi: 10.1007/s00034-014-9864-8 – ident: e_1_2_6_20_1 doi: 10.1007/s11704-014-2398-1 – volume: 6 start-page: 34 issue: 7 year: 2015 ident: e_1_2_6_2_1 article-title: Classification of premature ventricular contraction in ECG publication-title: Int J Adv Comput Sci Appl – ident: e_1_2_6_27_1 doi: 10.1016/j.cmpb.2015.12.008 – ident: e_1_2_6_25_1 – ident: e_1_2_6_15_1 doi: 10.11648/j.com.20150305.21 – ident: e_1_2_6_11_1 doi: 10.1007/s10586-017-1530-z – ident: e_1_2_6_21_1 doi: 10.1155/2016/6305043 – ident: e_1_2_6_24_1 doi: 10.1016/j.eswa.2010.10.041 – start-page: 2747 year: 1978 ident: e_1_2_6_35_1 article-title: Computer detection of ventricular fibrillation publication-title: Comput Cardiol – ident: e_1_2_6_30_1 – ident: e_1_2_6_36_1 doi: 10.1016/0141-5425(89)90067-8 – ident: e_1_2_6_42_1 doi: 10.1017/CBO9780511801389 – start-page: 307 year: 2017 ident: e_1_2_6_5_1 article-title: Effective ECG beat classification using colliding bodies publication-title: Biomed Res – volume-title: Advanced Methods and Tools for ECG Data Analysis year: 2006 ident: e_1_2_6_28_1 – ident: e_1_2_6_40_1 doi: 10.1109/ROBIO.2009.5420764 – ident: e_1_2_6_17_1 doi: 10.1080/03091900701507183 – ident: e_1_2_6_19_1 doi: 10.1016/j.bspc.2015.10.008 – ident: e_1_2_6_14_1 doi: 10.1016/j.bspc.2014.10.013 – ident: e_1_2_6_18_1 doi: 10.1016/j.eswa.2010.04.087 – ident: e_1_2_6_44_1 doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 3187 year: 2017 ident: e_1_2_6_3_1 article-title: ECG signal classification and parameter estimation using multiwavelet transform publication-title: Biomed Res – ident: e_1_2_6_31_1 doi: 10.1186/1475-925X-4-60 – ident: e_1_2_6_9_1 doi: 10.1016/j.procs.2015.03.201 – volume: 28 start-page: 7594 issue: 17 year: 2017 ident: e_1_2_6_22_1 article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection publication-title: Biomed Res – ident: e_1_2_6_33_1 doi: 10.1109/10.58594 – ident: e_1_2_6_6_1 – ident: e_1_2_6_45_1 doi: 10.1177/1176934317729413 – ident: e_1_2_6_37_1 doi: 10.1109/10.55668  | 
    
| SSID | ssj0011031 | 
    
| Score | 2.3182786 | 
    
| Snippet | Summary
The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and... The state of art to integrate bio‐signals with computer based diagnosis is taking dominance. The man‐machine interface is useful for early and immediate...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Arrhythmia Cardiac arrhythmia Diagnosis electrocardiogram Electrocardiography Estimates Feature extraction Iterative methods Machine learning mean grey wolf algorithm Optimization Parameter estimation Parametric analysis Particle swarm optimization ranking score Reducing agents Signal classification Support vector machines ventricular arrhythmias  | 
    
| Title | Human machine interfacing technique for diagnosis of ventricular arrhythmia using supervisory machine learning algorithms | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5001 https://www.proquest.com/docview/2480887798  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7SkxfrE6tVIoiets1mH80eRSxFUEQUBA9LdpK0xbZbdttD_fUm2UdVFMTTXibLbiYz-RK--Qahc-IlLuVSOH6k3aDPG8JJiJs4KmAySSinPWEKhe_uw8Gzf_sSvJSsSlMLU-hD1BduJjJsvjYBzpO8uxYNhbnsBMSWbrleaE9Tj7VylGu6FxRSqdQhGrRXurOEdquBX3eiNbz8DFLtLtNvotfq-wpyyVtnuUg68P5NuvF_P7CNtkrwia-K1bKDNuRsFzWrxg64jPM9tLJX-3hqiZYSG0mJTHHQuxyuNV-xRrtYFES9cY5ThQ1z0l4n8gzzLButFqPpmGPDrB_ifDk3WSlPs1X93rJjxRDzyTDNxto830fP_Zun64FT9mhwQAMF12EcQpcLoqQklEPEQGOOAKJQ-n7E9WnII0ICV5LpSA97IfFBeBERAD7zQDHvADVm6UweIkyVxh7SgD4FvqKMu0T0IIiYFKAI91rosvJXDKWAuemjMYkL6WUa6xmNzYy20FltOS9EO36waVcuj8uwzWPqM5N1exFroQvru1_Hx9cPN-Z59FfDY7RJDR_GlMMHbdRYZEt5ogHNIjm1S_cDH4D1_g | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLSXAn2oWyi4UtWesjiOk3XEqUKg5amqAolDpcgZ28uqsLtKdg_Lr8eTF6VqJdRTLuMo8XhmPo9mvgH4zKM8FNqaQKZeDf6-YYKch3ngYmXzXGgxMNQofH6RDK_kyXV8vQL7bS9MzQ_RJdzIMip_TQZOCem9R9ZQnNl-zKl3a00m_ppCiOhHxx0V0vyCmixVBNzD9pZ5lou9duXTWPQIMH-HqVWcOVqHn-0X1uUlv_qLed7H-z_IG__zFzbgVYM_2bf6wGzCip28hvV2tgNrTP0NLKvsPrurai0tI1aJwmn0gY51tK_MA15m6lq9ccmmjlHxZJVR1AXTRXGznN_cjTWj4voRKxczckzltFh2722GVoyYvh1Ni7EXL9_C1dHh5cEwaMY0BOixQhgojUmoDXfWcqExVehhR4xpYqVMtb8QRdxY1M4qb-zJIOESTZRygyhVhE5F72B1Mp3Y98CE8_DDEu5zKJ1QOuRmgHGqrEHHddSDr63CMmw4zGmUxm1Wsy-LzO9oRjvag0-d5Kzm7fiLzHar86yx3DITUpHjHaSqB18q5f1zfXbw_ZCeH54ruAsvhpfnZ9nZ8cXpFrwUVB5D3fHxNqzOi4X96PHNPN-pzvEDe7n6Hw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAqWXJumDbvNSobQnb2RZ9srkFJIs6SuE0kAOBSOPpM3SZHexdw-bXx-NX0lDCqUnX0bG1mhGn8Q33wB84FEeCm1NIFPvBn_eMEHOwzxwsbJ5LrQYGCoU_n6WnF7IL5fx5QoctLUwtT5Ed-FGkVHlawpwOzNu_141FGe2H3Oq3VqTcaqIz3f8o9OOCql_QS2WKgLuYXurPMvFfjvyz73oHmA-hKnVPjNch1_tF9b0kt_9xTzv4-0j8cb__IUNeNHgT3ZYL5hNWLGTl7De9nZgTai_gmV1u89uKq6lZaQqUTiNfqNjnewr84CXmZqrNy7Z1DEiT1Y3irpguiiulvOrm7FmRK4fsXIxo8RUTotl996macWI6evRtBh78_I1XAxPfh6dBk2bhgA9VggDpTEJteHOWi40pgo97IgxTayUqfYHoogbi9pZ5YM9GSRcoolSbhClitCp6A2sTqYT-xaYcB5-WMJ9DqUTSofcDNA71xp0XEc9-NQ6LMNGw5xaaVxntfqyyPyMZjSjPXjfWc5q3Y4nbLZbn2dN5JaZkIoS7yBVPfhYOe-v47Oj8xN6vvtXwz14dn48zL59Pvu6Bc8FsWOoOD7ehtV5sbA7Ht7M891qGd8BLSP5ow | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+machine+interfacing+technique+for+diagnosis+of+ventricular+arrhythmia+using+supervisory+machine+learning+algorithms&rft.jtitle=Concurrency+and+computation&rft.au=Karnan%2C+Hemalatha&rft.au=Natarajan%2C+Sivakumaran&rft.au=Manivel%2C+Rajajeyakumar&rft.date=2021-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=4&rft_id=info:doi/10.1002%2Fcpe.5001&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |