Fuzzy‐dependent switched fault‐tolerant tracking control for permanent magnet synchronous generator‐based wind energy conversion system
Summary This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the no...
        Saved in:
      
    
          | Published in | International journal of adaptive control and signal processing Vol. 37; no. 2; pp. 399 - 413 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bognor Regis
          Wiley Subscription Services, Inc
    
        01.02.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0890-6327 1099-1115  | 
| DOI | 10.1002/acs.3530 | 
Cover
| Abstract | Summary
This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the nonlinear WECS composed of a PMSG and wind turbine. By using the switching technique and Lyapunov functional including membership function information, fault‐tolerant tracking control is proposed to effectively track the optimal trajectory of PMSG‐based WECS states with known and unknown actuator faults. Also, the stabilization conditions are derived in the form of linear matrix inequality to determine the control gains, which assures the maximum power output and enhance the system performance. Meanwhile, the H∞$$ {H}_{\infty } $$ performance index is presented with membership function, for attenuating the load torque disturbance of WECS. Finally, the superiority and benefit of presented method are validated by numerical simulations. | 
    
|---|---|
| AbstractList | Summary
This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the nonlinear WECS composed of a PMSG and wind turbine. By using the switching technique and Lyapunov functional including membership function information, fault‐tolerant tracking control is proposed to effectively track the optimal trajectory of PMSG‐based WECS states with known and unknown actuator faults. Also, the stabilization conditions are derived in the form of linear matrix inequality to determine the control gains, which assures the maximum power output and enhance the system performance. Meanwhile, the H∞$$ {H}_{\infty } $$ performance index is presented with membership function, for attenuating the load torque disturbance of WECS. Finally, the superiority and benefit of presented method are validated by numerical simulations. This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the nonlinear WECS composed of a PMSG and wind turbine. By using the switching technique and Lyapunov functional including membership function information, fault‐tolerant tracking control is proposed to effectively track the optimal trajectory of PMSG‐based WECS states with known and unknown actuator faults. Also, the stabilization conditions are derived in the form of linear matrix inequality to determine the control gains, which assures the maximum power output and enhance the system performance. Meanwhile, the H∞$$ {H}_{\infty } $$ performance index is presented with membership function, for attenuating the load torque disturbance of WECS. Finally, the superiority and benefit of presented method are validated by numerical simulations. This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind energy conversion system (WECS) subject to actuator faults. To do this, a Takagi‐Sugeno fuzzy model is exploited to delineate the nonlinear WECS composed of a PMSG and wind turbine. By using the switching technique and Lyapunov functional including membership function information, fault‐tolerant tracking control is proposed to effectively track the optimal trajectory of PMSG‐based WECS states with known and unknown actuator faults. Also, the stabilization conditions are derived in the form of linear matrix inequality to determine the control gains, which assures the maximum power output and enhance the system performance. Meanwhile, the performance index is presented with membership function, for attenuating the load torque disturbance of WECS. Finally, the superiority and benefit of presented method are validated by numerical simulations.  | 
    
| Author | Joo, Young Hoon Kuppusamy, Subramanian  | 
    
| Author_xml | – sequence: 1 givenname: Subramanian surname: Kuppusamy fullname: Kuppusamy, Subramanian organization: Kunsan National University – sequence: 2 givenname: Young Hoon orcidid: 0000-0002-4662-1916 surname: Joo fullname: Joo, Young Hoon email: yhjoo@kunsan.ac.kr organization: Kunsan National University  | 
    
| BookMark | eNp1kMFKwzAcxoNMcJuCj1Dw4qUzaba2OY7hVBh4UM8lTf7dMrtkJqmjO_kCgs_ok5g6T6KnQL7f7wv5BqinjQaEzgkeEYyTKy7ciE4oPkJ9ghmLCSGTHurjnOE4pUl2ggbOrTEOGaF99D5v9vv28-1Dwha0BO0jt1NerEBGFW9qHyJvarA8JN5y8az0MhJGe2vqqDI22oLdcN2JG77UEPxWi5U12jQuWoIOqjc21JTchdKd0jLqbpdtV_MK1imjg-Q8bE7RccVrB2c_5xA9za8fZ7fx4v7mbjZdxCJhFMcSizSleTkmUoBIJC-xBJzgSUVLwSEv01xWsoQ8hQwEK1MGnKYyIyzPWcYEHaKLQ-_WmpcGnC_WprE6PFkkWTbJSZKMcaBGB0pY45yFqhDKc6-6z3NVFwQX3eRFmLzoJg_C5S9ha9WG2_YvND6gO1VD-y9XTGcP3_wXqjuaWQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_cnsns_2024_108394 crossref_primary_10_1109_TFUZZ_2024_3449853  | 
    
| Cites_doi | 10.1007/978-3-319-08413-8 10.1002/rnc.2860 10.1016/j.ins.2020.12.088 10.1109/TIE.2021.3084176 10.1109/TPEL.2016.2514370 10.1016/j.renene.2021.03.083 10.1016/j.neucom.2017.07.022 10.1109/TSMC.2019.2946873 10.1002/acs.3288 10.1016/j.renene.2011.06.025 10.1109/CIST.2018.8596515 10.1016/j.renene.2017.12.047 10.1109/REDEC49234.2020.9163889 10.1109/TFUZZ.2003.814861 10.1002/rnc.6188 10.1016/j.jfranklin.2017.03.001 10.1109/TSMC.2019.2930743 10.1109/TFUZZ.2018.2876651 10.1109/TII.2007.911895 10.1007/s13369-017-2525-z 10.1016/j.ijepes.2018.09.015 10.1109/TFUZZ.2019.2950879 10.1109/TCYB.2018.2801795 10.1016/j.renene.2018.11.106 10.1016/j.nahs.2017.08.005 10.1049/iet-epa.2018.5973 10.1109/TCYB.2014.2336976 10.35833/MPCE.2018.000365 10.1002/acs.2733 10.1155/2017/6164841 10.1002/rnc.3277 10.1109/TFUZZ.2021.3059949  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons Ltd.  | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/acs.3530 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1099-1115 | 
    
| EndPage | 413 | 
    
| ExternalDocumentID | 10_1002_acs_3530 ACS3530  | 
    
| Genre | researchArticle | 
    
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: NRF‐2016R1A6A1A03013567; NRF‐2021 R1A2B5B01001484  | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2930-d0c6638b41dcec2dab0de0205f3bcae8b68dfdbe86e7ec9b69ea36d71988979c3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0890-6327 | 
    
| IngestDate | Fri Jul 25 12:21:54 EDT 2025 Wed Oct 01 04:19:59 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Wed Jan 22 16:23:59 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2930-d0c6638b41dcec2dab0de0205f3bcae8b68dfdbe86e7ec9b69ea36d71988979c3 | 
    
| Notes | Funding information National Research Foundation of Korea (NRF), Grant/Award Numbers: NRF‐2016R1A6A1A03013567; NRF‐2021 R1A2B5B01001484 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4662-1916 | 
    
| PQID | 2775812240 | 
    
| PQPubID | 996374 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_2775812240 crossref_citationtrail_10_1002_acs_3530 crossref_primary_10_1002_acs_3530 wiley_primary_10_1002_acs_3530_ACS3530  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2023 2023-02-00 20230201  | 
    
| PublicationDateYYYYMMDD | 2023-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Bognor Regis | 
    
| PublicationPlace_xml | – name: Bognor Regis | 
    
| PublicationTitle | International journal of adaptive control and signal processing | 
    
| PublicationYear | 2023 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2021; 69 2019; 8 2017; 42 2017; 2017 2013; 23 2019; 13 2015; 31 2016; 31 2019; 105 2012; 37 2017; 354 2021; 30 2021; 51 2014; 45 2018; 49 2018; 27 2003; 11 2021; 35 2017; 31 2015; 25 2018; 272 2018; 119 2020 2021; 559 2019; 28 2019; 135 2021; 172 2014 2022; 32 2007; 3 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Wang L (e_1_2_8_23_1) 2017; 2017 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_18_1 Hui JC (e_1_2_8_17_1) 2015; 31 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1  | 
    
| References_xml | – volume: 135 start-page: 55 year: 2019 end-page: 65 article-title: Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller publication-title: Renew Energy – volume: 559 start-page: 270 year: 2021 end-page: 285 article-title: Stabilization of permanent magnet synchronous generator‐based wind turbine system via fuzzy‐based sampled‐data control approach publication-title: Inf Sci – volume: 51 start-page: 2199 issue: 4 year: 2021 end-page: 2211 article-title: Fuzzy sampled‐data control for DFIG‐based wind turbine with stochastic actuator failures publication-title: IEEE Trans Syst Man Cybern Syst – volume: 119 start-page: 577 year: 2018 end-page: 589 article-title: Passivity‐based sliding‐mode control design for optimal power extraction of a PMSG based variable speed wind turbine publication-title: Renew Energy – volume: 23 start-page: 1880 issue: 16 year: 2013 end-page: 1890 article-title: A rotor speed estimation algorithm in variable speed permanent magnet synchronous generator wind energy conversion system publication-title: Int J Robust Nonlinear Control – volume: 11 start-page: 582 issue: 4 year: 2003 end-page: 589 article-title: A multiple Lyapunov function approach to stabilization of fuzzy control systems publication-title: IEEE Trans Fuzzy Syst – volume: 105 start-page: 660 year: 2019 end-page: 670 article-title: Adaptive active fault‐tolerant MPPT control for wind power generation system under partial loss of actuator effectiveness publication-title: Int J Electr Power Energy Syst – volume: 28 start-page: 3360 issue: 12 year: 2019 end-page: 3366 article-title: Control synthesis for discrete‐time T‐S fuzzy systems based on membership function‐dependent performance publication-title: IEEE Trans Fuzzy Syst – volume: 272 start-page: 495 year: 2018 end-page: 504 article-title: Adaptive neuro‐fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable‐speed wind turbine publication-title: Neurocomputing – volume: 30 start-page: 1409 issue: 5 year: 2021 end-page: 1420 article-title: Fuzzy event‐triggered control for back to back converter involved PMSG‐based wind turbine systems publication-title: IEEE Trans Fuzzy Syst – volume: 35 start-page: 1732 issue: 9 year: 2021 end-page: 1753 article-title: Experimental implementation of a novel scheduling algorithm for adaptive and modified P&O MPPT controller using fuzzy logic for WECS publication-title: Int J Adapt Control Signal Process – volume: 42 start-page: 3055 issue: 7 year: 2017 end-page: 3063 article-title: Robust fault‐tolerant control of wind turbine systems against actuator and sensor faults publication-title: Arab J Sci Eng – volume: 3 start-page: 289 issue: 4 year: 2007 end-page: 301 article-title: TS fuzzy‐model‐based robust design for networked control systems with uncertainties publication-title: IEEE Trans Ind Inform – year: 2014 – volume: 45 start-page: 819 issue: 4 year: 2014 end-page: 829 article-title: On fuzzy sampled‐data control of chaotic systems via a time‐dependent Lyapunov functional approach publication-title: IEEE Trans Cybern – volume: 2017 start-page: 1 year: 2017 end-page: 11 article-title: Active fault‐tolerant control for wind turbine with simultaneous actuator and sensor faults publication-title: Complexity – volume: 25 start-page: 761 issue: 5 year: 2015 end-page: 772 article-title: Fault‐tolerant controller design for a master generation unit in an isolated hybrid wind‐diesel power system publication-title: Int J Robust Nonlinear Control – volume: 37 start-page: 434 issue: 1 year: 2012 end-page: 439 article-title: Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach publication-title: Renew Energy – volume: 32 start-page: 7039 issue: 12 year: 2022 end-page: 7056 article-title: Hierarchical robust control for variable‐pitch wind turbine with actuator faults publication-title: Int J Robust Nonlinear Control – volume: 31 start-page: 835 issue: 6 year: 2017 end-page: 858 article-title: Maximum power extraction on wind turbine systems using block‐backstepping with gradient dynamics control publication-title: Int J Adapt Control Signal Process – volume: 172 start-page: 1021 year: 2021 end-page: 1034 article-title: A new robust control scheme: application for MPP tracking of a PMSG‐based variable‐speed wind turbine publication-title: Renew Energy – volume: 354 start-page: 3430 issue: 8 year: 2017 end-page: 3454 article-title: Finite‐time dissipative based fault‐tolerant control of Takagi‐Sugeno fuzzy systems in a network environment publication-title: J Franklin Inst – volume: 31 start-page: 7837 issue: 11 year: 2016 end-page: 7848 article-title: An adaptive network‐based reinforcement learning method for MPPT control of PMSG wind energy conversion systems publication-title: IEEE Trans Power Electron – volume: 69 start-page: 4765 issue: 5 year: 2021 end-page: 4775 article-title: An improved mechanical sensorless maximum power point tracking method for PMSG‐based small wind turbines systems publication-title: IEEE Trans Ind Electron – volume: 27 start-page: 1263 issue: 6 year: 2018 end-page: 1271 article-title: Stabilization of chaotic systems with T‐S fuzzy model and nonuniform sampling: a switched fuzzy control approach publication-title: IEEE Trans Fuzzy Syst – volume: 13 start-page: 1891 issue: 12 year: 2019 end-page: 1900 article-title: Disturbance observer‐based integral fuzzy sliding‐mode control and its application to wind turbine system publication-title: IET Control Theory Appl – start-page: 1 year: 2020 end-page: 6 – volume: 51 start-page: 2212 issue: 4 year: 2021 end-page: 2219 article-title: Passivity‐based fuzzy ISMC for wind energy conversion systems with PMSG publication-title: IEEE Trans Syst Man Cybern Syst – volume: 49 start-page: 1551 issue: 4 year: 2018 end-page: 1556 article-title: New stability criterion for continuous‐time Takagi–Sugeno fuzzy systems with time‐varying delay publication-title: IEEE Trans Cybernet – volume: 27 start-page: 62 year: 2018 end-page: 76 article-title: Non‐fragile reliable sampled‐data controller for nonlinear switched time‐varying systems publication-title: Nonlinear Anal Hybrid Syst – volume: 31 start-page: 4861 issue: 7 year: 2015 end-page: 4875 article-title: An energy management scheme with power limit capability and an adaptive maximum power point tracking for small standalone PMSG wind energy systems publication-title: IEEE Trans Power Electron – volume: 8 start-page: 159 issue: 1 year: 2019 end-page: 167 article-title: Optimal estimation and tracking control for variable‐speed wind turbine with PMSG publication-title: J Modern Power Syst Clean Energy – ident: e_1_2_8_2_1 doi: 10.1007/978-3-319-08413-8 – ident: e_1_2_8_4_1 doi: 10.1002/rnc.2860 – ident: e_1_2_8_11_1 doi: 10.1016/j.ins.2020.12.088 – ident: e_1_2_8_18_1 doi: 10.1109/TIE.2021.3084176 – ident: e_1_2_8_21_1 doi: 10.1109/TPEL.2016.2514370 – ident: e_1_2_8_20_1 doi: 10.1016/j.renene.2021.03.083 – ident: e_1_2_8_5_1 doi: 10.1016/j.neucom.2017.07.022 – ident: e_1_2_8_28_1 doi: 10.1109/TSMC.2019.2946873 – ident: e_1_2_8_16_1 doi: 10.1002/acs.3288 – volume: 31 start-page: 4861 issue: 7 year: 2015 ident: e_1_2_8_17_1 article-title: An energy management scheme with power limit capability and an adaptive maximum power point tracking for small standalone PMSG wind energy systems publication-title: IEEE Trans Power Electron – ident: e_1_2_8_6_1 doi: 10.1016/j.renene.2011.06.025 – ident: e_1_2_8_13_1 doi: 10.1109/CIST.2018.8596515 – ident: e_1_2_8_8_1 doi: 10.1016/j.renene.2017.12.047 – ident: e_1_2_8_10_1 doi: 10.1109/REDEC49234.2020.9163889 – ident: e_1_2_8_14_1 doi: 10.1109/TFUZZ.2003.814861 – ident: e_1_2_8_22_1 doi: 10.1002/rnc.6188 – ident: e_1_2_8_34_1 doi: 10.1016/j.jfranklin.2017.03.001 – ident: e_1_2_8_7_1 doi: 10.1109/TSMC.2019.2930743 – ident: e_1_2_8_31_1 doi: 10.1109/TFUZZ.2018.2876651 – ident: e_1_2_8_33_1 doi: 10.1109/TII.2007.911895 – ident: e_1_2_8_24_1 doi: 10.1007/s13369-017-2525-z – ident: e_1_2_8_26_1 doi: 10.1016/j.ijepes.2018.09.015 – ident: e_1_2_8_15_1 doi: 10.1109/TFUZZ.2019.2950879 – ident: e_1_2_8_30_1 doi: 10.1109/TCYB.2018.2801795 – ident: e_1_2_8_27_1 doi: 10.1016/j.renene.2018.11.106 – ident: e_1_2_8_32_1 doi: 10.1016/j.nahs.2017.08.005 – ident: e_1_2_8_9_1 doi: 10.1049/iet-epa.2018.5973 – ident: e_1_2_8_29_1 doi: 10.1109/TCYB.2014.2336976 – ident: e_1_2_8_19_1 doi: 10.35833/MPCE.2018.000365 – ident: e_1_2_8_3_1 doi: 10.1002/acs.2733 – volume: 2017 start-page: 1 year: 2017 ident: e_1_2_8_23_1 article-title: Active fault‐tolerant control for wind turbine with simultaneous actuator and sensor faults publication-title: Complexity doi: 10.1155/2017/6164841 – ident: e_1_2_8_25_1 doi: 10.1002/rnc.3277 – ident: e_1_2_8_12_1 doi: 10.1109/TFUZZ.2021.3059949  | 
    
| SSID | ssj0009913 | 
    
| Score | 2.3372998 | 
    
| Snippet | Summary
This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based... This article investigates the switched fault‐tolerant tracking control techniques for a permanent magnet synchronous generator (PMSG)‐based variable‐speed wind...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 399 | 
    
| SubjectTerms | actuator faults Actuators Energy conversion fault‐tolerant control H-infinity control Linear matrix inequalities Mathematical analysis Mathematical models Maximum power Performance indices Permanent magnets PMSG stabilization Synchronous machines Tracking control Trajectory optimization wind energy conversion system Wind power Wind turbines  | 
    
| Title | Fuzzy‐dependent switched fault‐tolerant tracking control for permanent magnet synchronous generator‐based wind energy conversion system | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3530 https://www.proquest.com/docview/2775812240  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1099-1115 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009913 issn: 0890-6327 databaseCode: AMVHM dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0890-6327 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009913 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEF-KvrQPrbUt1VpZobRPOS-7yWb38ZAeh3B90FqEPoT9FxHPnJgE8Z78AoKf0U_SmU3iaWmh9CmEzIRkZ3b3N7uzvyHkUyJjrr3LotQoFsEdi7RPhpEznnmpLUsKPJw8_SYmR8n-cXrcZVXiWZiWH-JhwQ17RhivsYNrU-0uSUO1rQY85Riux1yEaOpgyRwFsCdsLksF0RFnWc87O2S7veLTmWgJLx-D1DDLjF-Rn_33tcklZ4OmNgO7-I268f9-YI287MAnHbXe8po88-U6efGIkvANuR03i8X1_c1dXx23ptXVKZrW0UI3sxoe1fOZhymupvWltrjUTruEdwoImF7gWF-i4rk-KT3oX5cWKXjnTUVPAss1xPnwGpxAHb06LR314QQiDSnwYf2OtgzTb8nR-Ov3vUnUlWyILOAGMPHQAoSRJomd9ZY5bYbOAyJNC26s9tII6QrwAyl85q0yQnnNhctiJaXKlOXvyEo5L_17QoXwAkRtmmmVIAURd7EoDNPISKOKYoN86c2X247PHMtqzPKWiZnl0MA5NvAG2XmQvGg5PP4gs9V7QN714ipnGURTuPUIjz8HU_5VPx_tHeJ1818FP5DnWLm-TQDfIiv1ZeM_Ar6pzTZZHU1_TKbbwaN_AU3hAdE | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbQ9JH2SVxMVSnvyZle2ZYmeQuiyaZMc2gRyKBg9xiF06w1Zm5A99Q8E8hv7Szoj29m0NFB6MsYzxtaMpG-k0TeMvUnUIDbgsyi1WkR4JyIDST_yFgQo40RS0OHkg0M5Ok4-nqQnC-x9dxam4Ye4XXCjnhHGa-rgtCC9PWcNNW7ai9MY4_UHicQwhRDR5zl3FAKfsL2sNMZHscg65tm-2O40f5-L5gDzLkwN88xwmX3tvrBJL_nWqyvbc7M_yBv_8xeesKUWf_KdxmGesgUon7HHd1gJn7PrYT2bXf38cdMVyK349PKMrOt5YepxhY-qyRhwlqt4dWEcrbbzNuedIwjm5zTcl6T43ZyWgPpXpSMW3kk95aeB6BpDfXwNzaGeX56VnkM4hMhDFnxYwuMNyfQLdjz8cLQ7itqqDZFD6IBW7jtEMcomA-_ACW9s3wOC0rSIrTOgrFS-QFdQEjJw2koNJpY-G2ildKZd_JItlpMSVhiXEiSKujQzOiEWotgPZGGFIVIaXRSr7F1nv9y1lOZUWWOcN2TMIscGzqmBV9nrW8nzhsbjLzIbnQvkbUee5iLDgIp2H_Hx22DLe_Xznd0vdF37V8Et9nB0dLCf7-8dflpnj6iQfZMPvsEWq4saXiHcqexmcOtfLTAEVg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF9KBdEHq1Vpba1bKPqU690m2eziU2k9Wv-Uohb6IIT9MynFM3f0EkrvyS8g-Bn9JJ3ZJL1aFMSnEDITkp3Z3d_szv6Gsa1EDWIDPotSq0WEdyIykPQjb0GAMk4kBR1O_nAo94-TtyfpyQJ73Z2FafghrhfcqGeE8Zo6OEx8sT1nDTVu2ovTGOP1O0mqFeXz7X2cc0ch8Anby0pjfBSLrGOe7YvtTvP3uWgOMG_C1DDPDJfYl-4Lm_SSr726sj03u0Xe-J-_8JA9aPEn32kc5hFbgHKZ3b_BSviY_RjWs9nlr-8_uwK5FZ9enJF1PS9MParwUTUeAc5yFa_OjaPVdt7mvHMEwXxCw31Jit_MaQmof1k6YuEd11N-GoiuMdTH19Ac6vnFWek5hEOIPGTBhyU83pBMP2HHwzefd_ejtmpD5BA6oJX7DlGMssnAO3DCG9v3gKA0LWLrDCgrlS_QFZSEDJy2UoOJpc8GWimdaRc_ZYvluIQVxqUEiaIuzYxOiIUo9gNZWGGIlEYXxSp71dkvdy2lOVXWGOUNGbPIsYFzauBVtnktOWloPP4gs965QN525GkuMgyoaPcRH78Mtvyrfr6z-4muz_5V8AW7e7Q3zN8fHL5bY_eojn2TDr7OFqvzGp4j2qnsRvDqK9J_A9o | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy%E2%80%90dependent+switched+fault%E2%80%90tolerant+tracking+control+for+permanent+magnet+synchronous+generator%E2%80%90based+wind+energy+conversion+system&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Kuppusamy%2C+Subramanian&rft.au=Joo%2C+Young+Hoon&rft.date=2023-02-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=37&rft.issue=2&rft.spage=399&rft.epage=413&rft_id=info:doi/10.1002%2Facs.3530&rft.externalDBID=10.1002%252Facs.3530&rft.externalDocID=ACS3530 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |