A Multi-Kernel-Based Multi-View Deep Non-Negative Matrix Factorization for Enhanced Healthcare Data Clustering

Multi-view clustering methods based on deep matrix factorization play a vital role in data analysis within the healthcare sector. However, existing methods predominantly conduct deep matrix factorization in the original data space, which is not conducive to addressing non-linear and complex data pat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 71; no. 1; pp. 1442 - 1452
Main Authors Che, Hangjun, Yang, Xuanhao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0098-3063
1558-4127
DOI10.1109/TCE.2024.3440485

Cover

Abstract Multi-view clustering methods based on deep matrix factorization play a vital role in data analysis within the healthcare sector. However, existing methods predominantly conduct deep matrix factorization in the original data space, which is not conducive to addressing non-linear and complex data patterns. To address this issue, the Multi-kernel based Multi-view Deep Non-negative Matrix Factorization with Optimal Consensus Graph (OGMKMDNMF) is introduced. This approach utilizes deep non-negative matrix factorization after projecting the data matrix into a high-dimensional kernel space. Additionally, it employs optimal consensus graph to alleviate the detrimental effects arising from misassigned nearest neighbors during the construction of similarity matrix. An innovative iterative optimization algorithm is developed for OGMKMDNMF. The experimental results demonstrate the effectiveness and competitive advantage of OGMKMDNMF in addressing multi-view healthcare data clustering tasks.
AbstractList Multi-view clustering methods based on deep matrix factorization play a vital role in data analysis within the healthcare sector. However, existing methods predominantly conduct deep matrix factorization in the original data space, which is not conducive to addressing non-linear and complex data patterns. To address this issue, the Multi-kernel based Multi-view Deep Non-negative Matrix Factorization with Optimal Consensus Graph (OGMKMDNMF) is introduced. This approach utilizes deep non-negative matrix factorization after projecting the data matrix into a high-dimensional kernel space. Additionally, it employs optimal consensus graph to alleviate the detrimental effects arising from misassigned nearest neighbors during the construction of similarity matrix. An innovative iterative optimization algorithm is developed for OGMKMDNMF. The experimental results demonstrate the effectiveness and competitive advantage of OGMKMDNMF in addressing multi-view healthcare data clustering tasks.
Author Che, Hangjun
Yang, Xuanhao
Author_xml – sequence: 1
  givenname: Hangjun
  orcidid: 0000-0002-8930-0039
  surname: Che
  fullname: Che, Hangjun
  email: hjche123@swu.edu.cn
  organization: College of Electronic and Information Engineering and the Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 2
  givenname: Xuanhao
  surname: Yang
  fullname: Yang, Xuanhao
  email: xhyang0121@foxmail.com
  organization: College of Electronic and Information Engineering, Southwest University, Chongqing, China
BookMark eNp9kD1PwzAQhi1UJNrCzsBgiTnl7DiJM5Z-UERblsIaue6ldRWc4jh8_XpS2gExMJ306n3udE-HtGxpkZBLBj3GIL1ZDEY9Dlz0QiFAyOiEtFkUyUAwnrRIGyCVQQhxeEY6VbUFYCLisk1sn87qwpvgAZ3FIrhVFa6O0bPBdzpE3NF5aYM5rpU3b0hnyjvzQcdK-9KZryYsLc1LR0d2o6xu8Amqwm-0ckiHyis6KOrKozN2fU5Oc1VUeHGcXfI0Hi0Gk2D6eHc_6E8DzVPugzxmIuZpDAiJ1DoVGpdc5kzHUiCKFZdKA8MEUGjgwJRacRQ8ZAgiTfJl2CXXh707V77WWPlsW9bONiezkLNUpo2pqGnFh5Z2ZVU5zDNt_M8_3ilTZAyyvduscZvt3WZHtw0If8CdMy_Kff6HXB0Qg4i_6nEICbDwG7Jhhgg
CODEN ITCEDA
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106851
Cites_doi 10.1109/TCE.2023.3330824
10.1109/TSIPN.2018.2872157
10.1109/TCE.2024.3373912
10.1007/978-1-4757-2555-1
10.24963/ijcai.2017/447
10.1016/j.ins.2023.03.119
10.1016/j.eswa.2014.09.008
10.1093/comjnl/bxab103
10.1007/978-3-642-37331-2_26
10.1016/j.patcog.2018.11.007
10.1609/aaai.v31i1.10867
10.1016/j.patcog.2021.107996
10.1016/j.ins.2022.12.063
10.1016/j.patcog.2022.108815
10.1016/j.cmpb.2020.105895
10.1016/j.cmrp.2019.11.005
10.1016/j.sigpro.2016.08.011
10.1109/TCE.2023.3328607
10.1016/j.eswa.2016.09.025
10.1016/j.eswa.2022.118155
10.1016/j.knosys.2020.105582
10.1109/TPAMI.2008.277
10.1109/TCE.2023.3279836
10.1016/j.cosrev.2021.100423
10.21105/joss.01830
10.1109/TGRS.2023.3275740
10.1145/3474085.3475548
10.1016/j.knosys.2023.110425
10.1038/s41591-021-01614-0
10.1109/TCE.2013.6531109
10.1016/j.measurement.2020.107757
10.1016/j.patcog.2019.107015
10.1038/nmeth.2810
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3440485
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 1452
ExternalDocumentID 10_1109_TCE_2024_3440485
10630701
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003281
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Chongqing, China
  grantid: cstc2021jcyj-msxmX1169
  funderid: 10.13039/501100005230
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJQN202200207
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-f61462960e078cc94ceb28f1c684ee4d28ac01e70e4c0201aad2e4231e0497fb3
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Sun Oct 19 00:04:42 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Thu Oct 16 04:33:31 EDT 2025
Wed Oct 15 14:20:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f61462960e078cc94ceb28f1c684ee4d28ac01e70e4c0201aad2e4231e0497fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8930-0039
PQID 3219890245
PQPubID 85469
PageCount 11
ParticipantIDs ieee_primary_10630701
crossref_citationtrail_10_1109_TCE_2024_3440485
proquest_journals_3219890245
crossref_primary_10_1109_TCE_2024_3440485
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Li (ref10) 2023; 623
ref34
ref14
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Huang (ref31) 2019; 88
Lemeshow (ref33) 2011
Li (ref12) 2023; 634
ref24
Lee (ref28)
ref23
ref26
ref25
ref20
ref22
ref21
Huang (ref15) 2020; 97
ref27
Deng (ref11) 2023; 266
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Huang (ref30) 2021; 117
References_xml – ident: ref8
  doi: 10.1109/TCE.2023.3330824
– ident: ref23
  doi: 10.1109/TSIPN.2018.2872157
– ident: ref2
  doi: 10.1109/TCE.2024.3373912
– ident: ref34
  doi: 10.1007/978-1-4757-2555-1
– ident: ref21
  doi: 10.24963/ijcai.2017/447
– volume: 634
  start-page: 587
  year: 2023
  ident: ref12
  article-title: Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.03.119
– ident: ref26
  doi: 10.1016/j.eswa.2014.09.008
– ident: ref19
  doi: 10.1093/comjnl/bxab103
– ident: ref27
  doi: 10.1007/978-3-642-37331-2_26
– volume: 88
  start-page: 174
  year: 2019
  ident: ref31
  article-title: Auto-weighted multi-view clustering via kernelized graph learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.11.007
– ident: ref14
  doi: 10.1609/aaai.v31i1.10867
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Algorithms for non-negative matrix factorization
– volume: 117
  year: 2021
  ident: ref30
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107996
– volume: 623
  start-page: 524
  year: 2023
  ident: ref10
  article-title: Consensus and complementary regularized non-negative matrix factorization for multi-view image clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.063
– ident: ref25
  doi: 10.1016/j.patcog.2022.108815
– ident: ref6
  doi: 10.1016/j.cmpb.2020.105895
– ident: ref1
  doi: 10.1016/j.cmrp.2019.11.005
– ident: ref18
  doi: 10.1016/j.sigpro.2016.08.011
– ident: ref9
  doi: 10.1109/TCE.2023.3328607
– ident: ref4
  doi: 10.1016/j.eswa.2016.09.025
– ident: ref17
  doi: 10.1016/j.eswa.2022.118155
– ident: ref20
  doi: 10.1016/j.knosys.2020.105582
– ident: ref29
  doi: 10.1109/TPAMI.2008.277
– ident: ref5
  doi: 10.1109/TCE.2023.3279836
– ident: ref22
  doi: 10.1016/j.cosrev.2021.100423
– ident: ref35
  doi: 10.21105/joss.01830
– volume-title: Applied Survival Analysis: Regression Modeling of Time-to-Event Data
  year: 2011
  ident: ref33
– ident: ref24
  doi: 10.1109/TGRS.2023.3275740
– ident: ref16
  doi: 10.1145/3474085.3475548
– volume: 266
  year: 2023
  ident: ref11
  article-title: Multi-view clustering guided by unconstrained non-negative matrix factorization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110425
– ident: ref3
  doi: 10.1038/s41591-021-01614-0
– ident: ref13
  doi: 10.1109/TCE.2013.6531109
– ident: ref7
  doi: 10.1016/j.measurement.2020.107757
– volume: 97
  year: 2020
  ident: ref15
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107015
– ident: ref32
  doi: 10.1038/nmeth.2810
SSID ssj0014528
Score 2.4344862
Snippet Multi-view clustering methods based on deep matrix factorization play a vital role in data analysis within the healthcare sector. However, existing methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1442
SubjectTerms Clustering
Clustering algorithms
Consumer electronics
Data analysis
Data models
deep matrix factorization
Factorization
Health care
Healthcare information fusion
Matrix decomposition
Medical information systems
Medical services
multi-kernel learning
multi-view clustering
Optimization
Task analysis
Title A Multi-Kernel-Based Multi-View Deep Non-Negative Matrix Factorization for Enhanced Healthcare Data Clustering
URI https://ieeexplore.ieee.org/document/10630701
https://www.proquest.com/docview/3219890245
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMLg9vEdRNnLP1QBWqnFnWLHOcCiCqtSioQv56zk1QVCMQWRbZi6dm5d767d4TcBLHwQDoR020Zm9sqjylQCUvaSayRIAeOra0ajb3hVNzP2rOiWN3WwgCATT6Dhnm0sfx4odfmqgxPuGe2KDo7u7708mKtTchAtLksBTKRB7fKmKQTNCfdPnqCXDRaRg3PtE3eskG2qcqPP7E1L4NDMi4XlmeVvDbWWdTQn980G_-98iNyUBBN2sl3xjHZgfSE7G_JD56StENt_S17gFUKc3aHFi0uXj2-wDvtASzpeJGyMTxZgXA6Mor-H3Rgu_QUJZwUeS_tp882l4AONwlltKcyRbvztdFiwA9WyXTQn3SHrOi_wDQPeMYSNN0eRxcHkEdoHQiNbrhMXO1JASBiLpV2XPAdEBpZp6tUzAHpmQvodvhJ1DojlXSRwjmhUgW-0RZEUxiJKFAycnGip4QW4CCDrJFmiUioC3Fy0yNjHlonxQlCxDA0GIYFhjVyu5mxzIU5_hhbNZBsjcvRqJF6iXpYHN23sMVNGpmJSF_8Mu2S7HHTBdjmbtdJJVut4QqpSRZd2y35BcmB3fQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVQGYCBzyLKpwcWBreJ66TJCKVVgTZTi7pFjnMBRJVWJRWIX8_ZSaoKBGKLIlux9OzcO9_dO0Iu_Vi44FkRU44X69sql0mQCUucJFZIkH3L1FYNArc3EvdjZ1wUq5taGAAwyWdQ148mlh9P1UJfleEJd_UWRWdn3RFCOHm51jJoIBzulRKZyISbZVTS8hvDdgd9QS7qTa2Hpxsnr1gh01blx7_YGJjuDgnKpeV5Ja_1RRbV1ec31cZ_r32XbBdUk17ne2OPrEG6T7ZWBAgPSHpNTQUue4B5ChN2gzYtLl49vsA7vQWY0WCasgCejEQ4HWhN_w_aNX16iiJOisyXdtJnk01Ae8uUMnorM0nbk4VWY8APVsmo2xm2e6zowMAU93nGEjTeLkcnB5BJKOULhY64l9jK9QSAiLknlWVDywKhkHfaUsYckKDZgI5HK4mah6SSTlM4ItSTfkurC6IxjETkSy-ycaIrhRJgIYeskUaJSKgKeXLdJWMSGjfF8kPEMNQYhgWGNXK1nDHLpTn-GFvVkKyMy9GokdMS9bA4vG9hk-tEMh2TPv5l2gXZ6A0H_bB_FzyckE2uewKbTO5TUsnmCzhDopJF52Z7fgGTDeFB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Kernel-Based+Multi-View+Deep+Non-Negative+Matrix+Factorization+for+Enhanced+Healthcare+Data+Clustering&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Che%2C+Hangjun&rft.au=Yang%2C+Xuanhao&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=71&rft.issue=1&rft.spage=1442&rft.epage=1452&rft_id=info:doi/10.1109%2FTCE.2024.3440485&rft.externalDocID=10630701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon