Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures

The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 44; pp. 24778 - 24786
Main Authors Weigl, Peter, Koestel, Daniel, Pabst, Florian, Gabriel, Jan Philipp, Walther, Thomas, Blochowicz, Thomas
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.11.2019
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/C9CP05035C

Cover

Abstract The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.
AbstractList The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.
The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.
Author Walther, Thomas
Gabriel, Jan Philipp
Blochowicz, Thomas
Pabst, Florian
Weigl, Peter
Koestel, Daniel
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-4611-3161
  surname: Weigl
  fullname: Weigl, Peter
  organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-6059-6254
  surname: Koestel
  fullname: Koestel, Daniel
  organization: Institut für angewandte Physik, TU Darmstadt, 64289 Darmstadt, Germany
– sequence: 3
  givenname: Florian
  orcidid: 0000-0001-9331-5172
  surname: Pabst
  fullname: Pabst, Florian
  organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany
– sequence: 4
  givenname: Jan Philipp
  orcidid: 0000-0001-7478-6366
  surname: Gabriel
  fullname: Gabriel, Jan Philipp
  organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0001-8114-1785
  surname: Walther
  fullname: Walther, Thomas
  organization: Institut für angewandte Physik, TU Darmstadt, 64289 Darmstadt, Germany
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0001-9398-7577
  surname: Blochowicz
  fullname: Blochowicz, Thomas
  organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany
BookMark eNpt0N1KBCEYBmCJgna3TroCoZMIpnR0nLGzGPqDhTqo48lxHHBxdVIn6rK6ka4pdzcqlo7Uj8eXl28Kdq2zCoAjjM4wIvy85vUDKhAp6h0wwZSRjKOK7v7cS7YPpiEsEEK4wGQCnudOCgM7rYyS0WsJvQqDs0FBbSHOBu8GYZ25gJ8fmVdGvImonYWvyocxwD8T18OlCi6kOAVD9KOMY8o6AHu9MEEdfp8z8HR99VjfZvP7m7v6cp7JnOcx6wuEBcUVx4ylYlXJ0gOjXqK2awmjqi27vOgT4y3vqGSUMp6XhFUol21HyQycbHJT45dRhdgsdZDKGGGVG0OTE5wnXyKe6PEWXbjR29RupQpUUL5WpxslvQvBq74ZvF4K_95g1KyW3fwuO2G0haWO671EL7T578sXAlmDAw
CitedBy_id crossref_primary_10_1016_j_jnoncrysol_2023_122191
crossref_primary_10_1016_j_molliq_2022_119289
crossref_primary_10_1021_acs_jpcb_2c03784
crossref_primary_10_1140_epje_s10189_023_00380_w
crossref_primary_10_1039_D3CP04578A
crossref_primary_10_3390_ijms222413289
crossref_primary_10_1039_D0CP02332A
crossref_primary_10_1016_j_physb_2021_413231
crossref_primary_10_1039_C9CP06344G
crossref_primary_10_1039_D0CP05240J
crossref_primary_10_1039_D1CP02671B
crossref_primary_10_1021_acs_jpcb_0c08083
crossref_primary_10_1021_acs_jpcb_9b07768
Cites_doi 10.1063/1.4868556
10.1021/j100842a014
10.1063/1.4907010
10.1016/j.physrep.2014.07.005
10.1021/jp047025v
10.1515/zpch-2017-1024
10.1080/00319107208084084
10.1021/j100115a014
10.1002/qua.560520836
10.1002/9783527632220
10.1021/acs.jpcb.7b06134
10.1063/1.1798403
10.1063/1.1563247
10.1016/j.jnoncrysol.2014.07.018
10.1111/j.1749-6632.1976.tb39701.x
10.1016/j.chemphys.2017.08.004
10.1016/0009-2614(91)90039-C
10.1103/PhysRevLett.105.258303
10.1021/j100365a006
10.1103/PhysRevLett.93.235502
10.1063/1.1674885
10.1021/j100177a090
10.1063/1.4870654
10.1016/S0022-3093(02)01491-6
10.1063/1.4991006
10.1063/1.3690137
10.1063/1.1677363
10.1016/0009-2614(85)80678-3
10.1103/PhysRevLett.112.098301
10.1063/1.1361663
10.1063/1.1674335
10.1063/1.1319174
10.1007/978-3-662-04365-3
10.1016/0009-2614(94)01032-3
10.1063/1.1670568
10.1002/anie.201204532
10.1007/s00340-016-6404-1
10.1016/0009-2614(92)80131-T
10.1063/1.4793469
10.1063/1.4994694
10.1021/jp981613p
10.1021/jp9942466
10.1016/S0022-3093(98)00777-7
10.1063/1.1477186
10.1021/ed047p261
10.1021/acs.jpcb.5b07692
10.1063/1.4868003
10.1103/PhysRevLett.121.035501
10.1021/jp909894y
10.1021/acs.jpcb.6b01458
10.1063/1.4983179
10.1021/j100027a039
10.1007/BF02768051
10.1023/B:JOSL.0000043642.62263.69
10.1021/j100696a013
10.1063/1.1677592
10.1039/C9CP03101D
10.1016/0009-2614(90)85230-A
10.1016/0022-3093(94)90195-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C9CP05035C
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 24786
ExternalDocumentID 10_1039_C9CP05035C
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c292t-f501a418916651387641810fc0bdb364eb7d25ff509b9d4c644692736802cbd43
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:39:34 EDT 2025
Mon Jun 30 07:21:20 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Tue Jul 01 01:55:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-f501a418916651387641810fc0bdb364eb7d25ff509b9d4c644692736802cbd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9331-5172
0000-0001-7478-6366
0000-0002-4611-3161
0000-0001-8114-1785
0000-0001-9398-7577
0000-0001-6059-6254
PQID 2315054909
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_miscellaneous_2312273709
proquest_journals_2315054909
crossref_primary_10_1039_C9CP05035C
crossref_citationtrail_10_1039_C9CP05035C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-28
PublicationDateYYYYMMDD 2019-11-28
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-28
  day: 28
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Talluto (C9CP05035C-(cit45)/*[position()=1]) 2016; 122
Richert (C9CP05035C-(cit32)/*[position()=1]) 1996; 8
Allolio (C9CP05035C-(cit3)/*[position()=1]) 2013; 52
Debye (C9CP05035C-(cit1)/*[position()=1]) 1929
Berne (C9CP05035C-(cit23)/*[position()=1]) 2000
Lin (C9CP05035C-(cit55)/*[position()=1]) 1972; 56
Richert (C9CP05035C-(cit34)/*[position()=1]) 1995; 99
Reichardt (C9CP05035C-(cit61)/*[position()=1]) 2010
Gabriel (C9CP05035C-(cit15)/*[position()=1]) 2018; 121
Akiyama (C9CP05035C-(cit16)/*[position()=1]) 2004; 33
Johari (C9CP05035C-(cit27)/*[position()=1]) 2002; 307-310
Loring (C9CP05035C-(cit58)/*[position()=1]) 1990; 94
Wagner (C9CP05035C-(cit37)/*[position()=1]) 1998; 242
Rivera (C9CP05035C-(cit57)/*[position()=1]) 2004; 96
Richert (C9CP05035C-(cit35)/*[position()=1]) 1992; 199
Mesele (C9CP05035C-(cit21)/*[position()=1]) 2016; 120
Cassone (C9CP05035C-(cit6)/*[position()=1]) 2019; 21
Edward (C9CP05035C-(cit30)/*[position()=1]) 1970; 47
Richert (C9CP05035C-(cit29)/*[position()=1]) 2000; 113
Richert (C9CP05035C-(cit43)/*[position()=1]) 1993; 97
Donth (C9CP05035C-(cit24)/*[position()=1]) 2001
Bauer (C9CP05035C-(cit11)/*[position()=1]) 2015; 407
Bauer (C9CP05035C-(cit8)/*[position()=1]) 2013; 138
Richert (C9CP05035C-(cit36)/*[position()=1]) 1994; 229
Strambini (C9CP05035C-(cit56)/*[position()=1]) 1985; 115
Lehtola (C9CP05035C-(cit18)/*[position()=1]) 2010; 114
Johari (C9CP05035C-(cit25)/*[position()=1]) 1970; 53
Alencastro (C9CP05035C-(cit62)/*[position()=1]) 1994; 52
Vogel (C9CP05035C-(cit28)/*[position()=1]) 2000; 104
Pabst (C9CP05035C-(cit44)/*[position()=1]) 2017; 494
Richert (C9CP05035C-(cit47)/*[position()=1]) 1990; 171
Bertrand (C9CP05035C-(cit22)/*[position()=1]) 2017; 146
Wikarek (C9CP05035C-(cit12)/*[position()=1]) 2016; 120
Souda (C9CP05035C-(cit40)/*[position()=1]) 2004; 93
Wieth (C9CP05035C-(cit20)/*[position()=1]) 2014; 140
Leubner (C9CP05035C-(cit52)/*[position()=1]) 1970; 74
Johari (C9CP05035C-(cit26)/*[position()=1]) 1976; 279
Takahara (C9CP05035C-(cit49)/*[position()=1]) 1994; 171
Weigl (C9CP05035C-(cit46)/*[position()=1]) 2018; 232
Wendt (C9CP05035C-(cit33)/*[position()=1]) 1998; 102
Gabriel (C9CP05035C-(cit13)/*[position()=1]) 2017; 121
Sillrén (C9CP05035C-(cit19)/*[position()=1]) 2012; 136
Böhmer (C9CP05035C-(cit2)/*[position()=1]) 2014; 545
Cassone (C9CP05035C-(cit4)/*[position()=1]) 2015; 142
Wagener (C9CP05035C-(cit48)/*[position()=1]) 1991; 176
Gainaru (C9CP05035C-(cit9)/*[position()=1]) 2014; 112
Brand (C9CP05035C-(cit42)/*[position()=1]) 2002; 116
Johari (C9CP05035C-(cit63)/*[position()=1]) 1972; 3
Richert (C9CP05035C-(cit59)/*[position()=1]) 2001; 114
Sillrén (C9CP05035C-(cit10)/*[position()=1]) 2014; 140
Palomar (C9CP05035C-(cit17)/*[position()=1]) 2005; 109
Futera (C9CP05035C-(cit5)/*[position()=1]) 2017; 147
Kilmer (C9CP05035C-(cit53)/*[position()=1]) 1971; 54
Leubner (C9CP05035C-(cit51)/*[position()=1]) 1969; 73
Blochowicz (C9CP05035C-(cit60)/*[position()=1]) 2003; 118
Tsai (C9CP05035C-(cit50)/*[position()=1]) 1968; 49
Richert (C9CP05035C-(cit31)/*[position()=1]) 1991; 95
Sauer (C9CP05035C-(cit38)/*[position()=1]) 2014; 140
Chua (C9CP05035C-(cit14)/*[position()=1]) 2017; 147
Graves (C9CP05035C-(cit54)/*[position()=1]) 1972; 56
Gainaru (C9CP05035C-(cit7)/*[position()=1]) 2010; 105
Takaizumi (C9CP05035C-(cit39)/*[position()=1]) 1997; 26
Li (C9CP05035C-(cit41)/*[position()=1]) 2015; 2
References_xml – volume: 140
  start-page: 124501
  year: 2014
  ident: C9CP05035C-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4868556
– volume: 73
  start-page: 2545
  year: 1969
  ident: C9CP05035C-(cit51)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100842a014
– volume: 142
  start-page: 054502
  year: 2015
  ident: C9CP05035C-(cit4)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4907010
– volume: 545
  start-page: 125
  year: 2014
  ident: C9CP05035C-(cit2)/*[position()=1]
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.07.005
– volume: 109
  start-page: 499
  year: 2005
  ident: C9CP05035C-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047025v
– volume: 232
  start-page: 1017
  year: 2018
  ident: C9CP05035C-(cit46)/*[position()=1]
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-2017-1024
– volume-title: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Books on Physics)
  year: 2000
  ident: C9CP05035C-(cit23)/*[position()=1]
– volume: 3
  start-page: 1
  year: 1972
  ident: C9CP05035C-(cit63)/*[position()=1]
  publication-title: Phys. Chem. Liq.
  doi: 10.1080/00319107208084084
– volume: 97
  start-page: 3146
  year: 1993
  ident: C9CP05035C-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100115a014
– volume: 52
  start-page: 361
  year: 1994
  ident: C9CP05035C-(cit62)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560520836
– volume-title: Solvents and Solvent Effects in Organic Chemistry
  year: 2010
  ident: C9CP05035C-(cit61)/*[position()=1]
  doi: 10.1002/9783527632220
– volume: 121
  start-page: 8847
  year: 2017
  ident: C9CP05035C-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b06134
– volume: 96
  start-page: 5607
  year: 2004
  ident: C9CP05035C-(cit57)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1798403
– volume: 118
  start-page: 7544
  year: 2003
  ident: C9CP05035C-(cit60)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1563247
– volume: 407
  start-page: 384
  year: 2015
  ident: C9CP05035C-(cit11)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2014.07.018
– volume: 279
  start-page: 117
  year: 1976
  ident: C9CP05035C-(cit26)/*[position()=1]
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1976.tb39701.x
– volume: 494
  start-page: 103
  year: 2017
  ident: C9CP05035C-(cit44)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2017.08.004
– volume: 176
  start-page: 329
  year: 1991
  ident: C9CP05035C-(cit48)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)90039-C
– volume: 105
  start-page: 258303
  year: 2010
  ident: C9CP05035C-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.258303
– volume: 94
  start-page: 513
  year: 1990
  ident: C9CP05035C-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100365a006
– volume: 93
  start-page: 235502
  year: 2004
  ident: C9CP05035C-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.235502
– volume-title: Polar Molecules
  year: 1929
  ident: C9CP05035C-(cit1)/*[position()=1]
– volume: 54
  start-page: 604
  year: 1971
  ident: C9CP05035C-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674885
– volume: 95
  start-page: 10115
  year: 1991
  ident: C9CP05035C-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100177a090
– volume: 140
  start-page: 144507
  year: 2014
  ident: C9CP05035C-(cit20)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4870654
– volume: 307-310
  start-page: 317
  year: 2002
  ident: C9CP05035C-(cit27)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)01491-6
– volume: 147
  start-page: 014502
  year: 2017
  ident: C9CP05035C-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4991006
– volume: 136
  start-page: 094514
  year: 2012
  ident: C9CP05035C-(cit19)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3690137
– volume: 56
  start-page: 1309
  year: 1972
  ident: C9CP05035C-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677363
– volume: 115
  start-page: 196
  year: 1985
  ident: C9CP05035C-(cit56)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)80678-3
– volume: 112
  start-page: 098301
  year: 2014
  ident: C9CP05035C-(cit9)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.098301
– volume: 114
  start-page: 7471
  year: 2001
  ident: C9CP05035C-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1361663
– volume: 53
  start-page: 2372
  year: 1970
  ident: C9CP05035C-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674335
– volume: 113
  start-page: 8404
  year: 2000
  ident: C9CP05035C-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1319174
– volume-title: The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials
  year: 2001
  ident: C9CP05035C-(cit24)/*[position()=1]
  doi: 10.1007/978-3-662-04365-3
– volume: 229
  start-page: 302
  year: 1994
  ident: C9CP05035C-(cit36)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)01032-3
– volume: 49
  start-page: 3184
  year: 1968
  ident: C9CP05035C-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1670568
– volume: 52
  start-page: 1813
  year: 2013
  ident: C9CP05035C-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204532
– volume: 122
  start-page: 122
  year: 2016
  ident: C9CP05035C-(cit45)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-016-6404-1
– volume: 199
  start-page: 355
  year: 1992
  ident: C9CP05035C-(cit35)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)80131-T
– volume: 138
  start-page: 094505
  year: 2013
  ident: C9CP05035C-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4793469
– volume: 147
  start-page: 031102
  year: 2017
  ident: C9CP05035C-(cit5)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4994694
– volume: 8
  start-page: 6185
  year: 1996
  ident: C9CP05035C-(cit32)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 102
  start-page: 5775
  year: 1998
  ident: C9CP05035C-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp981613p
– volume: 104
  start-page: 4285
  year: 2000
  ident: C9CP05035C-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9942466
– volume: 242
  start-page: 19
  year: 1998
  ident: C9CP05035C-(cit37)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00777-7
– volume: 116
  start-page: 10386
  year: 2002
  ident: C9CP05035C-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1477186
– volume: 47
  start-page: 261
  year: 1970
  ident: C9CP05035C-(cit30)/*[position()=1]
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed047p261
– volume: 120
  start-page: 1546
  year: 2016
  ident: C9CP05035C-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b07692
– volume: 140
  start-page: 114503
  year: 2014
  ident: C9CP05035C-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4868003
– volume: 121
  start-page: 035501
  year: 2018
  ident: C9CP05035C-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.035501
– volume: 114
  start-page: 6426
  year: 2010
  ident: C9CP05035C-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp909894y
– volume: 120
  start-page: 5744
  year: 2016
  ident: C9CP05035C-(cit12)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b01458
– volume: 146
  start-page: 194501
  year: 2017
  ident: C9CP05035C-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4983179
– volume: 99
  start-page: 10948
  year: 1995
  ident: C9CP05035C-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100027a039
– volume: 2
  start-page: 41
  year: 2015
  ident: C9CP05035C-(cit41)/*[position()=1]
  publication-title: Front. Mater.
– volume: 26
  start-page: 927
  year: 1997
  ident: C9CP05035C-(cit39)/*[position()=1]
  publication-title: J. Solution Chem.
  doi: 10.1007/BF02768051
– volume: 33
  start-page: 797
  year: 2004
  ident: C9CP05035C-(cit16)/*[position()=1]
  publication-title: J. Solution Chem.
  doi: 10.1023/B:JOSL.0000043642.62263.69
– volume: 74
  start-page: 77
  year: 1970
  ident: C9CP05035C-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100696a013
– volume: 56
  start-page: 2648
  year: 1972
  ident: C9CP05035C-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677592
– volume: 21
  start-page: 21205
  year: 2019
  ident: C9CP05035C-(cit6)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03101D
– volume: 171
  start-page: 222
  year: 1990
  ident: C9CP05035C-(cit47)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)85230-A
– volume: 171
  start-page: 259
  year: 1994
  ident: C9CP05035C-(cit49)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(94)90195-3
SSID ssj0001513
Score 2.4056115
Snippet The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 24778
SubjectTerms Alcohols
Anisotropy
Atomic energy levels
Dielectric relaxation
Dielectric strength
Light scattering
Measurement techniques
Response functions
Solvation
Title Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures
URI https://www.proquest.com/docview/2315054909
https://www.proquest.com/docview/2312273709
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JjtMw1CqdA1xGrKLMgIxgkBAyZHEWcxuilgHK0EMqegu2k6CRqqSQVkL8FZ_AD_BNPC9ZRjNCwMVKXi2n9nv2W_wWhB4DDxA05B4B5igJ9aKSxK7DCYc2D5wCuKIyDbw_DU-W9O0qWI1GPwdeS7uteC6_XxpX8j9YBRjgVUXJ_gNmu0EBAM-AX2gBw9D-FY7ntbljMbVsdDJm7fGqE4G4BA5H2Ov1Wmn9R8n06JVLVOjKN4Nz5Y-xa54NIPqqvakbGFTlnVWJZXdfrY-hlV8XLVplWyjOPCmQMZI02siwSJIucOxjcfZ5fcEX-F2tLK3rPsy9v8wSJg5lppwDe-J9zQWo9cZirU5ubQnaDK0WLlPhezYK3Lg7KdtI65iqHU_svx6cxTT0CejuNlP2EGaqyrUHuAmxtoRK6fA4ppEpEGR5O7ybxNsXGIfjq7yrksmNSpATyJ49ti4Bpx-y2XI-z9LpKn2y-UJU4TJ1wW-ruFxBe14Uht4Y7R1P0zfzThwAkco3IW5mNm2OXJ-96D93Xio6LxRoSSe9jvatioKPDb3dQKOiuomudkt3C33SdId7usMt3eGzCvd09xL_-jGgOGwoDg8gdYk7isM9xd1Gy9k0TU6IrdRBpMe8LSkDx-XUjUHXCGG6wGHhxXVK6Yhc-CEtRJR7QQndmGA5lSCEhwwE5zB2PCly6t9B46quirsIgwBfuhzkXgojgvjIC5HHjuDAZwqPx-UEPW1XKpM2jb2qprLOtDuFz7KEJQu9qskEPer6bkzylkt7HbYLntnN3WSg9oBuQJnDJuhh9zOss7pP41VR73QfDyYROezen4c4QNf6PXCIxrCcxX2QZbfigaWW3ymEpIQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+dielectric+response+in+1-propanol%3A+%CE%B1-relaxation+versus+relaxation+of+mesoscale+structures&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Weigl%2C+Peter&rft.au=Koestel%2C+Daniel&rft.au=Pabst%2C+Florian&rft.au=Gabriel%2C+Jan+Philipp&rft.date=2019-11-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=21&rft.issue=44&rft.spage=24778&rft.epage=24786&rft_id=info:doi/10.1039%2Fc9cp05035c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon