Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures
The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 21; no. 44; pp. 24778 - 24786 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/C9CP05035C |
Cover
Abstract | The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures. |
---|---|
AbstractList | The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures. The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation in a measurement with a local dielectric probe might be expected to be different from the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while α- and β-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures. |
Author | Walther, Thomas Gabriel, Jan Philipp Blochowicz, Thomas Pabst, Florian Weigl, Peter Koestel, Daniel |
Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0002-4611-3161 surname: Weigl fullname: Weigl, Peter organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany – sequence: 2 givenname: Daniel orcidid: 0000-0001-6059-6254 surname: Koestel fullname: Koestel, Daniel organization: Institut für angewandte Physik, TU Darmstadt, 64289 Darmstadt, Germany – sequence: 3 givenname: Florian orcidid: 0000-0001-9331-5172 surname: Pabst fullname: Pabst, Florian organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany – sequence: 4 givenname: Jan Philipp orcidid: 0000-0001-7478-6366 surname: Gabriel fullname: Gabriel, Jan Philipp organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany – sequence: 5 givenname: Thomas orcidid: 0000-0001-8114-1785 surname: Walther fullname: Walther, Thomas organization: Institut für angewandte Physik, TU Darmstadt, 64289 Darmstadt, Germany – sequence: 6 givenname: Thomas orcidid: 0000-0001-9398-7577 surname: Blochowicz fullname: Blochowicz, Thomas organization: Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany |
BookMark | eNpt0N1KBCEYBmCJgna3TroCoZMIpnR0nLGzGPqDhTqo48lxHHBxdVIn6rK6ka4pdzcqlo7Uj8eXl28Kdq2zCoAjjM4wIvy85vUDKhAp6h0wwZSRjKOK7v7cS7YPpiEsEEK4wGQCnudOCgM7rYyS0WsJvQqDs0FBbSHOBu8GYZ25gJ8fmVdGvImonYWvyocxwD8T18OlCi6kOAVD9KOMY8o6AHu9MEEdfp8z8HR99VjfZvP7m7v6cp7JnOcx6wuEBcUVx4ylYlXJ0gOjXqK2awmjqi27vOgT4y3vqGSUMp6XhFUol21HyQycbHJT45dRhdgsdZDKGGGVG0OTE5wnXyKe6PEWXbjR29RupQpUUL5WpxslvQvBq74ZvF4K_95g1KyW3fwuO2G0haWO671EL7T578sXAlmDAw |
CitedBy_id | crossref_primary_10_1016_j_jnoncrysol_2023_122191 crossref_primary_10_1016_j_molliq_2022_119289 crossref_primary_10_1021_acs_jpcb_2c03784 crossref_primary_10_1140_epje_s10189_023_00380_w crossref_primary_10_1039_D3CP04578A crossref_primary_10_3390_ijms222413289 crossref_primary_10_1039_D0CP02332A crossref_primary_10_1016_j_physb_2021_413231 crossref_primary_10_1039_C9CP06344G crossref_primary_10_1039_D0CP05240J crossref_primary_10_1039_D1CP02671B crossref_primary_10_1021_acs_jpcb_0c08083 crossref_primary_10_1021_acs_jpcb_9b07768 |
Cites_doi | 10.1063/1.4868556 10.1021/j100842a014 10.1063/1.4907010 10.1016/j.physrep.2014.07.005 10.1021/jp047025v 10.1515/zpch-2017-1024 10.1080/00319107208084084 10.1021/j100115a014 10.1002/qua.560520836 10.1002/9783527632220 10.1021/acs.jpcb.7b06134 10.1063/1.1798403 10.1063/1.1563247 10.1016/j.jnoncrysol.2014.07.018 10.1111/j.1749-6632.1976.tb39701.x 10.1016/j.chemphys.2017.08.004 10.1016/0009-2614(91)90039-C 10.1103/PhysRevLett.105.258303 10.1021/j100365a006 10.1103/PhysRevLett.93.235502 10.1063/1.1674885 10.1021/j100177a090 10.1063/1.4870654 10.1016/S0022-3093(02)01491-6 10.1063/1.4991006 10.1063/1.3690137 10.1063/1.1677363 10.1016/0009-2614(85)80678-3 10.1103/PhysRevLett.112.098301 10.1063/1.1361663 10.1063/1.1674335 10.1063/1.1319174 10.1007/978-3-662-04365-3 10.1016/0009-2614(94)01032-3 10.1063/1.1670568 10.1002/anie.201204532 10.1007/s00340-016-6404-1 10.1016/0009-2614(92)80131-T 10.1063/1.4793469 10.1063/1.4994694 10.1021/jp981613p 10.1021/jp9942466 10.1016/S0022-3093(98)00777-7 10.1063/1.1477186 10.1021/ed047p261 10.1021/acs.jpcb.5b07692 10.1063/1.4868003 10.1103/PhysRevLett.121.035501 10.1021/jp909894y 10.1021/acs.jpcb.6b01458 10.1063/1.4983179 10.1021/j100027a039 10.1007/BF02768051 10.1023/B:JOSL.0000043642.62263.69 10.1021/j100696a013 10.1063/1.1677592 10.1039/C9CP03101D 10.1016/0009-2614(90)85230-A 10.1016/0022-3093(94)90195-3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/C9CP05035C |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 24786 |
ExternalDocumentID | 10_1039_C9CP05035C |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c292t-f501a418916651387641810fc0bdb364eb7d25ff509b9d4c644692736802cbd43 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:39:34 EDT 2025 Mon Jun 30 07:21:20 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Tue Jul 01 01:55:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-f501a418916651387641810fc0bdb364eb7d25ff509b9d4c644692736802cbd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9331-5172 0000-0001-7478-6366 0000-0002-4611-3161 0000-0001-8114-1785 0000-0001-9398-7577 0000-0001-6059-6254 |
PQID | 2315054909 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2312273709 proquest_journals_2315054909 crossref_primary_10_1039_C9CP05035C crossref_citationtrail_10_1039_C9CP05035C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-28 |
PublicationDateYYYYMMDD | 2019-11-28 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Talluto (C9CP05035C-(cit45)/*[position()=1]) 2016; 122 Richert (C9CP05035C-(cit32)/*[position()=1]) 1996; 8 Allolio (C9CP05035C-(cit3)/*[position()=1]) 2013; 52 Debye (C9CP05035C-(cit1)/*[position()=1]) 1929 Berne (C9CP05035C-(cit23)/*[position()=1]) 2000 Lin (C9CP05035C-(cit55)/*[position()=1]) 1972; 56 Richert (C9CP05035C-(cit34)/*[position()=1]) 1995; 99 Reichardt (C9CP05035C-(cit61)/*[position()=1]) 2010 Gabriel (C9CP05035C-(cit15)/*[position()=1]) 2018; 121 Akiyama (C9CP05035C-(cit16)/*[position()=1]) 2004; 33 Johari (C9CP05035C-(cit27)/*[position()=1]) 2002; 307-310 Loring (C9CP05035C-(cit58)/*[position()=1]) 1990; 94 Wagner (C9CP05035C-(cit37)/*[position()=1]) 1998; 242 Rivera (C9CP05035C-(cit57)/*[position()=1]) 2004; 96 Richert (C9CP05035C-(cit35)/*[position()=1]) 1992; 199 Mesele (C9CP05035C-(cit21)/*[position()=1]) 2016; 120 Cassone (C9CP05035C-(cit6)/*[position()=1]) 2019; 21 Edward (C9CP05035C-(cit30)/*[position()=1]) 1970; 47 Richert (C9CP05035C-(cit29)/*[position()=1]) 2000; 113 Richert (C9CP05035C-(cit43)/*[position()=1]) 1993; 97 Donth (C9CP05035C-(cit24)/*[position()=1]) 2001 Bauer (C9CP05035C-(cit11)/*[position()=1]) 2015; 407 Bauer (C9CP05035C-(cit8)/*[position()=1]) 2013; 138 Richert (C9CP05035C-(cit36)/*[position()=1]) 1994; 229 Strambini (C9CP05035C-(cit56)/*[position()=1]) 1985; 115 Lehtola (C9CP05035C-(cit18)/*[position()=1]) 2010; 114 Johari (C9CP05035C-(cit25)/*[position()=1]) 1970; 53 Alencastro (C9CP05035C-(cit62)/*[position()=1]) 1994; 52 Vogel (C9CP05035C-(cit28)/*[position()=1]) 2000; 104 Pabst (C9CP05035C-(cit44)/*[position()=1]) 2017; 494 Richert (C9CP05035C-(cit47)/*[position()=1]) 1990; 171 Bertrand (C9CP05035C-(cit22)/*[position()=1]) 2017; 146 Wikarek (C9CP05035C-(cit12)/*[position()=1]) 2016; 120 Souda (C9CP05035C-(cit40)/*[position()=1]) 2004; 93 Wieth (C9CP05035C-(cit20)/*[position()=1]) 2014; 140 Leubner (C9CP05035C-(cit52)/*[position()=1]) 1970; 74 Johari (C9CP05035C-(cit26)/*[position()=1]) 1976; 279 Takahara (C9CP05035C-(cit49)/*[position()=1]) 1994; 171 Weigl (C9CP05035C-(cit46)/*[position()=1]) 2018; 232 Wendt (C9CP05035C-(cit33)/*[position()=1]) 1998; 102 Gabriel (C9CP05035C-(cit13)/*[position()=1]) 2017; 121 Sillrén (C9CP05035C-(cit19)/*[position()=1]) 2012; 136 Böhmer (C9CP05035C-(cit2)/*[position()=1]) 2014; 545 Cassone (C9CP05035C-(cit4)/*[position()=1]) 2015; 142 Wagener (C9CP05035C-(cit48)/*[position()=1]) 1991; 176 Gainaru (C9CP05035C-(cit9)/*[position()=1]) 2014; 112 Brand (C9CP05035C-(cit42)/*[position()=1]) 2002; 116 Johari (C9CP05035C-(cit63)/*[position()=1]) 1972; 3 Richert (C9CP05035C-(cit59)/*[position()=1]) 2001; 114 Sillrén (C9CP05035C-(cit10)/*[position()=1]) 2014; 140 Palomar (C9CP05035C-(cit17)/*[position()=1]) 2005; 109 Futera (C9CP05035C-(cit5)/*[position()=1]) 2017; 147 Kilmer (C9CP05035C-(cit53)/*[position()=1]) 1971; 54 Leubner (C9CP05035C-(cit51)/*[position()=1]) 1969; 73 Blochowicz (C9CP05035C-(cit60)/*[position()=1]) 2003; 118 Tsai (C9CP05035C-(cit50)/*[position()=1]) 1968; 49 Richert (C9CP05035C-(cit31)/*[position()=1]) 1991; 95 Sauer (C9CP05035C-(cit38)/*[position()=1]) 2014; 140 Chua (C9CP05035C-(cit14)/*[position()=1]) 2017; 147 Graves (C9CP05035C-(cit54)/*[position()=1]) 1972; 56 Gainaru (C9CP05035C-(cit7)/*[position()=1]) 2010; 105 Takaizumi (C9CP05035C-(cit39)/*[position()=1]) 1997; 26 Li (C9CP05035C-(cit41)/*[position()=1]) 2015; 2 |
References_xml | – volume: 140 start-page: 124501 year: 2014 ident: C9CP05035C-(cit10)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4868556 – volume: 73 start-page: 2545 year: 1969 ident: C9CP05035C-(cit51)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100842a014 – volume: 142 start-page: 054502 year: 2015 ident: C9CP05035C-(cit4)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4907010 – volume: 545 start-page: 125 year: 2014 ident: C9CP05035C-(cit2)/*[position()=1] publication-title: Phys. Rep. doi: 10.1016/j.physrep.2014.07.005 – volume: 109 start-page: 499 year: 2005 ident: C9CP05035C-(cit17)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp047025v – volume: 232 start-page: 1017 year: 2018 ident: C9CP05035C-(cit46)/*[position()=1] publication-title: Z. Phys. Chem. doi: 10.1515/zpch-2017-1024 – volume-title: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Books on Physics) year: 2000 ident: C9CP05035C-(cit23)/*[position()=1] – volume: 3 start-page: 1 year: 1972 ident: C9CP05035C-(cit63)/*[position()=1] publication-title: Phys. Chem. Liq. doi: 10.1080/00319107208084084 – volume: 97 start-page: 3146 year: 1993 ident: C9CP05035C-(cit43)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100115a014 – volume: 52 start-page: 361 year: 1994 ident: C9CP05035C-(cit62)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560520836 – volume-title: Solvents and Solvent Effects in Organic Chemistry year: 2010 ident: C9CP05035C-(cit61)/*[position()=1] doi: 10.1002/9783527632220 – volume: 121 start-page: 8847 year: 2017 ident: C9CP05035C-(cit13)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b06134 – volume: 96 start-page: 5607 year: 2004 ident: C9CP05035C-(cit57)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1798403 – volume: 118 start-page: 7544 year: 2003 ident: C9CP05035C-(cit60)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1563247 – volume: 407 start-page: 384 year: 2015 ident: C9CP05035C-(cit11)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.07.018 – volume: 279 start-page: 117 year: 1976 ident: C9CP05035C-(cit26)/*[position()=1] publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1976.tb39701.x – volume: 494 start-page: 103 year: 2017 ident: C9CP05035C-(cit44)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2017.08.004 – volume: 176 start-page: 329 year: 1991 ident: C9CP05035C-(cit48)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)90039-C – volume: 105 start-page: 258303 year: 2010 ident: C9CP05035C-(cit7)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.258303 – volume: 94 start-page: 513 year: 1990 ident: C9CP05035C-(cit58)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100365a006 – volume: 93 start-page: 235502 year: 2004 ident: C9CP05035C-(cit40)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.235502 – volume-title: Polar Molecules year: 1929 ident: C9CP05035C-(cit1)/*[position()=1] – volume: 54 start-page: 604 year: 1971 ident: C9CP05035C-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1674885 – volume: 95 start-page: 10115 year: 1991 ident: C9CP05035C-(cit31)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100177a090 – volume: 140 start-page: 144507 year: 2014 ident: C9CP05035C-(cit20)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4870654 – volume: 307-310 start-page: 317 year: 2002 ident: C9CP05035C-(cit27)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)01491-6 – volume: 147 start-page: 014502 year: 2017 ident: C9CP05035C-(cit14)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4991006 – volume: 136 start-page: 094514 year: 2012 ident: C9CP05035C-(cit19)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3690137 – volume: 56 start-page: 1309 year: 1972 ident: C9CP05035C-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1677363 – volume: 115 start-page: 196 year: 1985 ident: C9CP05035C-(cit56)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)80678-3 – volume: 112 start-page: 098301 year: 2014 ident: C9CP05035C-(cit9)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.098301 – volume: 114 start-page: 7471 year: 2001 ident: C9CP05035C-(cit59)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1361663 – volume: 53 start-page: 2372 year: 1970 ident: C9CP05035C-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1674335 – volume: 113 start-page: 8404 year: 2000 ident: C9CP05035C-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1319174 – volume-title: The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials year: 2001 ident: C9CP05035C-(cit24)/*[position()=1] doi: 10.1007/978-3-662-04365-3 – volume: 229 start-page: 302 year: 1994 ident: C9CP05035C-(cit36)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)01032-3 – volume: 49 start-page: 3184 year: 1968 ident: C9CP05035C-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1670568 – volume: 52 start-page: 1813 year: 2013 ident: C9CP05035C-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204532 – volume: 122 start-page: 122 year: 2016 ident: C9CP05035C-(cit45)/*[position()=1] publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-016-6404-1 – volume: 199 start-page: 355 year: 1992 ident: C9CP05035C-(cit35)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)80131-T – volume: 138 start-page: 094505 year: 2013 ident: C9CP05035C-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4793469 – volume: 147 start-page: 031102 year: 2017 ident: C9CP05035C-(cit5)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4994694 – volume: 8 start-page: 6185 year: 1996 ident: C9CP05035C-(cit32)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 102 start-page: 5775 year: 1998 ident: C9CP05035C-(cit33)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp981613p – volume: 104 start-page: 4285 year: 2000 ident: C9CP05035C-(cit28)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp9942466 – volume: 242 start-page: 19 year: 1998 ident: C9CP05035C-(cit37)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00777-7 – volume: 116 start-page: 10386 year: 2002 ident: C9CP05035C-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1477186 – volume: 47 start-page: 261 year: 1970 ident: C9CP05035C-(cit30)/*[position()=1] publication-title: J. Chem. Educ. doi: 10.1021/ed047p261 – volume: 120 start-page: 1546 year: 2016 ident: C9CP05035C-(cit21)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b07692 – volume: 140 start-page: 114503 year: 2014 ident: C9CP05035C-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4868003 – volume: 121 start-page: 035501 year: 2018 ident: C9CP05035C-(cit15)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.035501 – volume: 114 start-page: 6426 year: 2010 ident: C9CP05035C-(cit18)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp909894y – volume: 120 start-page: 5744 year: 2016 ident: C9CP05035C-(cit12)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b01458 – volume: 146 start-page: 194501 year: 2017 ident: C9CP05035C-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4983179 – volume: 99 start-page: 10948 year: 1995 ident: C9CP05035C-(cit34)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100027a039 – volume: 2 start-page: 41 year: 2015 ident: C9CP05035C-(cit41)/*[position()=1] publication-title: Front. Mater. – volume: 26 start-page: 927 year: 1997 ident: C9CP05035C-(cit39)/*[position()=1] publication-title: J. Solution Chem. doi: 10.1007/BF02768051 – volume: 33 start-page: 797 year: 2004 ident: C9CP05035C-(cit16)/*[position()=1] publication-title: J. Solution Chem. doi: 10.1023/B:JOSL.0000043642.62263.69 – volume: 74 start-page: 77 year: 1970 ident: C9CP05035C-(cit52)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100696a013 – volume: 56 start-page: 2648 year: 1972 ident: C9CP05035C-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1677592 – volume: 21 start-page: 21205 year: 2019 ident: C9CP05035C-(cit6)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03101D – volume: 171 start-page: 222 year: 1990 ident: C9CP05035C-(cit47)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)85230-A – volume: 171 start-page: 259 year: 1994 ident: C9CP05035C-(cit49)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(94)90195-3 |
SSID | ssj0001513 |
Score | 2.4056115 |
Snippet | The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 24778 |
SubjectTerms | Alcohols Anisotropy Atomic energy levels Dielectric relaxation Dielectric strength Light scattering Measurement techniques Response functions Solvation |
Title | Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures |
URI | https://www.proquest.com/docview/2315054909 https://www.proquest.com/docview/2312273709 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JjtMw1CqdA1xGrKLMgIxgkBAyZHEWcxuilgHK0EMqegu2k6CRqqSQVkL8FZ_AD_BNPC9ZRjNCwMVKXi2n9nv2W_wWhB4DDxA05B4B5igJ9aKSxK7DCYc2D5wCuKIyDbw_DU-W9O0qWI1GPwdeS7uteC6_XxpX8j9YBRjgVUXJ_gNmu0EBAM-AX2gBw9D-FY7ntbljMbVsdDJm7fGqE4G4BA5H2Ov1Wmn9R8n06JVLVOjKN4Nz5Y-xa54NIPqqvakbGFTlnVWJZXdfrY-hlV8XLVplWyjOPCmQMZI02siwSJIucOxjcfZ5fcEX-F2tLK3rPsy9v8wSJg5lppwDe-J9zQWo9cZirU5ubQnaDK0WLlPhezYK3Lg7KdtI65iqHU_svx6cxTT0CejuNlP2EGaqyrUHuAmxtoRK6fA4ppEpEGR5O7ybxNsXGIfjq7yrksmNSpATyJ49ti4Bpx-y2XI-z9LpKn2y-UJU4TJ1wW-ruFxBe14Uht4Y7R1P0zfzThwAkco3IW5mNm2OXJ-96D93Xio6LxRoSSe9jvatioKPDb3dQKOiuomudkt3C33SdId7usMt3eGzCvd09xL_-jGgOGwoDg8gdYk7isM9xd1Gy9k0TU6IrdRBpMe8LSkDx-XUjUHXCGG6wGHhxXVK6Yhc-CEtRJR7QQndmGA5lSCEhwwE5zB2PCly6t9B46quirsIgwBfuhzkXgojgvjIC5HHjuDAZwqPx-UEPW1XKpM2jb2qprLOtDuFz7KEJQu9qskEPer6bkzylkt7HbYLntnN3WSg9oBuQJnDJuhh9zOss7pP41VR73QfDyYROezen4c4QNf6PXCIxrCcxX2QZbfigaWW3ymEpIQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+dielectric+response+in+1-propanol%3A+%CE%B1-relaxation+versus+relaxation+of+mesoscale+structures&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Weigl%2C+Peter&rft.au=Koestel%2C+Daniel&rft.au=Pabst%2C+Florian&rft.au=Gabriel%2C+Jan+Philipp&rft.date=2019-11-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=21&rft.issue=44&rft.spage=24778&rft.epage=24786&rft_id=info:doi/10.1039%2Fc9cp05035c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |