Opt2Vec - a continuous optimization problem representation based on the algorithm's behavior: A case study on problem classification

Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the op...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 680; p. 121134
Main Authors Korošec, Peter, Eftimov, Tome
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2024
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2024.121134

Cover

Abstract Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the optimization problem, where for each one, a set of features is extracted using a set of candidate solutions sampled by a sampling strategy over the whole decision space. This paper proposes a novel representation of continuous optimization problems by encoding the information found in the interaction between an algorithm and an optimization problem. The new problem representation is learned using the information from the states/positions in the optimization run trajectory (i.e., the candidate solutions visited by the algorithm). With the novel representation, the problem can be characterized dynamically during the optimization run, instead of using a set of candidate solutions from the whole decision space that have never been observed by the algorithm. The novel optimization problem representation is called Opt2Vec and uses an autoencoder type of neural network to encode the information found in the interaction between an optimization algorithm and optimization problem into an embedded subspace. The Opt2Vec representation efficiency is shown by enabling different optimization problems to be successfully identified using only the information obtained from the optimization run trajectory. •Representation learning is applied on each individual population of optimization process trajectory.•The Opt2Vec representations are captured through the algorithm's behavior (its populations).•The Opt2Vec representations are suitable for dynamic problem characterization.•The Opt2Vec representations are invariant to simple transformations (shifting/scaling).•The Opt2Vec representations are scalable over different problem dimensions.
AbstractList Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the optimization problem, where for each one, a set of features is extracted using a set of candidate solutions sampled by a sampling strategy over the whole decision space. This paper proposes a novel representation of continuous optimization problems by encoding the information found in the interaction between an algorithm and an optimization problem. The new problem representation is learned using the information from the states/positions in the optimization run trajectory (i.e., the candidate solutions visited by the algorithm). With the novel representation, the problem can be characterized dynamically during the optimization run, instead of using a set of candidate solutions from the whole decision space that have never been observed by the algorithm. The novel optimization problem representation is called Opt2Vec and uses an autoencoder type of neural network to encode the information found in the interaction between an optimization algorithm and optimization problem into an embedded subspace. The Opt2Vec representation efficiency is shown by enabling different optimization problems to be successfully identified using only the information obtained from the optimization run trajectory. •Representation learning is applied on each individual population of optimization process trajectory.•The Opt2Vec representations are captured through the algorithm's behavior (its populations).•The Opt2Vec representations are suitable for dynamic problem characterization.•The Opt2Vec representations are invariant to simple transformations (shifting/scaling).•The Opt2Vec representations are scalable over different problem dimensions.
ArticleNumber 121134
Author Korošec, Peter
Eftimov, Tome
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0003-4492-4603
  surname: Korošec
  fullname: Korošec, Peter
  email: peter.korosec@ijs.si
– sequence: 2
  givenname: Tome
  orcidid: 0000-0001-7330-1902
  surname: Eftimov
  fullname: Eftimov, Tome
BookMark eNqNkD1PwzAQhj0UibbwA9i8MaXYzlcNU1XxJSF1AVbLsS_UVWJHtlNUZn44KWFgQkx3Or3PK90zQxPrLCB0QcmCElpc7RbGhgUjLFtQRmmaTdCUEEYSwvL8FM1C2BFCsrIopuhz00X2CgonWGLlbDS2d33AroumNR8yGmdx513VQIs9dB4C2DieKxlA42GJW8CyeXPexG17GXAFW7k3zl_jFVZDCIfY6wP-1aQaGYKpjfpuOkMntWwCnP_MOXq5u31ePyRPm_vH9eopUYyzmADoOiNEQl7WRcql1jVZZpIuAXJgOVc5L5kqa1JXGaiSy5JrtqxSyYFTSVk6R2zs7W0nD--yaUTnTSv9QVAiju7ETgzuxNGdGN0NEB0h5V0IHup_MTcjA8M3ewNeBGXAKtDGg4pCO_MH_QXvdY51
Cites_doi 10.3390/a14030078
10.1016/j.neucom.2022.06.084
10.1016/j.inffus.2017.12.007
10.1108/IJPCC-04-2020-0030
10.1016/j.artint.2016.04.003
10.1162/evco_a_00236
10.1109/TEVC.2014.2302006
10.1016/j.swevo.2023.101448
10.1016/j.neucom.2020.04.057
10.1016/j.asoc.2020.106138
10.1109/TEVC.2017.2744324
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.ins.2024.121134
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10.1016/j.ins.2024.121134
10_1016_j_ins_2024_121134
S002002552401048X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c292t-eedf400ae57f639addf084a18ee5e259c5972c7f0fb4ec79a79d28b3a9e91a123
IEDL.DBID .~1
ISSN 0020-0255
1872-6291
IngestDate Tue Aug 19 22:48:33 EDT 2025
Wed Oct 01 02:12:10 EDT 2025
Sat Aug 24 15:41:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Problem representation
Anytime problem identification
Dynamic problem characterization
Continuous optimization
Autoencoder
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-eedf400ae57f639addf084a18ee5e259c5972c7f0fb4ec79a79d28b3a9e91a123
ORCID 0000-0003-4492-4603
0000-0001-7330-1902
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002002552401048X
ParticipantIDs unpaywall_primary_10_1016_j_ins_2024_121134
crossref_primary_10_1016_j_ins_2024_121134
elsevier_sciencedirect_doi_10_1016_j_ins_2024_121134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Olivas, Guerrero, Martinez-Sober, Magdalena-Benedito, Serrano L¢pez (br0470) 2009
Jankovic, Eftimov, Doerr (br0300) 2021
Cenikj, Petelin, Doerr, Korošec, Eftimov (br0330) 2023
Trajanov, Dimeski, Popovski, Korošec, Eftimov (br0030) 2021
Seiler, Prager, Kerschke, Trautmann (br0250) 2022
Birsan, Tiba (br0380) 2006
Charte, Charte, García, del Jesus, Herrera (br0390) 2018; 44
Renau, Doerr, Dreo, Doerr (br0190) 2020
Kerschke, Preuss, Wessing, Trautmann (br0490) 2016
Muñoz, Kirley, Halgamuge (br0160) 2015; 19
van Stein, Long, Frenzel, Krause, Gitterle, Bäck (br0260) 2023
Ochoa, Malan, Blum (br0370) 2020
Cenikj, Lang, Engelbrecht, Doerr, Korošec, Eftimov (br0120) 2022
Long, Vermetten, van Stein, Kononova (br0280) 2023
Sobol (br0480) 1967; 7
Prager, Trautmann (br0210) 2023
Vermetten, Wang, Bäck, Doerr (br0090) 2020
Jankovic, Doerr (br0040) 2020
Kerschke, Trautmann (br0080) 2019; 27
Adair, Ochoa, Malan (br0350) 2019
Eftimov, Popovski, Renau, Korošec, Doerr (br0010) 2020
Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Hoos, Hutter, Leyton-Brown, Tierney (br0070) 2016; 237
Kerschke, Trautmann (br0170) 2016
Janković, Doerr (br0290) 2019
Mersmann, Bischl, Trautmann, Preuss, Weihs, Rudolph (br0150) 2011
Nikolikj, Pluháček, Doerr, Korošec, Eftimov (br0270) 2023
Mitchell, Ochoa, Chassagne (br0360) 2023
Renau, Dréo, Doerr, Doerr (br0020) 2021
Zou, Chen, Liu, Cao, Ji, Zhang (br0130) 2022; 503
Tanabe (br0240) 2021
Charte, Charte, del Jesus, Herrera (br0400) 2020
Belkhir, Dréo, Savéant, Schoenauer (br0100) 2017
Price, Storn, Lampinen (br0440) 2006
Kingma, Ba (br0450) 2014
Wang, Li, Zhang, Yao (br0140) 2018; 22
Petelin, Cenikj, Eftimov (br0220) 2022
Kostovska, Jankovic, Vermetten, de Nobel, Wang, Eftimov, Doerr (br0320) 2022
Voulodimos, Doulamis, Doulamis, Protopapadakis (br0420) 2018
Nikolikj, Trajanov, Cenikj, Korošec, Eftimov (br0060) 2022
Lang, Engelbrecht (br0200) 2021; 14
Petelin, Cenikj, Eftimov (br0230) 2024; 84
Jankovic, Vermetten, Kostovska, de Nobel, Eftimov, Doerr (br0310) 2022
Škvorc, Eftimov, Korošec (br0180) 2020; 90
Jia, Zhang (br0410) 2018; 5
Kostovska, Vermetten, Džeroski, Doerr, Korosec, Eftimov (br0050) 2022
Liang, Qu, Suganthan (br0430) 2013
Ochoa, Verel, Daolio, Tomassini (br0340) 2014
He, Zhang, Ren, Sun (br0460) 2015
Jankovic (10.1016/j.ins.2024.121134_br0300) 2021
Jia (10.1016/j.ins.2024.121134_br0410) 2018; 5
Kerschke (10.1016/j.ins.2024.121134_br0080) 2019; 27
Jankovic (10.1016/j.ins.2024.121134_br0310) 2022
He (10.1016/j.ins.2024.121134_br0460) 2015
Petelin (10.1016/j.ins.2024.121134_br0230) 2024; 84
Kingma (10.1016/j.ins.2024.121134_br0450)
Nikolikj (10.1016/j.ins.2024.121134_br0270) 2023
Prager (10.1016/j.ins.2024.121134_br0210) 2023
Cenikj (10.1016/j.ins.2024.121134_br0120) 2022
Voulodimos (10.1016/j.ins.2024.121134_br0420) 2018
Cenikj (10.1016/j.ins.2024.121134_br0330) 2023
Renau (10.1016/j.ins.2024.121134_br0190) 2020
Sobol (10.1016/j.ins.2024.121134_br0480) 1967; 7
Ochoa (10.1016/j.ins.2024.121134_br0340) 2014
Bischl (10.1016/j.ins.2024.121134_br0070) 2016; 237
Kerschke (10.1016/j.ins.2024.121134_br0170) 2016
Olivas (10.1016/j.ins.2024.121134_br0470) 2009
Nikolikj (10.1016/j.ins.2024.121134_br0060) 2022
Price (10.1016/j.ins.2024.121134_br0440) 2006
Seiler (10.1016/j.ins.2024.121134_br0250) 2022
Mitchell (10.1016/j.ins.2024.121134_br0360) 2023
Zou (10.1016/j.ins.2024.121134_br0130) 2022; 503
Dumka (10.1016/j.ins.2024.121134_br0500) 2021; 17
Wang (10.1016/j.ins.2024.121134_br0140) 2018; 22
Birsan (10.1016/j.ins.2024.121134_br0380) 2006
Jankovic (10.1016/j.ins.2024.121134_br0040) 2020
Renau (10.1016/j.ins.2024.121134_br0020) 2021
Vermetten (10.1016/j.ins.2024.121134_br0090) 2020
Mersmann (10.1016/j.ins.2024.121134_br0150) 2011
Liang (10.1016/j.ins.2024.121134_br0430) 2013
Kerschke (10.1016/j.ins.2024.121134_br0490) 2016
van Stein (10.1016/j.ins.2024.121134_br0260)
Charte (10.1016/j.ins.2024.121134_br0400) 2020
Adair (10.1016/j.ins.2024.121134_br0350) 2019
Long (10.1016/j.ins.2024.121134_br0280) 2023
Škvorc (10.1016/j.ins.2024.121134_br0180) 2020; 90
Janković (10.1016/j.ins.2024.121134_br0290) 2019
Belkhir (10.1016/j.ins.2024.121134_br0100) 2017
Kostovska (10.1016/j.ins.2024.121134_br0320) 2022
Petelin (10.1016/j.ins.2024.121134_br0220) 2022
Trajanov (10.1016/j.ins.2024.121134_br0030) 2021
Muñoz (10.1016/j.ins.2024.121134_br0160) 2015; 19
Charte (10.1016/j.ins.2024.121134_br0390) 2018; 44
Eftimov (10.1016/j.ins.2024.121134_br0010) 2020
Kostovska (10.1016/j.ins.2024.121134_br0050) 2022
Ochoa (10.1016/j.ins.2024.121134_br0370) 2020
Tanabe (10.1016/j.ins.2024.121134_br0240)
Lang (10.1016/j.ins.2024.121134_br0200) 2021; 14
References_xml – start-page: 70
  year: 2020
  end-page: 85
  ident: br0370
  article-title: Search trajectory networks of population-based algorithms in continuous spaces
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
– volume: 7
  start-page: 784
  year: 1967
  end-page: 802
  ident: br0480
  article-title: The distribution of points in a cube and the accurate evaluation of integrals
  publication-title: Vychisl. Mat. Mater. Phys.
– start-page: 2032
  year: 2019
  end-page: 2035
  ident: br0290
  article-title: Adaptive landscape analysis
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– start-page: 1
  year: 2022
  end-page: 8
  ident: br0060
  article-title: Identifying minimal set of exploratory landscape analysis features for reliable algorithm performance prediction
  publication-title: 2022 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 229
  year: 2016
  end-page: 236
  ident: br0490
  article-title: Low-budget exploratory landscape analysis on multiple peaks models
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference 2016
– start-page: 01
  year: 2021
  end-page: 08
  ident: br0030
  article-title: Explainable landscape-aware optimization performance prediction
  publication-title: 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
– start-page: 2072
  year: 2023
  end-page: 2080
  ident: br0360
  article-title: Local optima networks of the black box optimisation benchmark functions
  publication-title: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
– start-page: 813
  year: 2023
  end-page: 821
  ident: br0330
  article-title: Dynamorep: trajectory-based population dynamics for classification of black-box optimization problems
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– start-page: 1
  year: 2023
  end-page: 8
  ident: br0270
  article-title: Sensitivity analysis of rf+clust for leave-one-problem-out performance prediction
  publication-title: 2023 IEEE Congress on Evolutionary Computation (CEC)
– volume: 5
  year: 2018
  ident: br0410
  article-title: Survey on theories and methods of autoencoder
  publication-title: Comput. Syst. Appl.
– start-page: 620
  year: 2022
  end-page: 629
  ident: br0120
  article-title: Selector: selecting a representative benchmark suite for reproducible statistical comparison
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– start-page: 46
  year: 2022
  end-page: 60
  ident: br0320
  article-title: Per-run algorithm selection with warm-starting using trajectory-based features
  publication-title: Parallel Problem Solving from Nature – PPSN XVII
– volume: 44
  start-page: 78
  year: 2018
  end-page: 96
  ident: br0390
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
  publication-title: Inf. Fusion
– start-page: 35
  year: 2006
  end-page: 39
  ident: br0380
  article-title: One hundred years since the introduction of the set distance by dimitrie Pompeiu
  publication-title: System Modeling and Optimization: Proceedings of the 22nd IFIP TC7 Conference Held from July 18–22, 2005, in Turin, Italy 22
– start-page: 17
  year: 2021
  end-page: 33
  ident: br0020
  article-title: Towards explainable exploratory landscape analysis: extreme feature selection for classifying bbob functions
  publication-title: EvoApplications
– year: 2006
  ident: br0440
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– start-page: 841
  year: 2020
  end-page: 849
  ident: br0040
  article-title: Landscape-aware fixed-budget performance regression and algorithm selection for modular cma-es variants
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
– volume: 22
  start-page: 550
  year: 2018
  end-page: 563
  ident: br0140
  article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 601
  year: 2021
  end-page: 617
  ident: br0300
  article-title: Towards feature-based performance regression using trajectory data
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
– year: 2009
  ident: br0470
  article-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques
– start-page: 775
  year: 2020
  end-page: 782
  ident: br0010
  article-title: Linear matrix factorization embeddings for single-objective optimization landscapes
  publication-title: 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
– start-page: 2018
  year: 2018
  ident: br0420
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– start-page: 681
  year: 2017
  end-page: 688
  ident: br0100
  article-title: Per instance algorithm configuration of cma-es with limited budget
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 84
  year: 2024
  ident: br0230
  article-title: Tinytla: topological landscape analysis for optimization problem classification in a limited sample setting
  publication-title: Swarm Evol. Comput.
– year: 2020
  ident: br0400
  article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
  publication-title: Neurocomputing
– start-page: 233
  year: 2014
  end-page: 262
  ident: br0340
  article-title: Local optima networks: a new model of combinatorial fitness landscapes
  publication-title: Recent Adv. Theory Appl. Fit. Landsc.
– volume: 237
  start-page: 41
  year: 2016
  end-page: 58
  ident: br0070
  article-title: Aslib: a benchmark library for algorithm selection
  publication-title: Artif. Intell.
– start-page: 139
  year: 2020
  end-page: 153
  ident: br0190
  article-title: Exploratory landscape analysis is strongly sensitive to the sampling strategy
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 90
  year: 2020
  ident: br0180
  article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis
  publication-title: Appl. Soft Comput.
– start-page: 1698
  year: 2022
  end-page: 1705
  ident: br0220
  article-title: Tla: topological landscape analysis for single-objective continuous optimization problem instances
  publication-title: 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
– volume: 19
  start-page: 74
  year: 2015
  end-page: 87
  ident: br0160
  article-title: Exploratory landscape analysis of continuous space optimization problems using information content
  publication-title: IEEE Trans. Evol. Comput.
– year: 2021
  ident: br0240
  article-title: Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework
– year: 2023
  ident: br0260
  article-title: Doe2vec: deep-learning based features for exploratory landscape analysis
– start-page: 380
  year: 2023
  end-page: 395
  ident: br0280
  article-title: Bbob instance analysis: landscape properties and algorithm performance across problem instances
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
– start-page: 1
  year: 2022
  end-page: 8
  ident: br0310
  article-title: Trajectory-based algorithm selection with warm-starting
  publication-title: 2022 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 1407
  year: 2019
  end-page: 1414
  ident: br0350
  article-title: Local optima networks for continuous fitness landscapes
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– year: 2014
  ident: br0450
  article-title: Adam: a method for stochastic optimization
– start-page: 657
  year: 2022
  end-page: 665
  ident: br0250
  article-title: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 27
  start-page: 99
  year: 2019
  end-page: 127
  ident: br0080
  article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning
  publication-title: Evol. Comput.
– start-page: 654
  year: 2020
  end-page: 662
  ident: br0090
  article-title: Towards dynamic algorithm selection for numerical black-box optimization: investigating bbob as a use case
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
– start-page: 5262
  year: 2016
  end-page: 5269
  ident: br0170
  article-title: The r-package flacco for exploratory landscape analysis with applications to multi-objective optimization problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– volume: 503
  start-page: 129
  year: 2022
  end-page: 139
  ident: br0130
  article-title: A survey of fitness landscape analysis for optimization
  publication-title: Neurocomputing
– start-page: 411
  year: 2023
  end-page: 425
  ident: br0210
  article-title: Nullifying the inherent bias of non-invariant exploratory landscape analysis features
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
– volume: 14
  start-page: 78
  year: 2021
  ident: br0200
  article-title: An exploratory landscape analysis-based benchmark suite
  publication-title: Algorithms
– start-page: 829
  year: 2011
  end-page: 836
  ident: br0150
  article-title: Exploratory landscape analysis
  publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
– year: 2013
  ident: br0430
  article-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization
– start-page: 648
  year: 2022
  end-page: 656
  ident: br0050
  article-title: The importance of landscape features for performance prediction of modular cma-es variants
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: br0460
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2006
  ident: 10.1016/j.ins.2024.121134_br0440
– start-page: 813
  year: 2023
  ident: 10.1016/j.ins.2024.121134_br0330
  article-title: Dynamorep: trajectory-based population dynamics for classification of black-box optimization problems
– start-page: 601
  year: 2021
  ident: 10.1016/j.ins.2024.121134_br0300
  article-title: Towards feature-based performance regression using trajectory data
– volume: 5
  year: 2018
  ident: 10.1016/j.ins.2024.121134_br0410
  article-title: Survey on theories and methods of autoencoder
  publication-title: Comput. Syst. Appl.
– start-page: 648
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0050
  article-title: The importance of landscape features for performance prediction of modular cma-es variants
– start-page: 829
  year: 2011
  ident: 10.1016/j.ins.2024.121134_br0150
  article-title: Exploratory landscape analysis
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0310
  article-title: Trajectory-based algorithm selection with warm-starting
– start-page: 2018
  year: 2018
  ident: 10.1016/j.ins.2024.121134_br0420
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– volume: 14
  start-page: 78
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2024.121134_br0200
  article-title: An exploratory landscape analysis-based benchmark suite
  publication-title: Algorithms
  doi: 10.3390/a14030078
– start-page: 17
  year: 2021
  ident: 10.1016/j.ins.2024.121134_br0020
  article-title: Towards explainable exploratory landscape analysis: extreme feature selection for classifying bbob functions
– volume: 503
  start-page: 129
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0130
  article-title: A survey of fitness landscape analysis for optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.084
– start-page: 657
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0250
  article-title: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes
– start-page: 35
  year: 2006
  ident: 10.1016/j.ins.2024.121134_br0380
  article-title: One hundred years since the introduction of the set distance by dimitrie Pompeiu
– volume: 44
  start-page: 78
  year: 2018
  ident: 10.1016/j.ins.2024.121134_br0390
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.12.007
– volume: 7
  start-page: 784
  year: 1967
  ident: 10.1016/j.ins.2024.121134_br0480
  article-title: The distribution of points in a cube and the accurate evaluation of integrals
  publication-title: Vychisl. Mat. Mater. Phys.
– start-page: 2072
  year: 2023
  ident: 10.1016/j.ins.2024.121134_br0360
  article-title: Local optima networks of the black box optimisation benchmark functions
– start-page: 2032
  year: 2019
  ident: 10.1016/j.ins.2024.121134_br0290
  article-title: Adaptive landscape analysis
– start-page: 681
  year: 2017
  ident: 10.1016/j.ins.2024.121134_br0100
  article-title: Per instance algorithm configuration of cma-es with limited budget
– start-page: 233
  year: 2014
  ident: 10.1016/j.ins.2024.121134_br0340
  article-title: Local optima networks: a new model of combinatorial fitness landscapes
  publication-title: Recent Adv. Theory Appl. Fit. Landsc.
– start-page: 1698
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0220
  article-title: Tla: topological landscape analysis for single-objective continuous optimization problem instances
– start-page: 1026
  year: 2015
  ident: 10.1016/j.ins.2024.121134_br0460
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– start-page: 775
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0010
  article-title: Linear matrix factorization embeddings for single-objective optimization landscapes
– ident: 10.1016/j.ins.2024.121134_br0450
– year: 2009
  ident: 10.1016/j.ins.2024.121134_br0470
– start-page: 5262
  year: 2016
  ident: 10.1016/j.ins.2024.121134_br0170
  article-title: The r-package flacco for exploratory landscape analysis with applications to multi-objective optimization problems
– ident: 10.1016/j.ins.2024.121134_br0260
– volume: 17
  start-page: 89
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121134_br0500
  article-title: Data dissemination for green-vanets communication: an opportunistic optimization approach
  publication-title: Int. J. Pervasive Comput. Commun.
  doi: 10.1108/IJPCC-04-2020-0030
– start-page: 841
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0040
  article-title: Landscape-aware fixed-budget performance regression and algorithm selection for modular cma-es variants
– volume: 237
  start-page: 41
  year: 2016
  ident: 10.1016/j.ins.2024.121134_br0070
  article-title: Aslib: a benchmark library for algorithm selection
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2016.04.003
– start-page: 411
  year: 2023
  ident: 10.1016/j.ins.2024.121134_br0210
  article-title: Nullifying the inherent bias of non-invariant exploratory landscape analysis features
– start-page: 380
  year: 2023
  ident: 10.1016/j.ins.2024.121134_br0280
  article-title: Bbob instance analysis: landscape properties and algorithm performance across problem instances
– start-page: 46
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0320
  article-title: Per-run algorithm selection with warm-starting using trajectory-based features
– start-page: 01
  year: 2021
  ident: 10.1016/j.ins.2024.121134_br0030
  article-title: Explainable landscape-aware optimization performance prediction
– start-page: 139
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0190
  article-title: Exploratory landscape analysis is strongly sensitive to the sampling strategy
– start-page: 70
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0370
  article-title: Search trajectory networks of population-based algorithms in continuous spaces
– start-page: 620
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0120
  article-title: Selector: selecting a representative benchmark suite for reproducible statistical comparison
– start-page: 654
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0090
  article-title: Towards dynamic algorithm selection for numerical black-box optimization: investigating bbob as a use case
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2024.121134_br0060
  article-title: Identifying minimal set of exploratory landscape analysis features for reliable algorithm performance prediction
– volume: 27
  start-page: 99
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2024.121134_br0080
  article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00236
– volume: 19
  start-page: 74
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2024.121134_br0160
  article-title: Exploratory landscape analysis of continuous space optimization problems using information content
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2302006
– start-page: 229
  year: 2016
  ident: 10.1016/j.ins.2024.121134_br0490
  article-title: Low-budget exploratory landscape analysis on multiple peaks models
– volume: 84
  year: 2024
  ident: 10.1016/j.ins.2024.121134_br0230
  article-title: Tinytla: topological landscape analysis for optimization problem classification in a limited sample setting
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101448
– year: 2020
  ident: 10.1016/j.ins.2024.121134_br0400
  article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.057
– ident: 10.1016/j.ins.2024.121134_br0240
– year: 2013
  ident: 10.1016/j.ins.2024.121134_br0430
– start-page: 1407
  year: 2019
  ident: 10.1016/j.ins.2024.121134_br0350
  article-title: Local optima networks for continuous fitness landscapes
– volume: 90
  year: 2020
  ident: 10.1016/j.ins.2024.121134_br0180
  article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106138
– volume: 22
  start-page: 550
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2024.121134_br0140
  article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2744324
– start-page: 1
  year: 2023
  ident: 10.1016/j.ins.2024.121134_br0270
  article-title: Sensitivity analysis of rf+clust for leave-one-problem-out performance prediction
SSID ssj0004766
Score 2.4469218
Snippet Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment,...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 121134
SubjectTerms Anytime problem identification
Autoencoder
Continuous optimization
Dynamic problem characterization
Problem representation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGe5g4ACsgiih6hwmkIVe14_ziViGqCmmFA0XdKbIdh3W0SdUmmsaZP5znxJk6BBu75eA40Xsvft-Lv_eZkGOMGu4Jn9OUcUmFERFVsQ6o5wlPKaaCwNj_HaezYDoXnxb-wolF216YG_v3NQ9rmVtVbS6sDgLzxAPSDXyE3R3Snc--jM8aCseIWmxsi6so5DTgMWt3MP82x79y0GGVb-TVpVyt9nLM5HHDztrV0oSWWvJjWJVqqH_-Idz4X6__hDxySBPGTWgckQOT98jDPf3BHhm4rgV4A64tyboJ3Pf-lPz6vCn5N6OBggRLal_mVVHtoMB1Zu0aOMEdSQO1PGbbypSDTY8p4AUiTJCr78V2WZ6v3-6gFQZ4D2PQOAhqhVvYm0lbRG8pTPVMz8h88vHrhyl1xzZQzWNeUsy6Ga4M0vhhhvgHF9BsFAnJImN8g9WWxhqG6zAbZUoYHcYyjFMeKU_GJmYSM-lz0smL3LwgEIYsRQwxyjwjhcpMlLHUlz7TKvKF1KpPTlpHJptGnSNpaWsXCZo-saZPGtP3iWhdnTh40cCGBL12223vrsPi7oe8vNfoV6RTbiszQFxTqtcuon8DbQ_1GQ
  priority: 102
  providerName: Unpaywall
Title Opt2Vec - a continuous optimization problem representation based on the algorithm's behavior: A case study on problem classification
URI https://dx.doi.org/10.1016/j.ins.2024.121134
https://doi.org/10.1016/j.ins.2024.121134
UnpaywallVersion publishedVersion
Volume 680
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1872-6291
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004766
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1872-6291
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004766
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  issn: 1872-6291
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004766
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1872-6291
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004766
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1872-6291
  databaseCode: AKRWK
  dateStart: 19681201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAoIAoj-oGBBIotHGcJmGrKlABURgoKlNkOw4EtWkFqRALEz-cc-JAGQCJKQ85duSz77uz7zsTsoujhjrMpVZkU24xxXxLBLJpOQ5zhLBFs6n0esdlt9npsfO-258h7ZILo8Mqje4vdHqurc2buunN-jhJNMeX5hYxYhL6FH5fM9iZp08xOHr7CvNgXrFfqd0kXbrc2cxjvJJUZ-ymTOdYsB32EzbNT9Ixf33hg8EU9pwukyVjNEKr-K8VMqPSClmcSiVYITuGgAB7YBhGusfBTN1V8n41zuitkmABBx2fnqQTdPphhCpjaLiYYE6XgTzTZclKSkEjXQR4g8Yi8MH96CnJHob7z1By_I-hBRILQZ6sFqZqkto419FIeU1rpHd6ctPuWOYEBkvSgGYWAmiMk5wr14vRlEFdGDd8xm1fKVeh4yTRHaHSixuxYEp6AfeCiPrC4YEKbI6guE5m01GqNgh4nh2hOdCIHcWZiJUf25HLXVsK32Vciio5KPs-HBeJNsIyAu0xREGFWlBhIagqYaV0wm-jJUQg-O2zw09J_t3I5v8a2SIL-qkI-Nsms9nTRO2g4ZKJWj4ya2SudXbR6eK1171u3X0AaTbwTg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ74OKgH4zO-nYPRRIMupSzgzRjN-r6o2RtpS1HMym6UjfHiyR_uFIquBzXxRqC0ZKad7xs6MwXYoFnDPO4zJ3GZcLjmoSMj1XQ8j3tSurLZ1OZ_x8Vls3XDT9t-ewgO61wYE1ZpbX9l00trbe_sWWnu9bLM5PiykhETJpFPEbaHYZQGDYwHtvv2FefBg2rD0vhJpnm9tVkGeWW5KdnNuCmy4Hr8J3Aa6-c98foiOp0B8DmegknLGvGg-rBpGNL5DEwM1BKcgVWbgYCbaFOMjMjRrt1ZeL_qFexWK3RQoAlQz_I-ef3YJZvxaJMx0R4vg2WpyzotKUcDdQnSBbFFFJ277lNW3D9uPWOd5L-PB6ioEZbVanGgJ2XYuQlHKnuag5vjo-vDlmOPYHAUi1jhEIKmtMqF9oOUuAwZw7QRcuGGWvuaPCdF_ghTQdpIJdcqiEQQJSyUnoh05ApCxXkYybu5XgAMAjchPtBIPS24THWYuokvfFfJ0OdCyUXYrmUf96pKG3EdgvYQk6Jio6i4UtQi8Fo78bfpEhMS_Pbazqcm_x5k6X-DrMNY6_riPD4_uTxbhnHzpIr-W4GR4qmvV4nFFHKtnKUfenDwMw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGe5g4ACsgiih6hwmkIVe14_ziViGqCmmFA0XdKbIdh3W0SdUmmsaZP5znxJk6BBu75eA40Xsvft-Lv_eZkGOMGu4Jn9OUcUmFERFVsQ6o5wlPKaaCwNj_HaezYDoXnxb-wolF216YG_v3NQ9rmVtVbS6sDgLzxAPSDXyE3R3Snc--jM8aCseIWmxsi6so5DTgMWt3MP82x79y0GGVb-TVpVyt9nLM5HHDztrV0oSWWvJjWJVqqH_-Idz4X6__hDxySBPGTWgckQOT98jDPf3BHhm4rgV4A64tyboJ3Pf-lPz6vCn5N6OBggRLal_mVVHtoMB1Zu0aOMEdSQO1PGbbypSDTY8p4AUiTJCr78V2WZ6v3-6gFQZ4D2PQOAhqhVvYm0lbRG8pTPVMz8h88vHrhyl1xzZQzWNeUsy6Ga4M0vhhhvgHF9BsFAnJImN8g9WWxhqG6zAbZUoYHcYyjFMeKU_GJmYSM-lz0smL3LwgEIYsRQwxyjwjhcpMlLHUlz7TKvKF1KpPTlpHJptGnSNpaWsXCZo-saZPGtP3iWhdnTh40cCGBL12223vrsPi7oe8vNfoV6RTbiszQFxTqtcuon8DbQ_1GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opt2Vec+-+a+continuous+optimization+problem+representation+based+on+the+algorithm%27s+behavior%3A+A+case+study+on+problem+classification&rft.jtitle=Information+sciences&rft.au=Koro%C5%A1ec%2C+Peter&rft.au=Eftimov%2C+Tome&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=680&rft_id=info:doi/10.1016%2Fj.ins.2024.121134&rft.externalDocID=S002002552401048X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon