Opt2Vec - a continuous optimization problem representation based on the algorithm's behavior: A case study on problem classification
Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the op...
Saved in:
| Published in | Information sciences Vol. 680; p. 121134 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 |
| DOI | 10.1016/j.ins.2024.121134 |
Cover
| Abstract | Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the optimization problem, where for each one, a set of features is extracted using a set of candidate solutions sampled by a sampling strategy over the whole decision space. This paper proposes a novel representation of continuous optimization problems by encoding the information found in the interaction between an algorithm and an optimization problem. The new problem representation is learned using the information from the states/positions in the optimization run trajectory (i.e., the candidate solutions visited by the algorithm). With the novel representation, the problem can be characterized dynamically during the optimization run, instead of using a set of candidate solutions from the whole decision space that have never been observed by the algorithm. The novel optimization problem representation is called Opt2Vec and uses an autoencoder type of neural network to encode the information found in the interaction between an optimization algorithm and optimization problem into an embedded subspace. The Opt2Vec representation efficiency is shown by enabling different optimization problems to be successfully identified using only the information obtained from the optimization run trajectory.
•Representation learning is applied on each individual population of optimization process trajectory.•The Opt2Vec representations are captured through the algorithm's behavior (its populations).•The Opt2Vec representations are suitable for dynamic problem characterization.•The Opt2Vec representations are invariant to simple transformations (shifting/scaling).•The Opt2Vec representations are scalable over different problem dimensions. |
|---|---|
| AbstractList | Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment, and automated algorithm selection and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent the optimization problem, where for each one, a set of features is extracted using a set of candidate solutions sampled by a sampling strategy over the whole decision space. This paper proposes a novel representation of continuous optimization problems by encoding the information found in the interaction between an algorithm and an optimization problem. The new problem representation is learned using the information from the states/positions in the optimization run trajectory (i.e., the candidate solutions visited by the algorithm). With the novel representation, the problem can be characterized dynamically during the optimization run, instead of using a set of candidate solutions from the whole decision space that have never been observed by the algorithm. The novel optimization problem representation is called Opt2Vec and uses an autoencoder type of neural network to encode the information found in the interaction between an optimization algorithm and optimization problem into an embedded subspace. The Opt2Vec representation efficiency is shown by enabling different optimization problems to be successfully identified using only the information obtained from the optimization run trajectory.
•Representation learning is applied on each individual population of optimization process trajectory.•The Opt2Vec representations are captured through the algorithm's behavior (its populations).•The Opt2Vec representations are suitable for dynamic problem characterization.•The Opt2Vec representations are invariant to simple transformations (shifting/scaling).•The Opt2Vec representations are scalable over different problem dimensions. |
| ArticleNumber | 121134 |
| Author | Korošec, Peter Eftimov, Tome |
| Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0003-4492-4603 surname: Korošec fullname: Korošec, Peter email: peter.korosec@ijs.si – sequence: 2 givenname: Tome orcidid: 0000-0001-7330-1902 surname: Eftimov fullname: Eftimov, Tome |
| BookMark | eNqNkD1PwzAQhj0UibbwA9i8MaXYzlcNU1XxJSF1AVbLsS_UVWJHtlNUZn44KWFgQkx3Or3PK90zQxPrLCB0QcmCElpc7RbGhgUjLFtQRmmaTdCUEEYSwvL8FM1C2BFCsrIopuhz00X2CgonWGLlbDS2d33AroumNR8yGmdx513VQIs9dB4C2DieKxlA42GJW8CyeXPexG17GXAFW7k3zl_jFVZDCIfY6wP-1aQaGYKpjfpuOkMntWwCnP_MOXq5u31ePyRPm_vH9eopUYyzmADoOiNEQl7WRcql1jVZZpIuAXJgOVc5L5kqa1JXGaiSy5JrtqxSyYFTSVk6R2zs7W0nD--yaUTnTSv9QVAiju7ETgzuxNGdGN0NEB0h5V0IHup_MTcjA8M3ewNeBGXAKtDGg4pCO_MH_QXvdY51 |
| Cites_doi | 10.3390/a14030078 10.1016/j.neucom.2022.06.084 10.1016/j.inffus.2017.12.007 10.1108/IJPCC-04-2020-0030 10.1016/j.artint.2016.04.003 10.1162/evco_a_00236 10.1109/TEVC.2014.2302006 10.1016/j.swevo.2023.101448 10.1016/j.neucom.2020.04.057 10.1016/j.asoc.2020.106138 10.1109/TEVC.2017.2744324 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.ins.2024.121134 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | 10.1016/j.ins.2024.121134 10_1016_j_ins_2024_121134 S002002552401048X |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c292t-eedf400ae57f639addf084a18ee5e259c5972c7f0fb4ec79a79d28b3a9e91a123 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 1872-6291 |
| IngestDate | Tue Aug 19 22:48:33 EDT 2025 Wed Oct 01 02:12:10 EDT 2025 Sat Aug 24 15:41:23 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Problem representation Anytime problem identification Dynamic problem characterization Continuous optimization Autoencoder |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-eedf400ae57f639addf084a18ee5e259c5972c7f0fb4ec79a79d28b3a9e91a123 |
| ORCID | 0000-0003-4492-4603 0000-0001-7330-1902 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S002002552401048X |
| ParticipantIDs | unpaywall_primary_10_1016_j_ins_2024_121134 crossref_primary_10_1016_j_ins_2024_121134 elsevier_sciencedirect_doi_10_1016_j_ins_2024_121134 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Olivas, Guerrero, Martinez-Sober, Magdalena-Benedito, Serrano L¢pez (br0470) 2009 Jankovic, Eftimov, Doerr (br0300) 2021 Cenikj, Petelin, Doerr, Korošec, Eftimov (br0330) 2023 Trajanov, Dimeski, Popovski, Korošec, Eftimov (br0030) 2021 Seiler, Prager, Kerschke, Trautmann (br0250) 2022 Birsan, Tiba (br0380) 2006 Charte, Charte, García, del Jesus, Herrera (br0390) 2018; 44 Renau, Doerr, Dreo, Doerr (br0190) 2020 Kerschke, Preuss, Wessing, Trautmann (br0490) 2016 Muñoz, Kirley, Halgamuge (br0160) 2015; 19 van Stein, Long, Frenzel, Krause, Gitterle, Bäck (br0260) 2023 Ochoa, Malan, Blum (br0370) 2020 Cenikj, Lang, Engelbrecht, Doerr, Korošec, Eftimov (br0120) 2022 Long, Vermetten, van Stein, Kononova (br0280) 2023 Sobol (br0480) 1967; 7 Prager, Trautmann (br0210) 2023 Vermetten, Wang, Bäck, Doerr (br0090) 2020 Jankovic, Doerr (br0040) 2020 Kerschke, Trautmann (br0080) 2019; 27 Adair, Ochoa, Malan (br0350) 2019 Eftimov, Popovski, Renau, Korošec, Doerr (br0010) 2020 Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Hoos, Hutter, Leyton-Brown, Tierney (br0070) 2016; 237 Kerschke, Trautmann (br0170) 2016 Janković, Doerr (br0290) 2019 Mersmann, Bischl, Trautmann, Preuss, Weihs, Rudolph (br0150) 2011 Nikolikj, Pluháček, Doerr, Korošec, Eftimov (br0270) 2023 Mitchell, Ochoa, Chassagne (br0360) 2023 Renau, Dréo, Doerr, Doerr (br0020) 2021 Zou, Chen, Liu, Cao, Ji, Zhang (br0130) 2022; 503 Tanabe (br0240) 2021 Charte, Charte, del Jesus, Herrera (br0400) 2020 Belkhir, Dréo, Savéant, Schoenauer (br0100) 2017 Price, Storn, Lampinen (br0440) 2006 Kingma, Ba (br0450) 2014 Wang, Li, Zhang, Yao (br0140) 2018; 22 Petelin, Cenikj, Eftimov (br0220) 2022 Kostovska, Jankovic, Vermetten, de Nobel, Wang, Eftimov, Doerr (br0320) 2022 Voulodimos, Doulamis, Doulamis, Protopapadakis (br0420) 2018 Nikolikj, Trajanov, Cenikj, Korošec, Eftimov (br0060) 2022 Lang, Engelbrecht (br0200) 2021; 14 Petelin, Cenikj, Eftimov (br0230) 2024; 84 Jankovic, Vermetten, Kostovska, de Nobel, Eftimov, Doerr (br0310) 2022 Škvorc, Eftimov, Korošec (br0180) 2020; 90 Jia, Zhang (br0410) 2018; 5 Kostovska, Vermetten, Džeroski, Doerr, Korosec, Eftimov (br0050) 2022 Liang, Qu, Suganthan (br0430) 2013 Ochoa, Verel, Daolio, Tomassini (br0340) 2014 He, Zhang, Ren, Sun (br0460) 2015 Jankovic (10.1016/j.ins.2024.121134_br0300) 2021 Jia (10.1016/j.ins.2024.121134_br0410) 2018; 5 Kerschke (10.1016/j.ins.2024.121134_br0080) 2019; 27 Jankovic (10.1016/j.ins.2024.121134_br0310) 2022 He (10.1016/j.ins.2024.121134_br0460) 2015 Petelin (10.1016/j.ins.2024.121134_br0230) 2024; 84 Kingma (10.1016/j.ins.2024.121134_br0450) Nikolikj (10.1016/j.ins.2024.121134_br0270) 2023 Prager (10.1016/j.ins.2024.121134_br0210) 2023 Cenikj (10.1016/j.ins.2024.121134_br0120) 2022 Voulodimos (10.1016/j.ins.2024.121134_br0420) 2018 Cenikj (10.1016/j.ins.2024.121134_br0330) 2023 Renau (10.1016/j.ins.2024.121134_br0190) 2020 Sobol (10.1016/j.ins.2024.121134_br0480) 1967; 7 Ochoa (10.1016/j.ins.2024.121134_br0340) 2014 Bischl (10.1016/j.ins.2024.121134_br0070) 2016; 237 Kerschke (10.1016/j.ins.2024.121134_br0170) 2016 Olivas (10.1016/j.ins.2024.121134_br0470) 2009 Nikolikj (10.1016/j.ins.2024.121134_br0060) 2022 Price (10.1016/j.ins.2024.121134_br0440) 2006 Seiler (10.1016/j.ins.2024.121134_br0250) 2022 Mitchell (10.1016/j.ins.2024.121134_br0360) 2023 Zou (10.1016/j.ins.2024.121134_br0130) 2022; 503 Dumka (10.1016/j.ins.2024.121134_br0500) 2021; 17 Wang (10.1016/j.ins.2024.121134_br0140) 2018; 22 Birsan (10.1016/j.ins.2024.121134_br0380) 2006 Jankovic (10.1016/j.ins.2024.121134_br0040) 2020 Renau (10.1016/j.ins.2024.121134_br0020) 2021 Vermetten (10.1016/j.ins.2024.121134_br0090) 2020 Mersmann (10.1016/j.ins.2024.121134_br0150) 2011 Liang (10.1016/j.ins.2024.121134_br0430) 2013 Kerschke (10.1016/j.ins.2024.121134_br0490) 2016 van Stein (10.1016/j.ins.2024.121134_br0260) Charte (10.1016/j.ins.2024.121134_br0400) 2020 Adair (10.1016/j.ins.2024.121134_br0350) 2019 Long (10.1016/j.ins.2024.121134_br0280) 2023 Škvorc (10.1016/j.ins.2024.121134_br0180) 2020; 90 Janković (10.1016/j.ins.2024.121134_br0290) 2019 Belkhir (10.1016/j.ins.2024.121134_br0100) 2017 Kostovska (10.1016/j.ins.2024.121134_br0320) 2022 Petelin (10.1016/j.ins.2024.121134_br0220) 2022 Trajanov (10.1016/j.ins.2024.121134_br0030) 2021 Muñoz (10.1016/j.ins.2024.121134_br0160) 2015; 19 Charte (10.1016/j.ins.2024.121134_br0390) 2018; 44 Eftimov (10.1016/j.ins.2024.121134_br0010) 2020 Kostovska (10.1016/j.ins.2024.121134_br0050) 2022 Ochoa (10.1016/j.ins.2024.121134_br0370) 2020 Tanabe (10.1016/j.ins.2024.121134_br0240) Lang (10.1016/j.ins.2024.121134_br0200) 2021; 14 |
| References_xml | – start-page: 70 year: 2020 end-page: 85 ident: br0370 article-title: Search trajectory networks of population-based algorithms in continuous spaces publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) – volume: 7 start-page: 784 year: 1967 end-page: 802 ident: br0480 article-title: The distribution of points in a cube and the accurate evaluation of integrals publication-title: Vychisl. Mat. Mater. Phys. – start-page: 2032 year: 2019 end-page: 2035 ident: br0290 article-title: Adaptive landscape analysis publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion – start-page: 1 year: 2022 end-page: 8 ident: br0060 article-title: Identifying minimal set of exploratory landscape analysis features for reliable algorithm performance prediction publication-title: 2022 IEEE Congress on Evolutionary Computation (CEC) – start-page: 229 year: 2016 end-page: 236 ident: br0490 article-title: Low-budget exploratory landscape analysis on multiple peaks models publication-title: Proceedings of the Genetic and Evolutionary Computation Conference 2016 – start-page: 01 year: 2021 end-page: 08 ident: br0030 article-title: Explainable landscape-aware optimization performance prediction publication-title: 2021 IEEE Symposium Series on Computational Intelligence (SSCI) – start-page: 2072 year: 2023 end-page: 2080 ident: br0360 article-title: Local optima networks of the black box optimisation benchmark functions publication-title: Proceedings of the Companion Conference on Genetic and Evolutionary Computation – start-page: 813 year: 2023 end-page: 821 ident: br0330 article-title: Dynamorep: trajectory-based population dynamics for classification of black-box optimization problems publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – start-page: 1 year: 2023 end-page: 8 ident: br0270 article-title: Sensitivity analysis of rf+clust for leave-one-problem-out performance prediction publication-title: 2023 IEEE Congress on Evolutionary Computation (CEC) – volume: 5 year: 2018 ident: br0410 article-title: Survey on theories and methods of autoencoder publication-title: Comput. Syst. Appl. – start-page: 620 year: 2022 end-page: 629 ident: br0120 article-title: Selector: selecting a representative benchmark suite for reproducible statistical comparison publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – start-page: 46 year: 2022 end-page: 60 ident: br0320 article-title: Per-run algorithm selection with warm-starting using trajectory-based features publication-title: Parallel Problem Solving from Nature – PPSN XVII – volume: 44 start-page: 78 year: 2018 end-page: 96 ident: br0390 article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines publication-title: Inf. Fusion – start-page: 35 year: 2006 end-page: 39 ident: br0380 article-title: One hundred years since the introduction of the set distance by dimitrie Pompeiu publication-title: System Modeling and Optimization: Proceedings of the 22nd IFIP TC7 Conference Held from July 18–22, 2005, in Turin, Italy 22 – start-page: 17 year: 2021 end-page: 33 ident: br0020 article-title: Towards explainable exploratory landscape analysis: extreme feature selection for classifying bbob functions publication-title: EvoApplications – year: 2006 ident: br0440 article-title: Differential Evolution: A Practical Approach to Global Optimization – start-page: 841 year: 2020 end-page: 849 ident: br0040 article-title: Landscape-aware fixed-budget performance regression and algorithm selection for modular cma-es variants publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference – volume: 22 start-page: 550 year: 2018 end-page: 563 ident: br0140 article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 601 year: 2021 end-page: 617 ident: br0300 article-title: Towards feature-based performance regression using trajectory data publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) – year: 2009 ident: br0470 article-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Techniques – start-page: 775 year: 2020 end-page: 782 ident: br0010 article-title: Linear matrix factorization embeddings for single-objective optimization landscapes publication-title: 2020 IEEE Symposium Series on Computational Intelligence (SSCI) – start-page: 2018 year: 2018 ident: br0420 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. – start-page: 681 year: 2017 end-page: 688 ident: br0100 article-title: Per instance algorithm configuration of cma-es with limited budget publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – volume: 84 year: 2024 ident: br0230 article-title: Tinytla: topological landscape analysis for optimization problem classification in a limited sample setting publication-title: Swarm Evol. Comput. – year: 2020 ident: br0400 article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges publication-title: Neurocomputing – start-page: 233 year: 2014 end-page: 262 ident: br0340 article-title: Local optima networks: a new model of combinatorial fitness landscapes publication-title: Recent Adv. Theory Appl. Fit. Landsc. – volume: 237 start-page: 41 year: 2016 end-page: 58 ident: br0070 article-title: Aslib: a benchmark library for algorithm selection publication-title: Artif. Intell. – start-page: 139 year: 2020 end-page: 153 ident: br0190 article-title: Exploratory landscape analysis is strongly sensitive to the sampling strategy publication-title: International Conference on Parallel Problem Solving from Nature – volume: 90 year: 2020 ident: br0180 article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis publication-title: Appl. Soft Comput. – start-page: 1698 year: 2022 end-page: 1705 ident: br0220 article-title: Tla: topological landscape analysis for single-objective continuous optimization problem instances publication-title: 2022 IEEE Symposium Series on Computational Intelligence (SSCI) – volume: 19 start-page: 74 year: 2015 end-page: 87 ident: br0160 article-title: Exploratory landscape analysis of continuous space optimization problems using information content publication-title: IEEE Trans. Evol. Comput. – year: 2021 ident: br0240 article-title: Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework – year: 2023 ident: br0260 article-title: Doe2vec: deep-learning based features for exploratory landscape analysis – start-page: 380 year: 2023 end-page: 395 ident: br0280 article-title: Bbob instance analysis: landscape properties and algorithm performance across problem instances publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) – start-page: 1 year: 2022 end-page: 8 ident: br0310 article-title: Trajectory-based algorithm selection with warm-starting publication-title: 2022 IEEE Congress on Evolutionary Computation (CEC) – start-page: 1407 year: 2019 end-page: 1414 ident: br0350 article-title: Local optima networks for continuous fitness landscapes publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion – year: 2014 ident: br0450 article-title: Adam: a method for stochastic optimization – start-page: 657 year: 2022 end-page: 665 ident: br0250 article-title: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – volume: 27 start-page: 99 year: 2019 end-page: 127 ident: br0080 article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol. Comput. – start-page: 654 year: 2020 end-page: 662 ident: br0090 article-title: Towards dynamic algorithm selection for numerical black-box optimization: investigating bbob as a use case publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference – start-page: 5262 year: 2016 end-page: 5269 ident: br0170 article-title: The r-package flacco for exploratory landscape analysis with applications to multi-objective optimization problems publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC) – volume: 503 start-page: 129 year: 2022 end-page: 139 ident: br0130 article-title: A survey of fitness landscape analysis for optimization publication-title: Neurocomputing – start-page: 411 year: 2023 end-page: 425 ident: br0210 article-title: Nullifying the inherent bias of non-invariant exploratory landscape analysis features publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) – volume: 14 start-page: 78 year: 2021 ident: br0200 article-title: An exploratory landscape analysis-based benchmark suite publication-title: Algorithms – start-page: 829 year: 2011 end-page: 836 ident: br0150 article-title: Exploratory landscape analysis publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation – year: 2013 ident: br0430 article-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization – start-page: 648 year: 2022 end-page: 656 ident: br0050 article-title: The importance of landscape features for performance prediction of modular cma-es variants publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – start-page: 1026 year: 2015 end-page: 1034 ident: br0460 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2006 ident: 10.1016/j.ins.2024.121134_br0440 – start-page: 813 year: 2023 ident: 10.1016/j.ins.2024.121134_br0330 article-title: Dynamorep: trajectory-based population dynamics for classification of black-box optimization problems – start-page: 601 year: 2021 ident: 10.1016/j.ins.2024.121134_br0300 article-title: Towards feature-based performance regression using trajectory data – volume: 5 year: 2018 ident: 10.1016/j.ins.2024.121134_br0410 article-title: Survey on theories and methods of autoencoder publication-title: Comput. Syst. Appl. – start-page: 648 year: 2022 ident: 10.1016/j.ins.2024.121134_br0050 article-title: The importance of landscape features for performance prediction of modular cma-es variants – start-page: 829 year: 2011 ident: 10.1016/j.ins.2024.121134_br0150 article-title: Exploratory landscape analysis – start-page: 1 year: 2022 ident: 10.1016/j.ins.2024.121134_br0310 article-title: Trajectory-based algorithm selection with warm-starting – start-page: 2018 year: 2018 ident: 10.1016/j.ins.2024.121134_br0420 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. – volume: 14 start-page: 78 issue: 3 year: 2021 ident: 10.1016/j.ins.2024.121134_br0200 article-title: An exploratory landscape analysis-based benchmark suite publication-title: Algorithms doi: 10.3390/a14030078 – start-page: 17 year: 2021 ident: 10.1016/j.ins.2024.121134_br0020 article-title: Towards explainable exploratory landscape analysis: extreme feature selection for classifying bbob functions – volume: 503 start-page: 129 year: 2022 ident: 10.1016/j.ins.2024.121134_br0130 article-title: A survey of fitness landscape analysis for optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.084 – start-page: 657 year: 2022 ident: 10.1016/j.ins.2024.121134_br0250 article-title: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes – start-page: 35 year: 2006 ident: 10.1016/j.ins.2024.121134_br0380 article-title: One hundred years since the introduction of the set distance by dimitrie Pompeiu – volume: 44 start-page: 78 year: 2018 ident: 10.1016/j.ins.2024.121134_br0390 article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.12.007 – volume: 7 start-page: 784 year: 1967 ident: 10.1016/j.ins.2024.121134_br0480 article-title: The distribution of points in a cube and the accurate evaluation of integrals publication-title: Vychisl. Mat. Mater. Phys. – start-page: 2072 year: 2023 ident: 10.1016/j.ins.2024.121134_br0360 article-title: Local optima networks of the black box optimisation benchmark functions – start-page: 2032 year: 2019 ident: 10.1016/j.ins.2024.121134_br0290 article-title: Adaptive landscape analysis – start-page: 681 year: 2017 ident: 10.1016/j.ins.2024.121134_br0100 article-title: Per instance algorithm configuration of cma-es with limited budget – start-page: 233 year: 2014 ident: 10.1016/j.ins.2024.121134_br0340 article-title: Local optima networks: a new model of combinatorial fitness landscapes publication-title: Recent Adv. Theory Appl. Fit. Landsc. – start-page: 1698 year: 2022 ident: 10.1016/j.ins.2024.121134_br0220 article-title: Tla: topological landscape analysis for single-objective continuous optimization problem instances – start-page: 1026 year: 2015 ident: 10.1016/j.ins.2024.121134_br0460 article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification – start-page: 775 year: 2020 ident: 10.1016/j.ins.2024.121134_br0010 article-title: Linear matrix factorization embeddings for single-objective optimization landscapes – ident: 10.1016/j.ins.2024.121134_br0450 – year: 2009 ident: 10.1016/j.ins.2024.121134_br0470 – start-page: 5262 year: 2016 ident: 10.1016/j.ins.2024.121134_br0170 article-title: The r-package flacco for exploratory landscape analysis with applications to multi-objective optimization problems – ident: 10.1016/j.ins.2024.121134_br0260 – volume: 17 start-page: 89 issue: 1 year: 2021 ident: 10.1016/j.ins.2024.121134_br0500 article-title: Data dissemination for green-vanets communication: an opportunistic optimization approach publication-title: Int. J. Pervasive Comput. Commun. doi: 10.1108/IJPCC-04-2020-0030 – start-page: 841 year: 2020 ident: 10.1016/j.ins.2024.121134_br0040 article-title: Landscape-aware fixed-budget performance regression and algorithm selection for modular cma-es variants – volume: 237 start-page: 41 year: 2016 ident: 10.1016/j.ins.2024.121134_br0070 article-title: Aslib: a benchmark library for algorithm selection publication-title: Artif. Intell. doi: 10.1016/j.artint.2016.04.003 – start-page: 411 year: 2023 ident: 10.1016/j.ins.2024.121134_br0210 article-title: Nullifying the inherent bias of non-invariant exploratory landscape analysis features – start-page: 380 year: 2023 ident: 10.1016/j.ins.2024.121134_br0280 article-title: Bbob instance analysis: landscape properties and algorithm performance across problem instances – start-page: 46 year: 2022 ident: 10.1016/j.ins.2024.121134_br0320 article-title: Per-run algorithm selection with warm-starting using trajectory-based features – start-page: 01 year: 2021 ident: 10.1016/j.ins.2024.121134_br0030 article-title: Explainable landscape-aware optimization performance prediction – start-page: 139 year: 2020 ident: 10.1016/j.ins.2024.121134_br0190 article-title: Exploratory landscape analysis is strongly sensitive to the sampling strategy – start-page: 70 year: 2020 ident: 10.1016/j.ins.2024.121134_br0370 article-title: Search trajectory networks of population-based algorithms in continuous spaces – start-page: 620 year: 2022 ident: 10.1016/j.ins.2024.121134_br0120 article-title: Selector: selecting a representative benchmark suite for reproducible statistical comparison – start-page: 654 year: 2020 ident: 10.1016/j.ins.2024.121134_br0090 article-title: Towards dynamic algorithm selection for numerical black-box optimization: investigating bbob as a use case – start-page: 1 year: 2022 ident: 10.1016/j.ins.2024.121134_br0060 article-title: Identifying minimal set of exploratory landscape analysis features for reliable algorithm performance prediction – volume: 27 start-page: 99 issue: 1 year: 2019 ident: 10.1016/j.ins.2024.121134_br0080 article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol. Comput. doi: 10.1162/evco_a_00236 – volume: 19 start-page: 74 issue: 1 year: 2015 ident: 10.1016/j.ins.2024.121134_br0160 article-title: Exploratory landscape analysis of continuous space optimization problems using information content publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2302006 – start-page: 229 year: 2016 ident: 10.1016/j.ins.2024.121134_br0490 article-title: Low-budget exploratory landscape analysis on multiple peaks models – volume: 84 year: 2024 ident: 10.1016/j.ins.2024.121134_br0230 article-title: Tinytla: topological landscape analysis for optimization problem classification in a limited sample setting publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101448 – year: 2020 ident: 10.1016/j.ins.2024.121134_br0400 article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.057 – ident: 10.1016/j.ins.2024.121134_br0240 – year: 2013 ident: 10.1016/j.ins.2024.121134_br0430 – start-page: 1407 year: 2019 ident: 10.1016/j.ins.2024.121134_br0350 article-title: Local optima networks for continuous fitness landscapes – volume: 90 year: 2020 ident: 10.1016/j.ins.2024.121134_br0180 article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106138 – volume: 22 start-page: 550 issue: 4 year: 2018 ident: 10.1016/j.ins.2024.121134_br0140 article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2744324 – start-page: 1 year: 2023 ident: 10.1016/j.ins.2024.121134_br0270 article-title: Sensitivity analysis of rf+clust for leave-one-problem-out performance prediction |
| SSID | ssj0004766 |
| Score | 2.4469218 |
| Snippet | Characterization of the optimization problem is a crucial task in many recent optimization research topics (e.g., explainable algorithm performance assessment,... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 121134 |
| SubjectTerms | Anytime problem identification Autoencoder Continuous optimization Dynamic problem characterization Problem representation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGe5g4ACsgiih6hwmkIVe14_ziViGqCmmFA0XdKbIdh3W0SdUmmsaZP5znxJk6BBu75eA40Xsvft-Lv_eZkGOMGu4Jn9OUcUmFERFVsQ6o5wlPKaaCwNj_HaezYDoXnxb-wolF216YG_v3NQ9rmVtVbS6sDgLzxAPSDXyE3R3Snc--jM8aCseIWmxsi6so5DTgMWt3MP82x79y0GGVb-TVpVyt9nLM5HHDztrV0oSWWvJjWJVqqH_-Idz4X6__hDxySBPGTWgckQOT98jDPf3BHhm4rgV4A64tyboJ3Pf-lPz6vCn5N6OBggRLal_mVVHtoMB1Zu0aOMEdSQO1PGbbypSDTY8p4AUiTJCr78V2WZ6v3-6gFQZ4D2PQOAhqhVvYm0lbRG8pTPVMz8h88vHrhyl1xzZQzWNeUsy6Ga4M0vhhhvgHF9BsFAnJImN8g9WWxhqG6zAbZUoYHcYyjFMeKU_GJmYSM-lz0smL3LwgEIYsRQwxyjwjhcpMlLHUlz7TKvKF1KpPTlpHJptGnSNpaWsXCZo-saZPGtP3iWhdnTh40cCGBL12223vrsPi7oe8vNfoV6RTbiszQFxTqtcuon8DbQ_1GQ priority: 102 providerName: Unpaywall |
| Title | Opt2Vec - a continuous optimization problem representation based on the algorithm's behavior: A case study on problem classification |
| URI | https://dx.doi.org/10.1016/j.ins.2024.121134 https://doi.org/10.1016/j.ins.2024.121134 |
| UnpaywallVersion | publishedVersion |
| Volume | 680 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1872-6291 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004766 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1872-6291 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004766 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) issn: 1872-6291 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004766 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1872-6291 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004766 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1872-6291 databaseCode: AKRWK dateStart: 19681201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAoIAoj-oGBBIotHGcJmGrKlABURgoKlNkOw4EtWkFqRALEz-cc-JAGQCJKQ85duSz77uz7zsTsoujhjrMpVZkU24xxXxLBLJpOQ5zhLBFs6n0esdlt9npsfO-258h7ZILo8Mqje4vdHqurc2buunN-jhJNMeX5hYxYhL6FH5fM9iZp08xOHr7CvNgXrFfqd0kXbrc2cxjvJJUZ-ymTOdYsB32EzbNT9Ixf33hg8EU9pwukyVjNEKr-K8VMqPSClmcSiVYITuGgAB7YBhGusfBTN1V8n41zuitkmABBx2fnqQTdPphhCpjaLiYYE6XgTzTZclKSkEjXQR4g8Yi8MH96CnJHob7z1By_I-hBRILQZ6sFqZqkto419FIeU1rpHd6ctPuWOYEBkvSgGYWAmiMk5wr14vRlEFdGDd8xm1fKVeh4yTRHaHSixuxYEp6AfeCiPrC4YEKbI6guE5m01GqNgh4nh2hOdCIHcWZiJUf25HLXVsK32Vciio5KPs-HBeJNsIyAu0xREGFWlBhIagqYaV0wm-jJUQg-O2zw09J_t3I5v8a2SIL-qkI-Nsms9nTRO2g4ZKJWj4ya2SudXbR6eK1171u3X0AaTbwTg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ74OKgH4zO-nYPRRIMupSzgzRjN-r6o2RtpS1HMym6UjfHiyR_uFIquBzXxRqC0ZKad7xs6MwXYoFnDPO4zJ3GZcLjmoSMj1XQ8j3tSurLZ1OZ_x8Vls3XDT9t-ewgO61wYE1ZpbX9l00trbe_sWWnu9bLM5PiykhETJpFPEbaHYZQGDYwHtvv2FefBg2rD0vhJpnm9tVkGeWW5KdnNuCmy4Hr8J3Aa6-c98foiOp0B8DmegknLGvGg-rBpGNL5DEwM1BKcgVWbgYCbaFOMjMjRrt1ZeL_qFexWK3RQoAlQz_I-ef3YJZvxaJMx0R4vg2WpyzotKUcDdQnSBbFFFJ277lNW3D9uPWOd5L-PB6ioEZbVanGgJ2XYuQlHKnuag5vjo-vDlmOPYHAUi1jhEIKmtMqF9oOUuAwZw7QRcuGGWvuaPCdF_ghTQdpIJdcqiEQQJSyUnoh05ApCxXkYybu5XgAMAjchPtBIPS24THWYuokvfFfJ0OdCyUXYrmUf96pKG3EdgvYQk6Jio6i4UtQi8Fo78bfpEhMS_Pbazqcm_x5k6X-DrMNY6_riPD4_uTxbhnHzpIr-W4GR4qmvV4nFFHKtnKUfenDwMw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGe5g4ACsgiih6hwmkIVe14_ziViGqCmmFA0XdKbIdh3W0SdUmmsaZP5znxJk6BBu75eA40Xsvft-Lv_eZkGOMGu4Jn9OUcUmFERFVsQ6o5wlPKaaCwNj_HaezYDoXnxb-wolF216YG_v3NQ9rmVtVbS6sDgLzxAPSDXyE3R3Snc--jM8aCseIWmxsi6so5DTgMWt3MP82x79y0GGVb-TVpVyt9nLM5HHDztrV0oSWWvJjWJVqqH_-Idz4X6__hDxySBPGTWgckQOT98jDPf3BHhm4rgV4A64tyboJ3Pf-lPz6vCn5N6OBggRLal_mVVHtoMB1Zu0aOMEdSQO1PGbbypSDTY8p4AUiTJCr78V2WZ6v3-6gFQZ4D2PQOAhqhVvYm0lbRG8pTPVMz8h88vHrhyl1xzZQzWNeUsy6Ga4M0vhhhvgHF9BsFAnJImN8g9WWxhqG6zAbZUoYHcYyjFMeKU_GJmYSM-lz0smL3LwgEIYsRQwxyjwjhcpMlLHUlz7TKvKF1KpPTlpHJptGnSNpaWsXCZo-saZPGtP3iWhdnTh40cCGBL12223vrsPi7oe8vNfoV6RTbiszQFxTqtcuon8DbQ_1GQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opt2Vec+-+a+continuous+optimization+problem+representation+based+on+the+algorithm%27s+behavior%3A+A+case+study+on+problem+classification&rft.jtitle=Information+sciences&rft.au=Koro%C5%A1ec%2C+Peter&rft.au=Eftimov%2C+Tome&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=680&rft_id=info:doi/10.1016%2Fj.ins.2024.121134&rft.externalDocID=S002002552401048X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |