Memory AMP for Generalized MIMO: Coding Principle and Information-Theoretic Optimality
To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrice...
Saved in:
| Published in | IEEE transactions on wireless communications Vol. 23; no. 6; pp. 5769 - 5785 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1276 1558-2248 |
| DOI | 10.1109/TWC.2023.3328361 |
Cover
| Abstract | To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are <inline-formula> <tex-math notation="LaTeX">0.5 \sim 2.7 </tex-math></inline-formula> dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with <inline-formula> <tex-math notation="LaTeX">4\% </tex-math></inline-formula> of the time consumption for large-scale systems. |
|---|---|
| AbstractList | To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are [Formula Omitted] dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with [Formula Omitted] of the time consumption for large-scale systems. To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are <inline-formula> <tex-math notation="LaTeX">0.5 \sim 2.7 </tex-math></inline-formula> dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with <inline-formula> <tex-math notation="LaTeX">4\% </tex-math></inline-formula> of the time consumption for large-scale systems. |
| Author | Zhang, Zhaoyang Chi, Yuhao Li, Ying Liu, Lei Chen, Yufei |
| Author_xml | – sequence: 1 givenname: Yufei orcidid: 0009-0005-0122-9784 surname: Chen fullname: Chen, Yufei email: yfchen1@stu.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 2 givenname: Lei orcidid: 0000-0002-0807-2135 surname: Liu fullname: Liu, Lei email: lei_liu@zju.edu.cn organization: Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Yuhao orcidid: 0000-0001-9850-0246 surname: Chi fullname: Chi, Yuhao email: yhchi@xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 4 givenname: Ying orcidid: 0000-0002-9604-2664 surname: Li fullname: Li, Ying email: yli@mail.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 5 givenname: Zhaoyang orcidid: 0000-0003-2346-6228 surname: Zhang fullname: Zhang, Zhaoyang email: ning_ming@zju.edu.cn organization: Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kDtPwzAURi0EEm1hZ2CwxJziR-wkbFUEpVKjdigwRml8A65SOzjuUH49Lu2AGJh8JX_nPs4QnRtrAKEbSsaUkux-9ZaPGWF8zDlLuaRnaECFSCPG4vT8UHMZUZbISzTs-w0hNJFCDNBrAVvr9nhSLHFjHZ6CAVe1-gsULmbF4gHnVmnzjpdOm1p3LeDKKDwzIbytvLYmWn2AdeB1jRed19sA-_0Vumiqtofr0ztCL0-Pq_w5mi-ms3wyj2qWMR9BwrKaKSlAkbimhK4FS7hgjcgU4xA3aQwqUVBDnCqZMUJYmpAKmjVwnpA1H6G7Y9_O2c8d9L7c2J0zYWTJiZQZT5OMhJQ8pmpn-95BU9ba_yzvXaXbkpLy4LAMDsuDw_LkMIDkD9i5cKHb_4fcHhENAL_i4Z9yyb8BxLp9qg |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_3390_electronics14061235 crossref_primary_10_1109_TVT_2024_3424690 |
| Cites_doi | 10.1109/TIT.2022.3186166 10.1109/26.837052 10.1109/TWC.2021.3110839 10.1109/TIT.2002.804053 10.1109/TWC.2019.2938170 10.1109/TIT.2020.2990880 10.1109/TIT.2005.844072 10.1109/tmm.2023.3248160 10.1109/ICASSP.2015.7178325 10.1109/TWC.2017.2751045 10.1109/ISIT50566.2022.9834360 10.1109/ISIT54713.2023.10206818 10.1109/ISIT50566.2022.9834568 10.1109/ICCWorkshops57953.2023.10283752 10.1109/TSP.2019.2896242 10.1109/TWC.2022.3204768 10.1109/TIT.2019.2916359 10.1109/TWC.2021.3110099 10.1561/9781933019505 10.1109/ACCESS.2017.2653119 10.1209/epl/i2006-10380-5 10.1109/MNET.001.1900287 10.1007/s11432-022-3692-5 10.1109/TIT.2010.2094817 10.1109/TCOMM.2022.3207813 10.1109/TWC.2018.2878720 10.1017/cbo9780511803253 10.1109/TIT.2005.847700 10.1109/TIT.2021.3077471 10.1109/tit.2023.3321575 10.1109/18.910578 10.1109/TWC.2018.2858222 10.1109/TWC.2016.2585481 10.1109/TWC.2019.2961892 10.1109/TIT.2019.2891664 10.1109/TWC.2003.819030 10.1109/isit.2018.8437522 10.1109/GLOBECOM54140.2023.10437246 10.1073/pnas.0909892106 10.1109/TIT.2016.2619373 10.1109/TIT.2021.3083748 10.1109/TIT.2013.2250578 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2023.3328361 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 5785 |
| ExternalDocumentID | 10_1109_TWC_2023_3328361 10332136 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China National Key Research and Development Program grantid: 2021YFA1000500 – fundername: Research Funds for the Central Universities grantid: XJS220117 – fundername: NSFC grantid: 62201424 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020YFB1807101 – fundername: NSFC grantid: 62301485 funderid: 10.13039/501100001809 – fundername: Ministry of Industry and Information Technology of the People's Republic of China; Ministry of Industry and Information Technology grantid: TC220H07E funderid: 10.13039/501100006579 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2022JQ-703 funderid: 10.13039/501100007128 – fundername: National Natural Science Foundation of China (NSFC) grantid: 62131016; 61971333 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: XJS220117 funderid: 10.13039/501100012226 – fundername: Key Research and Development Projects of Shaanxi Province; Key Research and Development Program of Shaanxi grantid: 2023-YBGY-218 funderid: 10.13039/501100015401 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-e729c2d65ed04c101b527352f59d23e4f84ed7dece48d692002870aefbe3370b3 |
| IEDL.DBID | RIE |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:27:51 EDT 2025 Wed Oct 01 04:51:07 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Wed Aug 27 02:02:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-e729c2d65ed04c101b527352f59d23e4f84ed7dece48d692002870aefbe3370b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9604-2664 0000-0001-9850-0246 0009-0005-0122-9784 0000-0002-0807-2135 0000-0003-2346-6228 |
| PQID | 3066938790 |
| PQPubID | 105736 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_10332136 crossref_citationtrail_10_1109_TWC_2023_3328361 proquest_journals_3066938790 crossref_primary_10_1109_TWC_2023_3328361 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June 2024-6-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Manoel (ref20) 2014 ref5 ref40 |
| References_xml | – ident: ref31 doi: 10.1109/TIT.2022.3186166 – year: 2014 ident: ref20 article-title: Sparse estimation with the swept approximated message-passing algorithm publication-title: arXiv:1406.4311 – ident: ref38 doi: 10.1109/26.837052 – ident: ref35 doi: 10.1109/TWC.2021.3110839 – ident: ref40 doi: 10.1109/TIT.2002.804053 – ident: ref11 doi: 10.1109/TWC.2019.2938170 – ident: ref18 doi: 10.1109/TIT.2020.2990880 – ident: ref29 doi: 10.1109/TIT.2005.844072 – ident: ref4 doi: 10.1109/tmm.2023.3248160 – ident: ref19 doi: 10.1109/ICASSP.2015.7178325 – ident: ref5 doi: 10.1109/TWC.2017.2751045 – ident: ref30 doi: 10.1109/ISIT50566.2022.9834360 – ident: ref37 doi: 10.1109/ISIT54713.2023.10206818 – ident: ref34 doi: 10.1109/ISIT50566.2022.9834568 – ident: ref14 doi: 10.1109/ICCWorkshops57953.2023.10283752 – ident: ref7 doi: 10.1109/TSP.2019.2896242 – ident: ref13 doi: 10.1109/TWC.2022.3204768 – ident: ref23 doi: 10.1109/TIT.2019.2916359 – ident: ref3 doi: 10.1109/TWC.2021.3110099 – ident: ref36 doi: 10.1561/9781933019505 – ident: ref22 doi: 10.1109/ACCESS.2017.2653119 – ident: ref24 doi: 10.1209/epl/i2006-10380-5 – ident: ref1 doi: 10.1109/MNET.001.1900287 – ident: ref2 doi: 10.1007/s11432-022-3692-5 – ident: ref16 doi: 10.1109/TIT.2010.2094817 – ident: ref6 doi: 10.1109/TCOMM.2022.3207813 – ident: ref10 doi: 10.1109/TWC.2018.2878720 – ident: ref42 doi: 10.1017/cbo9780511803253 – ident: ref41 doi: 10.1109/TIT.2005.847700 – ident: ref33 doi: 10.1109/TIT.2021.3077471 – ident: ref26 doi: 10.1109/tit.2023.3321575 – ident: ref43 doi: 10.1109/18.910578 – ident: ref8 doi: 10.1109/TWC.2018.2858222 – ident: ref9 doi: 10.1109/TWC.2016.2585481 – ident: ref12 doi: 10.1109/TWC.2019.2961892 – ident: ref17 doi: 10.1109/TIT.2019.2891664 – ident: ref39 doi: 10.1109/TWC.2003.819030 – ident: ref27 doi: 10.1109/isit.2018.8437522 – ident: ref32 doi: 10.1109/GLOBECOM54140.2023.10437246 – ident: ref15 doi: 10.1073/pnas.0909892106 – ident: ref21 doi: 10.1109/TIT.2016.2619373 – ident: ref28 doi: 10.1109/TIT.2021.3083748 – ident: ref25 doi: 10.1109/TIT.2013.2250578 |
| SSID | ssj0017655 |
| Score | 2.4741554 |
| Snippet | To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5769 |
| SubjectTerms | Algorithms capacity optimality Codes Coding coding principle Complexity Complexity theory Encoding Error correcting codes generalized MIMO (GMIMO) Information theory low complexity Matrices (mathematics) Memory approximate message passing (MAMP) Message passing MIMO communication Optimization orthogonal/vector approximate message passing (OAMP/VAMP) Principles Receivers SISO (control systems) Wireless communication Wireless communications |
| Title | Memory AMP for Generalized MIMO: Coding Principle and Information-Theoretic Optimality |
| URI | https://ieeexplore.ieee.org/document/10332136 https://www.proquest.com/docview/3066938790 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJxj4LKJQkAcWhqRpnDgxW1VRFaR-DC10i2L7IiGgRdAO9NdzdpKqgEBsHmzL8vPZz_bdO0IuoyyKRdqSDjCEIZDmoSlTnpNJTzLJY6Yzq_Y54L1JcDcNp0Wwuo2FAQDrfAauKdq_fD1XS_NUhhbOmN9ivEIqUczzYK31l0HEbYpTtGCTWCZa_0l6ojl-6LgmTbiLzWPGW1_OIJtU5cdObI-X7h4ZlAPLvUqe3OVCumr1TbPx3yPfJ7sF0aTtfGUckC2YHZKdDfnBI3LfN262H7TdH1HkrrSQoH5cgab92_7wmnbm5mijo_JFnqYzTYsIJoOoMy7jIOkQ954XS-prZNK9GXd6TpFnwVG-8BcOIMFWvuYhaC9QaKPSqLKFfhYK7TMIsjgAHWlQEMSaC-PWgVaeQiaBsQgxPSbV2XwGJ4QCA9wxhFAB-EhN_DRmCnuRIkPaJFqqTprlzCeqECE3uTCeE3sZ8USCWCUGq6TAqk6u1i1ecwGOP-rWzNRv1MtnvU4aJbpJYaLvCd6VuGBxJLzTX5qdkW3sPcgdwxqkunhbwjlSkIW8sEvvEzRw1c4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnDhkJDGzmJuqAKVJYVDWW5RbU8kBLQI2gN8PWMnqVgE4paD7Vh-HvvZnnkDsJcUSSp7TeUhJxiEshdNhQ68QgWKqzjlpnBqn524fS3O7qK7KljdxcIgonM-Q99-urd8M9Aje1VGFs552OTxJExHQoioDNcaPxoksUtySjZsU8sk41fJQB50b1u-TRTuUwMpj5tfdiGXVuXHWuw2mJMF6NRdK_1KHvzRUPn6_Ztq47_7vgjzFdVkR-XcWIIJ7C_D3CcBwhW4yayj7Rs7yq4YsVdWiVDfv6Nh2Wl2echaA7u5sav6Tp71-oZVMUwWU69bR0KyS1p9nhytX4Xrk-Nuq-1VmRY8Hcpw6CFRbB2aOEITCE1WqqwuWxQWkTQhR1GkAk1iUKNITSytYwfZeQ8LhZwnhOoaTPUHfVwHhhxpzZBSCwyJnIS9lGtqRcmCiJNs6gYc1COf60qG3GbDeMzdcSSQOWGVW6zyCqsG7I9rPJcSHH-UXbVD_6lcOeoN2KrRzSsjfc3ptBRLniYy2Pil2i7MtLvZRX5x2jnfhFn6kyjdxLZgavgywm0iJEO146bhB5K32Rs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory+AMP+for+Generalized+MIMO%3A+Coding+Principle+and+Information-Theoretic+Optimality&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Chen%2C+Yufei&rft.au=Liu%2C+Lei&rft.au=Chi%2C+Yuhao&rft.au=Li%2C+Ying&rft.date=2024-06-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=6&rft.spage=5769&rft.epage=5785&rft_id=info:doi/10.1109%2FTWC.2023.3328361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3328361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |