Memory AMP for Generalized MIMO: Coding Principle and Information-Theoretic Optimality

To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrice...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 23; no. 6; pp. 5769 - 5785
Main Authors Chen, Yufei, Liu, Lei, Chi, Yuhao, Li, Ying, Zhang, Zhaoyang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2023.3328361

Cover

Abstract To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are <inline-formula> <tex-math notation="LaTeX">0.5 \sim 2.7 </tex-math></inline-formula> dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with <inline-formula> <tex-math notation="LaTeX">4\% </tex-math></inline-formula> of the time consumption for large-scale systems.
AbstractList To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are [Formula Omitted] dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with [Formula Omitted] of the time consumption for large-scale systems.
To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). The orthogonal/vector approximate message passing (OAMP/VAMP) receiver has been proved to be information-theoretically optimal in GMIMO, but it is limited to high-complexity linear minimum mean-square error (LMMSE). To solve this problem, a low-complexity memory approximate message passing (MAMP) receiver has recently been shown to be Bayes optimal but limited to uncoded systems. Therefore, how to design a low-complexity and information-theoretically optimal receiver for GMIMO is still an open issue. To address this issue, this paper proposes an information-theoretically optimal MAMP receiver and investigates its achievable rate analysis and optimal coding principle. Specifically, due to the long-memory linear detection, state evolution (SE) for MAMP is intricately multi-dimensional and cannot be used directly to analyze its achievable rate. To avoid this difficulty, a simplified single-input single-output (SISO) variational SE (VSE) for MAMP is developed by leveraging the SE fixed-point consistent property of MAMP and OAMP/VAMP. The achievable rate of MAMP is calculated using the VSE, and the optimal coding principle is established to maximize the achievable rate. On this basis, the information-theoretic optimality of MAMP is proved rigorously. Furthermore, the simplified SE analysis by fixed-point consistency is generalized to any two iterative detection algorithms with the identical SE fixed point. Numerical results show that the finite-length performances of MAMP with practical optimized low-density parity-check (LDPC) codes are <inline-formula> <tex-math notation="LaTeX">0.5 \sim 2.7 </tex-math></inline-formula> dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performances as OAMP/VAMP with <inline-formula> <tex-math notation="LaTeX">4\% </tex-math></inline-formula> of the time consumption for large-scale systems.
Author Zhang, Zhaoyang
Chi, Yuhao
Li, Ying
Liu, Lei
Chen, Yufei
Author_xml – sequence: 1
  givenname: Yufei
  orcidid: 0009-0005-0122-9784
  surname: Chen
  fullname: Chen, Yufei
  email: yfchen1@stu.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-0807-2135
  surname: Liu
  fullname: Liu, Lei
  email: lei_liu@zju.edu.cn
  organization: Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Yuhao
  orcidid: 0000-0001-9850-0246
  surname: Chi
  fullname: Chi, Yuhao
  email: yhchi@xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 4
  givenname: Ying
  orcidid: 0000-0002-9604-2664
  surname: Li
  fullname: Li, Ying
  email: yli@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 5
  givenname: Zhaoyang
  orcidid: 0000-0003-2346-6228
  surname: Zhang
  fullname: Zhang, Zhaoyang
  email: ning_ming@zju.edu.cn
  organization: Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kDtPwzAURi0EEm1hZ2CwxJziR-wkbFUEpVKjdigwRml8A65SOzjuUH49Lu2AGJh8JX_nPs4QnRtrAKEbSsaUkux-9ZaPGWF8zDlLuaRnaECFSCPG4vT8UHMZUZbISzTs-w0hNJFCDNBrAVvr9nhSLHFjHZ6CAVe1-gsULmbF4gHnVmnzjpdOm1p3LeDKKDwzIbytvLYmWn2AdeB1jRed19sA-_0Vumiqtofr0ztCL0-Pq_w5mi-ms3wyj2qWMR9BwrKaKSlAkbimhK4FS7hgjcgU4xA3aQwqUVBDnCqZMUJYmpAKmjVwnpA1H6G7Y9_O2c8d9L7c2J0zYWTJiZQZT5OMhJQ8pmpn-95BU9ba_yzvXaXbkpLy4LAMDsuDw_LkMIDkD9i5cKHb_4fcHhENAL_i4Z9yyb8BxLp9qg
CODEN ITWCAX
CitedBy_id crossref_primary_10_3390_electronics14061235
crossref_primary_10_1109_TVT_2024_3424690
Cites_doi 10.1109/TIT.2022.3186166
10.1109/26.837052
10.1109/TWC.2021.3110839
10.1109/TIT.2002.804053
10.1109/TWC.2019.2938170
10.1109/TIT.2020.2990880
10.1109/TIT.2005.844072
10.1109/tmm.2023.3248160
10.1109/ICASSP.2015.7178325
10.1109/TWC.2017.2751045
10.1109/ISIT50566.2022.9834360
10.1109/ISIT54713.2023.10206818
10.1109/ISIT50566.2022.9834568
10.1109/ICCWorkshops57953.2023.10283752
10.1109/TSP.2019.2896242
10.1109/TWC.2022.3204768
10.1109/TIT.2019.2916359
10.1109/TWC.2021.3110099
10.1561/9781933019505
10.1109/ACCESS.2017.2653119
10.1209/epl/i2006-10380-5
10.1109/MNET.001.1900287
10.1007/s11432-022-3692-5
10.1109/TIT.2010.2094817
10.1109/TCOMM.2022.3207813
10.1109/TWC.2018.2878720
10.1017/cbo9780511803253
10.1109/TIT.2005.847700
10.1109/TIT.2021.3077471
10.1109/tit.2023.3321575
10.1109/18.910578
10.1109/TWC.2018.2858222
10.1109/TWC.2016.2585481
10.1109/TWC.2019.2961892
10.1109/TIT.2019.2891664
10.1109/TWC.2003.819030
10.1109/isit.2018.8437522
10.1109/GLOBECOM54140.2023.10437246
10.1073/pnas.0909892106
10.1109/TIT.2016.2619373
10.1109/TIT.2021.3083748
10.1109/TIT.2013.2250578
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3328361
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 5785
ExternalDocumentID 10_1109_TWC_2023_3328361
10332136
Genre orig-research
GrantInformation_xml – fundername: China National Key Research and Development Program
  grantid: 2021YFA1000500
– fundername: Research Funds for the Central Universities
  grantid: XJS220117
– fundername: NSFC
  grantid: 62201424
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1807101
– fundername: NSFC
  grantid: 62301485
  funderid: 10.13039/501100001809
– fundername: Ministry of Industry and Information Technology of the People's Republic of China; Ministry of Industry and Information Technology
  grantid: TC220H07E
  funderid: 10.13039/501100006579
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2022JQ-703
  funderid: 10.13039/501100007128
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62131016; 61971333
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XJS220117
  funderid: 10.13039/501100012226
– fundername: Key Research and Development Projects of Shaanxi Province; Key Research and Development Program of Shaanxi
  grantid: 2023-YBGY-218
  funderid: 10.13039/501100015401
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-e729c2d65ed04c101b527352f59d23e4f84ed7dece48d692002870aefbe3370b3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:27:51 EDT 2025
Wed Oct 01 04:51:07 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Wed Aug 27 02:02:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e729c2d65ed04c101b527352f59d23e4f84ed7dece48d692002870aefbe3370b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9604-2664
0000-0001-9850-0246
0009-0005-0122-9784
0000-0002-0807-2135
0000-0003-2346-6228
PQID 3066938790
PQPubID 105736
PageCount 17
ParticipantIDs ieee_primary_10332136
crossref_citationtrail_10_1109_TWC_2023_3328361
proquest_journals_3066938790
crossref_primary_10_1109_TWC_2023_3328361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-June
2024-6-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Manoel (ref20) 2014
ref5
ref40
References_xml – ident: ref31
  doi: 10.1109/TIT.2022.3186166
– year: 2014
  ident: ref20
  article-title: Sparse estimation with the swept approximated message-passing algorithm
  publication-title: arXiv:1406.4311
– ident: ref38
  doi: 10.1109/26.837052
– ident: ref35
  doi: 10.1109/TWC.2021.3110839
– ident: ref40
  doi: 10.1109/TIT.2002.804053
– ident: ref11
  doi: 10.1109/TWC.2019.2938170
– ident: ref18
  doi: 10.1109/TIT.2020.2990880
– ident: ref29
  doi: 10.1109/TIT.2005.844072
– ident: ref4
  doi: 10.1109/tmm.2023.3248160
– ident: ref19
  doi: 10.1109/ICASSP.2015.7178325
– ident: ref5
  doi: 10.1109/TWC.2017.2751045
– ident: ref30
  doi: 10.1109/ISIT50566.2022.9834360
– ident: ref37
  doi: 10.1109/ISIT54713.2023.10206818
– ident: ref34
  doi: 10.1109/ISIT50566.2022.9834568
– ident: ref14
  doi: 10.1109/ICCWorkshops57953.2023.10283752
– ident: ref7
  doi: 10.1109/TSP.2019.2896242
– ident: ref13
  doi: 10.1109/TWC.2022.3204768
– ident: ref23
  doi: 10.1109/TIT.2019.2916359
– ident: ref3
  doi: 10.1109/TWC.2021.3110099
– ident: ref36
  doi: 10.1561/9781933019505
– ident: ref22
  doi: 10.1109/ACCESS.2017.2653119
– ident: ref24
  doi: 10.1209/epl/i2006-10380-5
– ident: ref1
  doi: 10.1109/MNET.001.1900287
– ident: ref2
  doi: 10.1007/s11432-022-3692-5
– ident: ref16
  doi: 10.1109/TIT.2010.2094817
– ident: ref6
  doi: 10.1109/TCOMM.2022.3207813
– ident: ref10
  doi: 10.1109/TWC.2018.2878720
– ident: ref42
  doi: 10.1017/cbo9780511803253
– ident: ref41
  doi: 10.1109/TIT.2005.847700
– ident: ref33
  doi: 10.1109/TIT.2021.3077471
– ident: ref26
  doi: 10.1109/tit.2023.3321575
– ident: ref43
  doi: 10.1109/18.910578
– ident: ref8
  doi: 10.1109/TWC.2018.2858222
– ident: ref9
  doi: 10.1109/TWC.2016.2585481
– ident: ref12
  doi: 10.1109/TWC.2019.2961892
– ident: ref17
  doi: 10.1109/TIT.2019.2891664
– ident: ref39
  doi: 10.1109/TWC.2003.819030
– ident: ref27
  doi: 10.1109/isit.2018.8437522
– ident: ref32
  doi: 10.1109/GLOBECOM54140.2023.10437246
– ident: ref15
  doi: 10.1073/pnas.0909892106
– ident: ref21
  doi: 10.1109/TIT.2016.2619373
– ident: ref28
  doi: 10.1109/TIT.2021.3083748
– ident: ref25
  doi: 10.1109/TIT.2013.2250578
SSID ssj0017655
Score 2.4741554
Snippet To support complex communication scenarios in next-generation wireless communications, this paper focuses on a generalized MIMO (GMIMO) with practical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5769
SubjectTerms Algorithms
capacity optimality
Codes
Coding
coding principle
Complexity
Complexity theory
Encoding
Error correcting codes
generalized MIMO (GMIMO)
Information theory
low complexity
Matrices (mathematics)
Memory approximate message passing (MAMP)
Message passing
MIMO communication
Optimization
orthogonal/vector approximate message passing (OAMP/VAMP)
Principles
Receivers
SISO (control systems)
Wireless communication
Wireless communications
Title Memory AMP for Generalized MIMO: Coding Principle and Information-Theoretic Optimality
URI https://ieeexplore.ieee.org/document/10332136
https://www.proquest.com/docview/3066938790
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJxj4LKJQkAcWhqRpnDgxW1VRFaR-DC10i2L7IiGgRdAO9NdzdpKqgEBsHmzL8vPZz_bdO0IuoyyKRdqSDjCEIZDmoSlTnpNJTzLJY6Yzq_Y54L1JcDcNp0Wwuo2FAQDrfAauKdq_fD1XS_NUhhbOmN9ivEIqUczzYK31l0HEbYpTtGCTWCZa_0l6ojl-6LgmTbiLzWPGW1_OIJtU5cdObI-X7h4ZlAPLvUqe3OVCumr1TbPx3yPfJ7sF0aTtfGUckC2YHZKdDfnBI3LfN262H7TdH1HkrrSQoH5cgab92_7wmnbm5mijo_JFnqYzTYsIJoOoMy7jIOkQ954XS-prZNK9GXd6TpFnwVG-8BcOIMFWvuYhaC9QaKPSqLKFfhYK7TMIsjgAHWlQEMSaC-PWgVaeQiaBsQgxPSbV2XwGJ4QCA9wxhFAB-EhN_DRmCnuRIkPaJFqqTprlzCeqECE3uTCeE3sZ8USCWCUGq6TAqk6u1i1ecwGOP-rWzNRv1MtnvU4aJbpJYaLvCd6VuGBxJLzTX5qdkW3sPcgdwxqkunhbwjlSkIW8sEvvEzRw1c4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnDhkJDGzmJuqAKVJYVDWW5RbU8kBLQI2gN8PWMnqVgE4paD7Vh-HvvZnnkDsJcUSSp7TeUhJxiEshdNhQ68QgWKqzjlpnBqn524fS3O7qK7KljdxcIgonM-Q99-urd8M9Aje1VGFs552OTxJExHQoioDNcaPxoksUtySjZsU8sk41fJQB50b1u-TRTuUwMpj5tfdiGXVuXHWuw2mJMF6NRdK_1KHvzRUPn6_Ztq47_7vgjzFdVkR-XcWIIJ7C_D3CcBwhW4yayj7Rs7yq4YsVdWiVDfv6Nh2Wl2echaA7u5sav6Tp71-oZVMUwWU69bR0KyS1p9nhytX4Xrk-Nuq-1VmRY8Hcpw6CFRbB2aOEITCE1WqqwuWxQWkTQhR1GkAk1iUKNITSytYwfZeQ8LhZwnhOoaTPUHfVwHhhxpzZBSCwyJnIS9lGtqRcmCiJNs6gYc1COf60qG3GbDeMzdcSSQOWGVW6zyCqsG7I9rPJcSHH-UXbVD_6lcOeoN2KrRzSsjfc3ptBRLniYy2Pil2i7MtLvZRX5x2jnfhFn6kyjdxLZgavgywm0iJEO146bhB5K32Rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory+AMP+for+Generalized+MIMO%3A+Coding+Principle+and+Information-Theoretic+Optimality&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Chen%2C+Yufei&rft.au=Liu%2C+Lei&rft.au=Chi%2C+Yuhao&rft.au=Li%2C+Ying&rft.date=2024-06-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=6&rft.spage=5769&rft.epage=5785&rft_id=info:doi/10.1109%2FTWC.2023.3328361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3328361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon