Oil-Gas-Water Three-Phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors
A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil-gas-water three-phase flow patterns, a decision-level fusi...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 15 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2024.3470252 |
Cover
| Abstract | A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil-gas-water three-phase flow patterns, a decision-level fusion method with a parallel-tree structure is proposed based on a combined differential pressure (DP) and pulse wave ultrasonic Doppler (PWUD) sensor. With advantages of nonintrusive, easy-to-mount operation, and low cost, the combined sensor can simultaneously acquire various flowing information, including instantaneous DP fluctuations, time-varying echograms, and velocity profiles. By analyzing the dynamic sensor responses to different flow behaviors, typical flow characteristics of oil-gas-water three-phase flow are first revealed. On this basis, several features are extracted from the time-accumulated echograms, average flow velocity time series, and decomposed DP fluctuations to objectively characterize the flow patterns from different perspectives in the time, space, and time-frequency domains. Then, two parallel decision trees are constructed to, respectively, identify the gas-liquid interphase structure and oil-water interphase structure. Using the visibility of tree structures, the ability of these extracted features for flow structure distinguishment is analyzed. Finally, the final decision on the oil-gas-water three-phase flow pattern was generated by fusion the outputs of two decision trees. Tenfold cross-validation method is adopted for model performance evaluation. The results show that 12 types of oil-gas-water three-phase flow pattern are identified with the overall identification accuracy of 92.1%. This study provides a simple, affordable, and nonintrusive solution with good intelligibility and interpretability for flow pattern identification of complex industrial three-phase flows. |
|---|---|
| AbstractList | A deep understanding of oil–gas–water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil–gas–water three-phase flow patterns, a decision-level fusion method with a parallel-tree structure is proposed based on a combined differential pressure (DP) and pulse wave ultrasonic Doppler (PWUD) sensor. With advantages of nonintrusive, easy-to-mount operation, and low cost, the combined sensor can simultaneously acquire various flowing information, including instantaneous DP fluctuations, time-varying echograms, and velocity profiles. By analyzing the dynamic sensor responses to different flow behaviors, typical flow characteristics of oil–gas–water three-phase flow are first revealed. On this basis, several features are extracted from the time-accumulated echograms, average flow velocity time series, and decomposed DP fluctuations to objectively characterize the flow patterns from different perspectives in the time, space, and time-frequency domains. Then, two parallel decision trees are constructed to, respectively, identify the gas-liquid interphase structure and oil-water interphase structure. Using the visibility of tree structures, the ability of these extracted features for flow structure distinguishment is analyzed. Finally, the final decision on the oil–gas–water three-phase flow pattern was generated by fusion the outputs of two decision trees. Tenfold cross-validation method is adopted for model performance evaluation. The results show that 12 types of oil–gas–water three-phase flow pattern are identified with the overall identification accuracy of 92.1%. This study provides a simple, affordable, and nonintrusive solution with good intelligibility and interpretability for flow pattern identification of complex industrial three-phase flows. |
| Author | Tan, Chao Shi, Xuewei Dong, Feng |
| Author_xml | – sequence: 1 givenname: Xuewei orcidid: 0000-0002-7574-515X surname: Shi fullname: Shi, Xuewei email: sxw0230@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Chao orcidid: 0000-0001-5146-4807 surname: Tan fullname: Tan, Chao email: tanchao@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Feng orcidid: 0000-0002-8478-8928 surname: Dong fullname: Dong, Feng email: fdong@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China |
| BookMark | eNp9kE1PAyEQhompifXj7sEDieetwLIgR1O_mmhsYo3HDWVnLQahAo3xF_i3pbYH48HTJMz7zAzPPhr44AGhY0pGlBJ1NpvcjxhhfFRzSVjDdtCQNo2slBBsgIaE0PNK8Ubsof2UXgkhUnA5RF8P1lU3OlXPOkPEs0UEqKYLnQBfu_CBpzqXd48nHfhse2t0tsGvc2H1sijtqJ0Dhy_B2PTTKQMSfrZ5gS9t30Ncc9rhaYSUVhGw9h1-cjnqFLw1-BF8CjEdot1euwRH23qAnq6vZuPb6u7hZjK-uKsMUyxXwOdEzhvOSU-NrHttjODAu07Kcy6o4pILpZiR804Doz2BptaM1apTcyY6Vh-g083cZQzvK0i5fQ2r6MvKtqZUUqaKvJISm5SJIaUIfWts_vl5udu6lpJ2Lb0t0tu19HYrvYDkD7iM9k3Hz_-Qkw1iAeBXXBJJpai_AdGXkC0 |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1016_j_flowmeasinst_2025_102829 |
| Cites_doi | 10.1205/cherd.02154 10.1016/j.flowmeasinst.2024.102537 10.1016/j.measurement.2014.11.006 10.1016/j.flowmeasinst.2010.03.007 10.1002/aic.15570 10.1016/j.expthermflusci.2020.110189 10.1016/j.flowmeasinst.2007.06.010 10.1016/j.eswa.2019.05.028 10.1016/j.ces.2021.117015 10.1016/j.flowmeasinst.2018.12.005 10.1002/aic.690220105 10.1016/S0020-7373(87)80053-6 10.1109/TIM.2021.3134332 10.2298/TSCI151126108A 10.1016/j.flowmeasinst.2021.101960 10.1115/1.4031608 10.1016/j.apradiso.2020.109552 10.1109/ACCESS.2017.2724300 10.1016/S0301-9322(99)00065-8 10.1016/j.expthermflusci.2018.12.017 10.1109/TIM.2018.2826858 10.1016/j.flowmeasinst.2020.101861 10.1109/TIM.2007.907967 10.1109/TIM.2022.3160553 10.1109/TIM.2020.3013080 10.1016/S0301-9322(00)00022-7 10.1109/TIM.2018.2884548 10.1109/TC.1977.1674849 10.1016/j.ces.2011.08.034 10.1007/s10462-011-9272-4 10.1016/j.ces.2019.115300 10.1299/jfst.1.12 10.1016/0301-9322(92)90020-H 10.1016/j.cej.2021.131982 10.1016/j.measurement.2008.05.004 10.1088/0957-0233/20/11/114003 10.1016/j.nucengdes.2005.02.023 10.1002/apj.165 10.1016/j.ijmultiphaseflow.2012.01.013 10.1016/j.measurement.2020.108474 10.2118/1657-G-PA 10.1016/j.ijheatmasstransfer.2018.12.015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3470252 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TIM_2024_3470252 10707176 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022M712356 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62303346 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-e4b07b5440f1c73facc64e4dd77846194746992c7bdae21f0e53a2239d9b26d23 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:22:53 EDT 2025 Wed Oct 01 03:47:02 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Wed Aug 27 02:18:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-e4b07b5440f1c73facc64e4dd77846194746992c7bdae21f0e53a2239d9b26d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7574-515X 0000-0001-5146-4807 0000-0002-8478-8928 |
| PQID | 3117129025 |
| PQPubID | 85462 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2024_3470252 proquest_journals_3117129025 crossref_citationtrail_10_1109_TIM_2024_3470252 ieee_primary_10707176 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref1 Lee (ref9) ref17 ref39 ref16 ref38 ref19 ref18 Pan (ref11) 1996 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Hunt (ref34) 1966 ref40 |
| References_xml | – ident: ref12 doi: 10.1205/cherd.02154 – ident: ref45 doi: 10.1016/j.flowmeasinst.2024.102537 – ident: ref32 doi: 10.1016/j.measurement.2014.11.006 – ident: ref25 doi: 10.1016/j.flowmeasinst.2010.03.007 – ident: ref27 doi: 10.1002/aic.15570 – ident: ref30 doi: 10.1016/j.expthermflusci.2020.110189 – ident: ref24 doi: 10.1016/j.flowmeasinst.2007.06.010 – ident: ref36 doi: 10.1016/j.eswa.2019.05.028 – ident: ref5 doi: 10.1016/j.ces.2021.117015 – ident: ref19 doi: 10.1016/j.flowmeasinst.2018.12.005 – ident: ref10 doi: 10.1002/aic.690220105 – ident: ref44 doi: 10.1016/S0020-7373(87)80053-6 – ident: ref16 doi: 10.1109/TIM.2021.3134332 – volume-title: Experiments in Induction year: 1966 ident: ref34 – ident: ref20 doi: 10.2298/TSCI151126108A – ident: ref22 doi: 10.1016/j.flowmeasinst.2021.101960 – volume-title: High pressure three-phase (gas/liquid/liquid) flow year: 1996 ident: ref11 – ident: ref4 doi: 10.1115/1.4031608 – ident: ref33 doi: 10.1016/j.apradiso.2020.109552 – ident: ref21 doi: 10.1109/ACCESS.2017.2724300 – ident: ref1 doi: 10.1016/S0301-9322(99)00065-8 – ident: ref29 doi: 10.1016/j.expthermflusci.2018.12.017 – ident: ref41 doi: 10.1109/TIM.2018.2826858 – ident: ref3 doi: 10.1016/j.flowmeasinst.2020.101861 – ident: ref42 doi: 10.1109/TIM.2007.907967 – ident: ref2 doi: 10.1109/TIM.2022.3160553 – ident: ref38 doi: 10.1109/TIM.2020.3013080 – ident: ref31 doi: 10.1016/S0301-9322(00)00022-7 – ident: ref18 doi: 10.1109/TIM.2018.2884548 – ident: ref35 doi: 10.1109/TC.1977.1674849 – ident: ref13 doi: 10.1016/j.ces.2011.08.034 – ident: ref43 doi: 10.1007/s10462-011-9272-4 – ident: ref28 doi: 10.1016/j.ces.2019.115300 – ident: ref40 doi: 10.1299/jfst.1.12 – ident: ref7 doi: 10.1016/0301-9322(92)90020-H – ident: ref39 doi: 10.1016/j.cej.2021.131982 – start-page: 159 volume-title: Proc. 3rd Int. Offshore Polar Eng. Conf. ident: ref9 article-title: Study of flow regime transitions of oil-water-gas mixtures in horizontal pipelines – ident: ref23 doi: 10.1016/j.measurement.2008.05.004 – ident: ref26 doi: 10.1088/0957-0233/20/11/114003 – ident: ref8 doi: 10.1016/j.nucengdes.2005.02.023 – ident: ref37 doi: 10.1002/apj.165 – ident: ref14 doi: 10.1016/j.ijmultiphaseflow.2012.01.013 – ident: ref17 doi: 10.1016/j.measurement.2020.108474 – ident: ref6 doi: 10.2118/1657-G-PA – ident: ref15 doi: 10.1016/j.ijheatmasstransfer.2018.12.015 |
| SSID | ssj0007647 |
| Score | 2.4517558 |
| Snippet | A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency... A deep understanding of oil–gas–water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Acoustics Cost analysis Decision tree Decision trees Differential pressure differential pressure (DP) sensor Feature extraction Flow characteristics Flow distribution flow pattern identification Flow velocity Fluids Frequency measurement Intelligibility oil–gas–water three-phase flow Performance evaluation Pressure measurement pulse wave ultrasonic Doppler (PWUD) sensor Sensor phenomena and characterization Sensors Ultrasonic imaging Ultrasonic variables measurement Velocity distribution |
| Title | Oil-Gas-Water Three-Phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors |
| URI | https://ieeexplore.ieee.org/document/10707176 https://www.proquest.com/docview/3117129025 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxGA0qCO1DL2pxW1vy4Esfss4kmWTzWKpbW_AC3UXfhsllUBxmZWaWQv-Af9svlxVtsfRtYJIQOEm-S_Kdg9C-LUzOqc5JzSeMcM04qZSwxBkpRCWNMUGt4eRUHM_5j8viMhWrh1oY51x4fObG_jPc5duFWfpUGexw6cMPsY7W5UTEYq2HY1cKHgkyc9jB4Bas7iQzdTD7fgKRIOVjxiXYePrEBgVRlb9O4mBepq_R6Wpi8VXJzXg56LH5_Qdn43_P_A16lRxN_CWujLdozbVb6OUj-sEttBmef5p-G92dXTfkW9WTC3A9OzwDgB05vwILh6fN4hc-DyycLY5lvXXK8_l2XuQHfndekqXBh0mxB89ggB5fXA9X-DBJsMBR0uBYjdg5XLUWz5uhq3rPzYt_QjS96PodNJ8ezb4ekyTRQAxVdCCO60zqgvOszo1kdWWM4I5bKyU4NrniEsJvRY3UtnI0rzNXsAo8EmWVpsJS9g5ttIvW7SLMVF0wDREgBxetppl2NqNGTZQO5bxihA5WoJUm8Zd7GY2mDHFMpkqAufQwlwnmEfr80OM2cnf8o-2OR-1RuwjYCO2tFkaZdndfsjyXPn9Hi_fPdPuAXvjRY65mD20M3dJ9BO9l0J_Cqr0HRVTq7A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgCAGLAqWoQwt4wYaFp4ntxPWyahmm0BkqkVG7i-JH1KpRpkoyQuIH-G2uH1MVEIhdpNiJpWP7Pux7DkLvTKZTTlVKan7ACFeMk0rmhlgt8rwSWmuv1jCb59MF_3SRXcRidV8LY631l8_s2D36s3yz1CuXKoMVLlz4kd9HDzLOeRbKtW43XpHzQJGZwhoGx2B9KpnI_eJkBrEg5WPGBVh5-osV8rIqf-zF3sBMnqL5emjhXsn1eDWosf7-G2vjf4_9GdqMriY-DHPjObpn2y305A4B4RZ66C-A6v4F-vHlqiEfq56cg_PZ4QIgtuTsEmwcnjTLb_jM83C2OBT21jHT59o5mR943TlRlgYfR80eXMAHenx-NVzi4yjCAptJg0M9Ymdx1Rq8aIau6h07L_4K8fSy67fRYvKhOJqSKNJANJV0IJarRCiAI6lTLVhdaZ1zy40RAlybVHIBAbikWihTWZrWic1YBT6JNFLR3FD2Em20y9buIMxknTEFMSAHJ62mibImoVoeSOULevMR2l-DVurIYO6ENJrSRzKJLAHm0sFcRphH6P1tj5vA3vGPttsOtTvtAmAjtLeeGGVc333J0lS4DB7NXv2l21v0aFrMTsvTk_nnXfTY_SlkbvbQxtCt7GvwZQb1xs_gn7gN7jk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oil-Gas-Water+Three-Phase+Flow+Pattern+Identification+Through+Parallel+Decision+Trees+With+Differential+Pressure+and+Ultrasonic+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Shi%2C+Xuewei&rft.au=Tan%2C+Chao&rft.au=Dong%2C+Feng&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2024.3470252&rft.externalDocID=10707176 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |