Oil-Gas-Water Three-Phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors

A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil-gas-water three-phase flow patterns, a decision-level fusi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 15
Main Authors Shi, Xuewei, Tan, Chao, Dong, Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3470252

Cover

Abstract A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil-gas-water three-phase flow patterns, a decision-level fusion method with a parallel-tree structure is proposed based on a combined differential pressure (DP) and pulse wave ultrasonic Doppler (PWUD) sensor. With advantages of nonintrusive, easy-to-mount operation, and low cost, the combined sensor can simultaneously acquire various flowing information, including instantaneous DP fluctuations, time-varying echograms, and velocity profiles. By analyzing the dynamic sensor responses to different flow behaviors, typical flow characteristics of oil-gas-water three-phase flow are first revealed. On this basis, several features are extracted from the time-accumulated echograms, average flow velocity time series, and decomposed DP fluctuations to objectively characterize the flow patterns from different perspectives in the time, space, and time-frequency domains. Then, two parallel decision trees are constructed to, respectively, identify the gas-liquid interphase structure and oil-water interphase structure. Using the visibility of tree structures, the ability of these extracted features for flow structure distinguishment is analyzed. Finally, the final decision on the oil-gas-water three-phase flow pattern was generated by fusion the outputs of two decision trees. Tenfold cross-validation method is adopted for model performance evaluation. The results show that 12 types of oil-gas-water three-phase flow pattern are identified with the overall identification accuracy of 92.1%. This study provides a simple, affordable, and nonintrusive solution with good intelligibility and interpretability for flow pattern identification of complex industrial three-phase flows.
AbstractList A deep understanding of oil–gas–water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency improvement, and operation safety assurance. To accurately identify horizontal oil–gas–water three-phase flow patterns, a decision-level fusion method with a parallel-tree structure is proposed based on a combined differential pressure (DP) and pulse wave ultrasonic Doppler (PWUD) sensor. With advantages of nonintrusive, easy-to-mount operation, and low cost, the combined sensor can simultaneously acquire various flowing information, including instantaneous DP fluctuations, time-varying echograms, and velocity profiles. By analyzing the dynamic sensor responses to different flow behaviors, typical flow characteristics of oil–gas–water three-phase flow are first revealed. On this basis, several features are extracted from the time-accumulated echograms, average flow velocity time series, and decomposed DP fluctuations to objectively characterize the flow patterns from different perspectives in the time, space, and time-frequency domains. Then, two parallel decision trees are constructed to, respectively, identify the gas-liquid interphase structure and oil-water interphase structure. Using the visibility of tree structures, the ability of these extracted features for flow structure distinguishment is analyzed. Finally, the final decision on the oil–gas–water three-phase flow pattern was generated by fusion the outputs of two decision trees. Tenfold cross-validation method is adopted for model performance evaluation. The results show that 12 types of oil–gas–water three-phase flow pattern are identified with the overall identification accuracy of 92.1%. This study provides a simple, affordable, and nonintrusive solution with good intelligibility and interpretability for flow pattern identification of complex industrial three-phase flows.
Author Tan, Chao
Shi, Xuewei
Dong, Feng
Author_xml – sequence: 1
  givenname: Xuewei
  orcidid: 0000-0002-7574-515X
  surname: Shi
  fullname: Shi, Xuewei
  email: sxw0230@tju.edu.cn
  organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0001-5146-4807
  surname: Tan
  fullname: Tan, Chao
  email: tanchao@tju.edu.cn
  organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Feng
  orcidid: 0000-0002-8478-8928
  surname: Dong
  fullname: Dong, Feng
  email: fdong@tju.edu.cn
  organization: Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BookMark eNp9kE1PAyEQhompifXj7sEDieetwLIgR1O_mmhsYo3HDWVnLQahAo3xF_i3pbYH48HTJMz7zAzPPhr44AGhY0pGlBJ1NpvcjxhhfFRzSVjDdtCQNo2slBBsgIaE0PNK8Ubsof2UXgkhUnA5RF8P1lU3OlXPOkPEs0UEqKYLnQBfu_CBpzqXd48nHfhse2t0tsGvc2H1sijtqJ0Dhy_B2PTTKQMSfrZ5gS9t30Ncc9rhaYSUVhGw9h1-cjnqFLw1-BF8CjEdot1euwRH23qAnq6vZuPb6u7hZjK-uKsMUyxXwOdEzhvOSU-NrHttjODAu07Kcy6o4pILpZiR804Doz2BptaM1apTcyY6Vh-g083cZQzvK0i5fQ2r6MvKtqZUUqaKvJISm5SJIaUIfWts_vl5udu6lpJ2Lb0t0tu19HYrvYDkD7iM9k3Hz_-Qkw1iAeBXXBJJpai_AdGXkC0
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_flowmeasinst_2025_102829
Cites_doi 10.1205/cherd.02154
10.1016/j.flowmeasinst.2024.102537
10.1016/j.measurement.2014.11.006
10.1016/j.flowmeasinst.2010.03.007
10.1002/aic.15570
10.1016/j.expthermflusci.2020.110189
10.1016/j.flowmeasinst.2007.06.010
10.1016/j.eswa.2019.05.028
10.1016/j.ces.2021.117015
10.1016/j.flowmeasinst.2018.12.005
10.1002/aic.690220105
10.1016/S0020-7373(87)80053-6
10.1109/TIM.2021.3134332
10.2298/TSCI151126108A
10.1016/j.flowmeasinst.2021.101960
10.1115/1.4031608
10.1016/j.apradiso.2020.109552
10.1109/ACCESS.2017.2724300
10.1016/S0301-9322(99)00065-8
10.1016/j.expthermflusci.2018.12.017
10.1109/TIM.2018.2826858
10.1016/j.flowmeasinst.2020.101861
10.1109/TIM.2007.907967
10.1109/TIM.2022.3160553
10.1109/TIM.2020.3013080
10.1016/S0301-9322(00)00022-7
10.1109/TIM.2018.2884548
10.1109/TC.1977.1674849
10.1016/j.ces.2011.08.034
10.1007/s10462-011-9272-4
10.1016/j.ces.2019.115300
10.1299/jfst.1.12
10.1016/0301-9322(92)90020-H
10.1016/j.cej.2021.131982
10.1016/j.measurement.2008.05.004
10.1088/0957-0233/20/11/114003
10.1016/j.nucengdes.2005.02.023
10.1002/apj.165
10.1016/j.ijmultiphaseflow.2012.01.013
10.1016/j.measurement.2020.108474
10.2118/1657-G-PA
10.1016/j.ijheatmasstransfer.2018.12.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3470252
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 15
ExternalDocumentID 10_1109_TIM_2024_3470252
10707176
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2022M712356
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62303346
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-e4b07b5440f1c73facc64e4dd77846194746992c7bdae21f0e53a2239d9b26d23
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:22:53 EDT 2025
Wed Oct 01 03:47:02 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Wed Aug 27 02:18:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e4b07b5440f1c73facc64e4dd77846194746992c7bdae21f0e53a2239d9b26d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7574-515X
0000-0001-5146-4807
0000-0002-8478-8928
PQID 3117129025
PQPubID 85462
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIM_2024_3470252
proquest_journals_3117129025
crossref_citationtrail_10_1109_TIM_2024_3470252
ieee_primary_10707176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
Lee (ref9)
ref17
ref39
ref16
ref38
ref19
ref18
Pan (ref11) 1996
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Hunt (ref34) 1966
ref40
References_xml – ident: ref12
  doi: 10.1205/cherd.02154
– ident: ref45
  doi: 10.1016/j.flowmeasinst.2024.102537
– ident: ref32
  doi: 10.1016/j.measurement.2014.11.006
– ident: ref25
  doi: 10.1016/j.flowmeasinst.2010.03.007
– ident: ref27
  doi: 10.1002/aic.15570
– ident: ref30
  doi: 10.1016/j.expthermflusci.2020.110189
– ident: ref24
  doi: 10.1016/j.flowmeasinst.2007.06.010
– ident: ref36
  doi: 10.1016/j.eswa.2019.05.028
– ident: ref5
  doi: 10.1016/j.ces.2021.117015
– ident: ref19
  doi: 10.1016/j.flowmeasinst.2018.12.005
– ident: ref10
  doi: 10.1002/aic.690220105
– ident: ref44
  doi: 10.1016/S0020-7373(87)80053-6
– ident: ref16
  doi: 10.1109/TIM.2021.3134332
– volume-title: Experiments in Induction
  year: 1966
  ident: ref34
– ident: ref20
  doi: 10.2298/TSCI151126108A
– ident: ref22
  doi: 10.1016/j.flowmeasinst.2021.101960
– volume-title: High pressure three-phase (gas/liquid/liquid) flow
  year: 1996
  ident: ref11
– ident: ref4
  doi: 10.1115/1.4031608
– ident: ref33
  doi: 10.1016/j.apradiso.2020.109552
– ident: ref21
  doi: 10.1109/ACCESS.2017.2724300
– ident: ref1
  doi: 10.1016/S0301-9322(99)00065-8
– ident: ref29
  doi: 10.1016/j.expthermflusci.2018.12.017
– ident: ref41
  doi: 10.1109/TIM.2018.2826858
– ident: ref3
  doi: 10.1016/j.flowmeasinst.2020.101861
– ident: ref42
  doi: 10.1109/TIM.2007.907967
– ident: ref2
  doi: 10.1109/TIM.2022.3160553
– ident: ref38
  doi: 10.1109/TIM.2020.3013080
– ident: ref31
  doi: 10.1016/S0301-9322(00)00022-7
– ident: ref18
  doi: 10.1109/TIM.2018.2884548
– ident: ref35
  doi: 10.1109/TC.1977.1674849
– ident: ref13
  doi: 10.1016/j.ces.2011.08.034
– ident: ref43
  doi: 10.1007/s10462-011-9272-4
– ident: ref28
  doi: 10.1016/j.ces.2019.115300
– ident: ref40
  doi: 10.1299/jfst.1.12
– ident: ref7
  doi: 10.1016/0301-9322(92)90020-H
– ident: ref39
  doi: 10.1016/j.cej.2021.131982
– start-page: 159
  volume-title: Proc. 3rd Int. Offshore Polar Eng. Conf.
  ident: ref9
  article-title: Study of flow regime transitions of oil-water-gas mixtures in horizontal pipelines
– ident: ref23
  doi: 10.1016/j.measurement.2008.05.004
– ident: ref26
  doi: 10.1088/0957-0233/20/11/114003
– ident: ref8
  doi: 10.1016/j.nucengdes.2005.02.023
– ident: ref37
  doi: 10.1002/apj.165
– ident: ref14
  doi: 10.1016/j.ijmultiphaseflow.2012.01.013
– ident: ref17
  doi: 10.1016/j.measurement.2020.108474
– ident: ref6
  doi: 10.2118/1657-G-PA
– ident: ref15
  doi: 10.1016/j.ijheatmasstransfer.2018.12.015
SSID ssj0007647
Score 2.4517558
Snippet A deep understanding of oil-gas-water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency...
A deep understanding of oil–gas–water three-phase flow behaviors and mechanics has great significance for flow controlling and modeling, production efficiency...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acoustics
Cost analysis
Decision tree
Decision trees
Differential pressure
differential pressure (DP) sensor
Feature extraction
Flow characteristics
Flow distribution
flow pattern identification
Flow velocity
Fluids
Frequency measurement
Intelligibility
oil–gas–water three-phase flow
Performance evaluation
Pressure measurement
pulse wave ultrasonic Doppler (PWUD) sensor
Sensor phenomena and characterization
Sensors
Ultrasonic imaging
Ultrasonic variables measurement
Velocity distribution
Title Oil-Gas-Water Three-Phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors
URI https://ieeexplore.ieee.org/document/10707176
https://www.proquest.com/docview/3117129025
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxGA0qCO1DL2pxW1vy4Esfss4kmWTzWKpbW_AC3UXfhsllUBxmZWaWQv-Af9svlxVtsfRtYJIQOEm-S_Kdg9C-LUzOqc5JzSeMcM04qZSwxBkpRCWNMUGt4eRUHM_5j8viMhWrh1oY51x4fObG_jPc5duFWfpUGexw6cMPsY7W5UTEYq2HY1cKHgkyc9jB4Bas7iQzdTD7fgKRIOVjxiXYePrEBgVRlb9O4mBepq_R6Wpi8VXJzXg56LH5_Qdn43_P_A16lRxN_CWujLdozbVb6OUj-sEttBmef5p-G92dXTfkW9WTC3A9OzwDgB05vwILh6fN4hc-DyycLY5lvXXK8_l2XuQHfndekqXBh0mxB89ggB5fXA9X-DBJsMBR0uBYjdg5XLUWz5uhq3rPzYt_QjS96PodNJ8ezb4ekyTRQAxVdCCO60zqgvOszo1kdWWM4I5bKyU4NrniEsJvRY3UtnI0rzNXsAo8EmWVpsJS9g5ttIvW7SLMVF0wDREgBxetppl2NqNGTZQO5bxihA5WoJUm8Zd7GY2mDHFMpkqAufQwlwnmEfr80OM2cnf8o-2OR-1RuwjYCO2tFkaZdndfsjyXPn9Hi_fPdPuAXvjRY65mD20M3dJ9BO9l0J_Cqr0HRVTq7A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgCAGLAqWoQwt4wYaFp4ntxPWyahmm0BkqkVG7i-JH1KpRpkoyQuIH-G2uH1MVEIhdpNiJpWP7Pux7DkLvTKZTTlVKan7ACFeMk0rmhlgt8rwSWmuv1jCb59MF_3SRXcRidV8LY631l8_s2D36s3yz1CuXKoMVLlz4kd9HDzLOeRbKtW43XpHzQJGZwhoGx2B9KpnI_eJkBrEg5WPGBVh5-osV8rIqf-zF3sBMnqL5emjhXsn1eDWosf7-G2vjf4_9GdqMriY-DHPjObpn2y305A4B4RZ66C-A6v4F-vHlqiEfq56cg_PZ4QIgtuTsEmwcnjTLb_jM83C2OBT21jHT59o5mR943TlRlgYfR80eXMAHenx-NVzi4yjCAptJg0M9Ymdx1Rq8aIau6h07L_4K8fSy67fRYvKhOJqSKNJANJV0IJarRCiAI6lTLVhdaZ1zy40RAlybVHIBAbikWihTWZrWic1YBT6JNFLR3FD2Em20y9buIMxknTEFMSAHJ62mibImoVoeSOULevMR2l-DVurIYO6ENJrSRzKJLAHm0sFcRphH6P1tj5vA3vGPttsOtTvtAmAjtLeeGGVc333J0lS4DB7NXv2l21v0aFrMTsvTk_nnXfTY_SlkbvbQxtCt7GvwZQb1xs_gn7gN7jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oil-Gas-Water+Three-Phase+Flow+Pattern+Identification+Through+Parallel+Decision+Trees+With+Differential+Pressure+and+Ultrasonic+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Shi%2C+Xuewei&rft.au=Tan%2C+Chao&rft.au=Dong%2C+Feng&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2024.3470252&rft.externalDocID=10707176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon