A Noniterative Neural Algorithm Involving Dini Derivatives for Visual Servoing of Joint-Constrained Robotic Endoscope
In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs...
Saved in:
| Published in | IEEE transactions on industrial electronics (1982) Vol. 71; no. 8; pp. 9520 - 9529 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0046 1557-9948 |
| DOI | 10.1109/TIE.2023.3322010 |
Cover
| Abstract | In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs cannot handle bound constraints in a TVQP directly and require differentiable elements, meaning that visual servoing requires the accelerations of feature points. Unfortunately, accelerations usually cannot be accurately retrieved. Motivated by the expected low accelerations in MIS, this article proposes a novel noniterative algorithm termed Dini-RNN to solve TVQP by introducing a Dini derivative operator. Unlike the existing ZNNs, the Dini-RNN can handle bound constraints directly and allows partial elements to be continuous but not differentiable everywhere. The convergence of the Dini-RNN is theoretically analyzed and proved. Subsequently, simulative and experimental results show that the Dini-RNN solution is effective to achieve visual servoing with superior performance. |
|---|---|
| AbstractList | In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs cannot handle bound constraints in a TVQP directly and require differentiable elements, meaning that visual servoing requires the accelerations of feature points. Unfortunately, accelerations usually cannot be accurately retrieved. Motivated by the expected low accelerations in MIS, this article proposes a novel noniterative algorithm termed Dini-RNN to solve TVQP by introducing a Dini derivative operator. Unlike the existing ZNNs, the Dini-RNN can handle bound constraints directly and allows partial elements to be continuous but not differentiable everywhere. The convergence of the Dini-RNN is theoretically analyzed and proved. Subsequently, simulative and experimental results show that the Dini-RNN solution is effective to achieve visual servoing with superior performance. |
| Author | Li, Weibing Song, Biao Pan, Yongping |
| Author_xml | – sequence: 1 givenname: Biao orcidid: 0000-0001-5039-5264 surname: Song fullname: Song, Biao email: songb23@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Weibing orcidid: 0000-0002-7970-9076 surname: Li fullname: Li, Weibing email: liwb53@mail.sysu.edu.cn organization: School of Computer Science and Engineering, and the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Yongping orcidid: 0000-0002-8587-6065 surname: Pan fullname: Pan, Yongping email: panyongp@mail.sysu.edu.cn organization: School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, China |
| BookMark | eNp9kL1PwzAQxS1UJEphZ2CwxJxydr7Hqi1QhIoEhTVyknMxCnaxnUj89yS0A2LglruTfu9O752SkTYaCblgMGUM8uvNajnlwMNpGHIODI7ImMVxGuR5lI3IGHiaBQBRckJOnXsHYFHM4jFpZ3RttPJohVcd0jW2VjR01myNVf7tg650Z5pO6S1dKK3oAq3qflBHpbH0Vbm255_RdmaAjKT3_eCDudHOW6E01vTJlMarii51bVxldnhGjqVoHJ4f-oS83Cw387vg4fF2NZ89BBXPuQ_qOioxS6XkoqpynmUQRXVYlrmoS5mUWYKCl8ARy4SzRPQFctgiwKSWqQwn5Gp_d2fNZ4vOF--mtbp_WYQQsRhCgLSnkj1VWeOcRVlUyvcejR4MNAWDYoi46CMuhoiLQ8S9EP4Id1Z9CPv1n-RyL1GI-AvneZqnPPwGcM6L0Q |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1109_TSMC_2024_3492324 crossref_primary_10_1016_j_eswa_2025_126780 |
| Cites_doi | 10.1109/TIE.2019.2960754 10.1109/TIE.2019.2959481 10.1109/TIE.2021.3114674 10.1109/ICAS.2008.16 10.1109/tnnls.2023.3263263 10.1109/TSMC.2019.2930763 10.3389/frobt.2022.832208 10.1007/s10846-018-0927-0 10.1109/TII.2019.2909142 10.1017/CBO9780511804441 10.1109/TII.2020.2980124 10.1016/j.mechmachtheory.2020.104132 10.1109/ICRA.2013.6631412 10.1109/TRO.2015.2418582 10.1109/BIOROB.2014.6913799 10.1109/ICARM54641.2022.9959724 10.1109/TMECH.2017.2683561 10.1007/s12532-020-00179-2 10.1109/SII.2017.8279298 10.1109/ICRA.2014.6907026 10.1109/TNNLS.2019.2938866 10.1055/s-2004-814113 10.1007/s12532-014-0071-1 10.1002/rcs.1531 10.1109/TSMC.2018.2866843 10.1049/cit2.12019 10.1109/ACC.2005.1470152 10.1007/s00521-021-06465-x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2023.3322010 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 9529 |
| ExternalDocumentID | 10_1109_TIE_2023_3322010 10297972 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62206317 funderid: 10.13039/501100001809 – fundername: Guangzhou Basic and Applied Basic Research Foundation grantid: 202201011523 – fundername: Young Talent Support Project of Guangzhou Association for Science and Technology grantid: QT-2023-018 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515012186 funderid: 10.13039/501100021171 – fundername: Guangzhou Haizhu District Science and Technology Program grantid: 2022-50 – fundername: Sun Yat-sen University; Sun Yat-sen University, China grantid: 23lgzy004 funderid: 10.13039/501100002402 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c292t-dd4be87ff2acc9288044d3bb9adbf6b86ea2b02eeb6216aaaa0f2eeb40e6df7f3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:23:19 EDT 2025 Thu Apr 24 22:48:35 EDT 2025 Wed Oct 01 03:02:23 EDT 2025 Wed Aug 27 02:22:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-dd4be87ff2acc9288044d3bb9adbf6b86ea2b02eeb6216aaaa0f2eeb40e6df7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7970-9076 0000-0001-5039-5264 0000-0002-8587-6065 |
| PQID | 3041503007 |
| PQPubID | 85464 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIE_2023_3322010 ieee_primary_10297972 proquest_journals_3041503007 crossref_primary_10_1109_TIE_2023_3322010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref19 ref18 Zhang (ref16) 2011 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 (ref28) 2018 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1109/TIE.2019.2960754 – ident: ref12 doi: 10.1109/TIE.2019.2959481 – ident: ref9 doi: 10.1109/TIE.2021.3114674 – ident: ref5 doi: 10.1109/ICAS.2008.16 – ident: ref25 doi: 10.1109/tnnls.2023.3263263 – ident: ref17 doi: 10.1109/TSMC.2019.2930763 – ident: ref2 doi: 10.3389/frobt.2022.832208 – volume-title: Zhang Neural Networks and Neural-Dynamic Method year: 2011 ident: ref16 – ident: ref4 doi: 10.1007/s10846-018-0927-0 – ident: ref11 doi: 10.1109/TII.2019.2909142 – year: 2018 ident: ref28 article-title: MATLAB version: 9.5.0 (R2018b) – ident: ref24 doi: 10.1017/CBO9780511804441 – ident: ref26 doi: 10.1109/TII.2020.2980124 – ident: ref21 doi: 10.1016/j.mechmachtheory.2020.104132 – ident: ref3 doi: 10.1109/ICRA.2013.6631412 – ident: ref10 doi: 10.1109/TRO.2015.2418582 – ident: ref22 doi: 10.1109/BIOROB.2014.6913799 – ident: ref20 doi: 10.1109/ICARM54641.2022.9959724 – ident: ref23 doi: 10.1109/TMECH.2017.2683561 – ident: ref27 doi: 10.1007/s12532-020-00179-2 – ident: ref7 doi: 10.1109/SII.2017.8279298 – ident: ref8 doi: 10.1109/ICRA.2014.6907026 – ident: ref30 doi: 10.1109/TNNLS.2019.2938866 – ident: ref1 doi: 10.1055/s-2004-814113 – ident: ref29 doi: 10.1007/s12532-014-0071-1 – ident: ref6 doi: 10.1002/rcs.1531 – ident: ref13 doi: 10.1109/TSMC.2018.2866843 – ident: ref19 doi: 10.1049/cit2.12019 – ident: ref15 doi: 10.1109/ACC.2005.1470152 – ident: ref14 doi: 10.1007/s00521-021-06465-x |
| SSID | ssj0014515 |
| Score | 2.4779923 |
| Snippet | In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9520 |
| SubjectTerms | Algorithms Constraints Convergence Dini derivative Endoscopes Jacobian matrices Operators (mathematics) Optimization Quadratic programming quadratic programming (QP) recurrent neural network (RNN) Recurrent neural networks robotic endoscope Robots Visual control Visual servoing |
| Title | A Noniterative Neural Algorithm Involving Dini Derivatives for Visual Servoing of Joint-Constrained Robotic Endoscope |
| URI | https://ieeexplore.ieee.org/document/10297972 https://www.proquest.com/docview/3041503007 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp3KgtFCxLVQ-9NJDgtfxIz6isgiQuocKELcotsftCkgqNumhv75jJ4tWoKLm5EgzkaXP84jt-YaQzxhzwXAOGUdwMyGDyyxokWFwqUFIsCHtQ36bq7MrcXEjb8Zi9VQLAwDp8hnkcZjO8n3r-rhVhhbOjTYaPe6GLtVQrPV4ZCDk0K6AR8pY_OtbnUkyc3R5Pstjm_C8wOXLYrHsWgxKTVWeeeIUXk7fkPlqYsOtktu872zu_jzhbPzvme-Q7THRpMfDynhLXkHzjmyt0Q_ukv6YzqNJw8D-TSNRR1S5-9E-LLqf9_S8QecVdxzoyaJZ0BPU-51ElxRzXXq9WPYoH91NG4XaQC9w0GWxC2jqPQGefm9ti1Ogs8a3qQRmj1ydzi6_nmVjG4bMccO7zHthodQh8No5w9HghfCFtab2NihbKqi5ZRzAKj5VNT4sxDfBQPmgQ_GebDZtA_uEaqmn0mGSye1UBC9MzaRTrJBlKTUHNSFHK2AqN3KUx-neVelfhZkKoawilNUI5YR8edT4NfBzvCC7F5FZkxtAmZCDFfjVaMHLqojcBegBmf7wD7WP5DV-XQy3AQ_IZvfQwyFmKJ39lFbmX4904x4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYQHNgOY2xMdLDhwy47JLiOHddHBEUtgx6mMnGLYvuZVYNkoskO_PU8OymqNm1aTo70nmLp8_sR2-97hHzCmAuac0g4gpsI6W1iQIkEg0sJQoLxcR_yapZPrsXFjbzpi9VjLQwAxMtnkIZhPMt3tW3DVhlaONdKK_S4W1IIIbtyredDAyG7hgU8kMbif9_qVJLp4_l0nIZG4WmGC5iFctm1KBTbqvzhi2OAOd8hs9XUunslP9K2Mal9_I218b_n_pq86lNNetKtjV2yAdUb8nKNgPAtaU_oLBg1dPzfNFB1BJW72_ph0Xy_p9MK3VfYc6Bni2pBz1DvVxRdUsx26bfFskX54HDqIFR7eoGDJgl9QGP3CXD0a21qnAIdV66ORTB75Pp8PD-dJH0jhsRyzZvEOWFgpLznpbWao8kL4TJjdOmMz80oh5IbxgFMzod5iQ_z4U0wyJ1XPntHNqu6gn1ClVRDaTHN5GYovBO6ZNLmLJOjkVQc8gE5XgFT2J6lPEz3roh_K0wXCGURoCx6KAfk87PGz46h4x-yewGZNbkOlAE5XIFf9Da8LLLAXoA-kKn3f1E7ItuT-dVlcTmdfTkgL_BLorsbeEg2m4cWPmC-0piPcZU-AZi55ms |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Noniterative+Neural+Algorithm+Involving+Dini+Derivatives+for+Visual+Servoing+of+Joint-Constrained+Robotic+Endoscope&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Song%2C+Biao&rft.au=Li%2C+Weibing&rft.au=Pan%2C+Yongping&rft.date=2024-08-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=71&rft.issue=8&rft.spage=9520&rft.epage=9529&rft_id=info:doi/10.1109%2FTIE.2023.3322010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2023_3322010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |