A Noniterative Neural Algorithm Involving Dini Derivatives for Visual Servoing of Joint-Constrained Robotic Endoscope

In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 71; no. 8; pp. 9520 - 9529
Main Authors Song, Biao, Li, Weibing, Pan, Yongping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2023.3322010

Cover

Abstract In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs cannot handle bound constraints in a TVQP directly and require differentiable elements, meaning that visual servoing requires the accelerations of feature points. Unfortunately, accelerations usually cannot be accurately retrieved. Motivated by the expected low accelerations in MIS, this article proposes a novel noniterative algorithm termed Dini-RNN to solve TVQP by introducing a Dini derivative operator. Unlike the existing ZNNs, the Dini-RNN can handle bound constraints directly and allows partial elements to be continuous but not differentiable everywhere. The convergence of the Dini-RNN is theoretically analyzed and proved. Subsequently, simulative and experimental results show that the Dini-RNN solution is effective to achieve visual servoing with superior performance.
AbstractList In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant quadratic programming (TVQP). Zeroing neural network (ZNN) is a superior recurrent neural network (RNN) for solving TVQP in real time. However, ZNNs cannot handle bound constraints in a TVQP directly and require differentiable elements, meaning that visual servoing requires the accelerations of feature points. Unfortunately, accelerations usually cannot be accurately retrieved. Motivated by the expected low accelerations in MIS, this article proposes a novel noniterative algorithm termed Dini-RNN to solve TVQP by introducing a Dini derivative operator. Unlike the existing ZNNs, the Dini-RNN can handle bound constraints directly and allows partial elements to be continuous but not differentiable everywhere. The convergence of the Dini-RNN is theoretically analyzed and proved. Subsequently, simulative and experimental results show that the Dini-RNN solution is effective to achieve visual servoing with superior performance.
Author Li, Weibing
Song, Biao
Pan, Yongping
Author_xml – sequence: 1
  givenname: Biao
  orcidid: 0000-0001-5039-5264
  surname: Song
  fullname: Song, Biao
  email: songb23@mail2.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Weibing
  orcidid: 0000-0002-7970-9076
  surname: Li
  fullname: Li, Weibing
  email: liwb53@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, and the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Yongping
  orcidid: 0000-0002-8587-6065
  surname: Pan
  fullname: Pan, Yongping
  email: panyongp@mail.sysu.edu.cn
  organization: School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, China
BookMark eNp9kL1PwzAQxS1UJEphZ2CwxJxydr7Hqi1QhIoEhTVyknMxCnaxnUj89yS0A2LglruTfu9O752SkTYaCblgMGUM8uvNajnlwMNpGHIODI7ImMVxGuR5lI3IGHiaBQBRckJOnXsHYFHM4jFpZ3RttPJohVcd0jW2VjR01myNVf7tg650Z5pO6S1dKK3oAq3qflBHpbH0Vbm255_RdmaAjKT3_eCDudHOW6E01vTJlMarii51bVxldnhGjqVoHJ4f-oS83Cw387vg4fF2NZ89BBXPuQ_qOioxS6XkoqpynmUQRXVYlrmoS5mUWYKCl8ARy4SzRPQFctgiwKSWqQwn5Gp_d2fNZ4vOF--mtbp_WYQQsRhCgLSnkj1VWeOcRVlUyvcejR4MNAWDYoi46CMuhoiLQ8S9EP4Id1Z9CPv1n-RyL1GI-AvneZqnPPwGcM6L0Q
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TSMC_2024_3492324
crossref_primary_10_1016_j_eswa_2025_126780
Cites_doi 10.1109/TIE.2019.2960754
10.1109/TIE.2019.2959481
10.1109/TIE.2021.3114674
10.1109/ICAS.2008.16
10.1109/tnnls.2023.3263263
10.1109/TSMC.2019.2930763
10.3389/frobt.2022.832208
10.1007/s10846-018-0927-0
10.1109/TII.2019.2909142
10.1017/CBO9780511804441
10.1109/TII.2020.2980124
10.1016/j.mechmachtheory.2020.104132
10.1109/ICRA.2013.6631412
10.1109/TRO.2015.2418582
10.1109/BIOROB.2014.6913799
10.1109/ICARM54641.2022.9959724
10.1109/TMECH.2017.2683561
10.1007/s12532-020-00179-2
10.1109/SII.2017.8279298
10.1109/ICRA.2014.6907026
10.1109/TNNLS.2019.2938866
10.1055/s-2004-814113
10.1007/s12532-014-0071-1
10.1002/rcs.1531
10.1109/TSMC.2018.2866843
10.1049/cit2.12019
10.1109/ACC.2005.1470152
10.1007/s00521-021-06465-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2023.3322010
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 9529
ExternalDocumentID 10_1109_TIE_2023_3322010
10297972
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62206317
  funderid: 10.13039/501100001809
– fundername: Guangzhou Basic and Applied Basic Research Foundation
  grantid: 202201011523
– fundername: Young Talent Support Project of Guangzhou Association for Science and Technology
  grantid: QT-2023-018
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515012186
  funderid: 10.13039/501100021171
– fundername: Guangzhou Haizhu District Science and Technology Program
  grantid: 2022-50
– fundername: Sun Yat-sen University; Sun Yat-sen University, China
  grantid: 23lgzy004
  funderid: 10.13039/501100002402
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c292t-dd4be87ff2acc9288044d3bb9adbf6b86ea2b02eeb6216aaaa0f2eeb40e6df7f3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:23:19 EDT 2025
Thu Apr 24 22:48:35 EDT 2025
Wed Oct 01 03:02:23 EDT 2025
Wed Aug 27 02:22:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-dd4be87ff2acc9288044d3bb9adbf6b86ea2b02eeb6216aaaa0f2eeb40e6df7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7970-9076
0000-0001-5039-5264
0000-0002-8587-6065
PQID 3041503007
PQPubID 85464
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TIE_2023_3322010
ieee_primary_10297972
proquest_journals_3041503007
crossref_primary_10_1109_TIE_2023_3322010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref19
ref18
Zhang (ref16) 2011
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
(ref28) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/TIE.2019.2960754
– ident: ref12
  doi: 10.1109/TIE.2019.2959481
– ident: ref9
  doi: 10.1109/TIE.2021.3114674
– ident: ref5
  doi: 10.1109/ICAS.2008.16
– ident: ref25
  doi: 10.1109/tnnls.2023.3263263
– ident: ref17
  doi: 10.1109/TSMC.2019.2930763
– ident: ref2
  doi: 10.3389/frobt.2022.832208
– volume-title: Zhang Neural Networks and Neural-Dynamic Method
  year: 2011
  ident: ref16
– ident: ref4
  doi: 10.1007/s10846-018-0927-0
– ident: ref11
  doi: 10.1109/TII.2019.2909142
– year: 2018
  ident: ref28
  article-title: MATLAB version: 9.5.0 (R2018b)
– ident: ref24
  doi: 10.1017/CBO9780511804441
– ident: ref26
  doi: 10.1109/TII.2020.2980124
– ident: ref21
  doi: 10.1016/j.mechmachtheory.2020.104132
– ident: ref3
  doi: 10.1109/ICRA.2013.6631412
– ident: ref10
  doi: 10.1109/TRO.2015.2418582
– ident: ref22
  doi: 10.1109/BIOROB.2014.6913799
– ident: ref20
  doi: 10.1109/ICARM54641.2022.9959724
– ident: ref23
  doi: 10.1109/TMECH.2017.2683561
– ident: ref27
  doi: 10.1007/s12532-020-00179-2
– ident: ref7
  doi: 10.1109/SII.2017.8279298
– ident: ref8
  doi: 10.1109/ICRA.2014.6907026
– ident: ref30
  doi: 10.1109/TNNLS.2019.2938866
– ident: ref1
  doi: 10.1055/s-2004-814113
– ident: ref29
  doi: 10.1007/s12532-014-0071-1
– ident: ref6
  doi: 10.1002/rcs.1531
– ident: ref13
  doi: 10.1109/TSMC.2018.2866843
– ident: ref19
  doi: 10.1049/cit2.12019
– ident: ref15
  doi: 10.1109/ACC.2005.1470152
– ident: ref14
  doi: 10.1007/s00521-021-06465-x
SSID ssj0014515
Score 2.4779923
Snippet In minimally invasive surgery (MIS), surgical endoscope can be automated using visual servoing by incorporating motion constraints into a time-variant...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9520
SubjectTerms Algorithms
Constraints
Convergence
Dini derivative
Endoscopes
Jacobian matrices
Operators (mathematics)
Optimization
Quadratic programming
quadratic programming (QP)
recurrent neural network (RNN)
Recurrent neural networks
robotic endoscope
Robots
Visual control
Visual servoing
Title A Noniterative Neural Algorithm Involving Dini Derivatives for Visual Servoing of Joint-Constrained Robotic Endoscope
URI https://ieeexplore.ieee.org/document/10297972
https://www.proquest.com/docview/3041503007
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp3KgtFCxLVQ-9NJDgtfxIz6isgiQuocKELcotsftCkgqNumhv75jJ4tWoKLm5EgzkaXP84jt-YaQzxhzwXAOGUdwMyGDyyxokWFwqUFIsCHtQ36bq7MrcXEjb8Zi9VQLAwDp8hnkcZjO8n3r-rhVhhbOjTYaPe6GLtVQrPV4ZCDk0K6AR8pY_OtbnUkyc3R5Pstjm_C8wOXLYrHsWgxKTVWeeeIUXk7fkPlqYsOtktu872zu_jzhbPzvme-Q7THRpMfDynhLXkHzjmyt0Q_ukv6YzqNJw8D-TSNRR1S5-9E-LLqf9_S8QecVdxzoyaJZ0BPU-51ElxRzXXq9WPYoH91NG4XaQC9w0GWxC2jqPQGefm9ti1Ogs8a3qQRmj1ydzi6_nmVjG4bMccO7zHthodQh8No5w9HghfCFtab2NihbKqi5ZRzAKj5VNT4sxDfBQPmgQ_GebDZtA_uEaqmn0mGSye1UBC9MzaRTrJBlKTUHNSFHK2AqN3KUx-neVelfhZkKoawilNUI5YR8edT4NfBzvCC7F5FZkxtAmZCDFfjVaMHLqojcBegBmf7wD7WP5DV-XQy3AQ_IZvfQwyFmKJ39lFbmX4904x4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYQHNgOY2xMdLDhwy47JLiOHddHBEUtgx6mMnGLYvuZVYNkoskO_PU8OymqNm1aTo70nmLp8_sR2-97hHzCmAuac0g4gpsI6W1iQIkEg0sJQoLxcR_yapZPrsXFjbzpi9VjLQwAxMtnkIZhPMt3tW3DVhlaONdKK_S4W1IIIbtyredDAyG7hgU8kMbif9_qVJLp4_l0nIZG4WmGC5iFctm1KBTbqvzhi2OAOd8hs9XUunslP9K2Mal9_I218b_n_pq86lNNetKtjV2yAdUb8nKNgPAtaU_oLBg1dPzfNFB1BJW72_ph0Xy_p9MK3VfYc6Bni2pBz1DvVxRdUsx26bfFskX54HDqIFR7eoGDJgl9QGP3CXD0a21qnAIdV66ORTB75Pp8PD-dJH0jhsRyzZvEOWFgpLznpbWao8kL4TJjdOmMz80oh5IbxgFMzod5iQ_z4U0wyJ1XPntHNqu6gn1ClVRDaTHN5GYovBO6ZNLmLJOjkVQc8gE5XgFT2J6lPEz3roh_K0wXCGURoCx6KAfk87PGz46h4x-yewGZNbkOlAE5XIFf9Da8LLLAXoA-kKn3f1E7ItuT-dVlcTmdfTkgL_BLorsbeEg2m4cWPmC-0piPcZU-AZi55ms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Noniterative+Neural+Algorithm+Involving+Dini+Derivatives+for+Visual+Servoing+of+Joint-Constrained+Robotic+Endoscope&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Song%2C+Biao&rft.au=Li%2C+Weibing&rft.au=Pan%2C+Yongping&rft.date=2024-08-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=71&rft.issue=8&rft.spage=9520&rft.epage=9529&rft_id=info:doi/10.1109%2FTIE.2023.3322010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2023_3322010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon