General Tensor Least-Mean-Squares Filter for Multi-Channel Multi-Relational Signals
Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low,...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 70; pp. 1 - 15 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.01.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2023.3236151 | 
Cover
| Abstract | Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low, they have been widely adopted in many real-time signal processing applications. The input of any conventional LMS filter has to be a sequence of scalar samples (one-dimensional time series), whereas such assumption is too restrictive nowadays for multi-channel (high-dimensional) signals and multi-relational data in the rise of a big-data era. It is crucial to deal with high-dimensional data-arrays, a.k.a. tensors, to manifest the variety and complex interrelations of data. Owing to lack of a sufficient mathematical framework to govern relevant tensor operations, the general tensor LMS filter, whose input is allowed to be an arbitrary tensor, has never been established for realization to the best of our knowledge. In this work, we will dedicate a new mathematical framework for tensors to establish the general tensor least-mean-squares (TLMS) filter theory and propose two novel TLMS algorithms with update rules based on stochastic gradient-descent and Newton's methods, respectively. Furthermore, as we establish the tensor calculus theory, the performance evaluation on convergence-rate and misadjustment for our proposed TLMS filters can be conducted. Finally, the memory and computational complexities of the new TLMS algorithms are also studied in this paper. | 
    
|---|---|
| AbstractList | Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low, they have been widely adopted in many real-time signal processing applications. The input of any conventional LMS filter has to be a sequence of scalar samples (one-dimensional time series), whereas such assumption is too restrictive nowadays for multi-channel (high-dimensional) signals and multi-relational data in the rise of a big-data era. It is crucial to deal with high-dimensional data-arrays, a.k.a. tensors, to manifest the variety and complex interrelations of data. Owing to lack of a sufficient mathematical framework to govern relevant tensor operations, the general tensor LMS filter, whose input is allowed to be an arbitrary tensor, has never been established for realization to the best of our knowledge. In this work, we will dedicate a new mathematical framework for tensors to establish the general tensor least-mean-squares (TLMS) filter theory and propose two novel TLMS algorithms with update rules based on stochastic gradient-descent and Newton's methods, respectively. Furthermore, as we establish the tensor calculus theory, the performance evaluation on convergence-rate and misadjustment for our proposed TLMS filters can be conducted. Finally, the memory and computational complexities of the new TLMS algorithms are also studied in this paper. | 
    
| Author | Wu, Hsiao-Chun Chang, Shih Yu  | 
    
| Author_xml | – sequence: 1 givenname: Shih Yu orcidid: 0000-0002-3576-0021 surname: Chang fullname: Chang, Shih Yu organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA – sequence: 2 givenname: Hsiao-Chun orcidid: 0000-0002-0178-1246 surname: Wu fullname: Wu, Hsiao-Chun organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA  | 
    
| BookMark | eNp9UE1Lw0AUXKSCtXr34KHgeevbj2yyRym2Ci2KqeAtbJMX3RI37W5y8N-7tT2IB-HBvMebGYY5JwPXOiTkisGEMdC3q_x5woGLieBCsYSdkCHTklGQqRrEHRJBkyx9OyPnIWwAmJRaDUk-R4feNOMVutD68QJN6OgSjaP5rjcew3hmmw79uI7fZd90lk4_jHPYHK8XbExnWxc9cvseIVyQ0zoCXh5xRF5n96vpA108zR-ndwtacs07uq7WKoNaV1LIMk11pYxMGIAUJWRxACAVqdFlAhlnFVdKlSwr0WCaIRMgRuTm4Lv17a7H0BWbtvf7BAVPlZYglGaRpQ6s0rcheKyL0nY_iTtvbFMwKPYFFrHAYl9gcSwwCuGPcOvtp_Ff_0muDxKLiL_owJRKMvENB2l8Gg | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1109_TBC_2023_3278111 crossref_primary_10_1109_TBC_2024_3417342 crossref_primary_10_1109_TITS_2023_3299557 crossref_primary_10_1109_JSYST_2023_3327911 crossref_primary_10_1109_LSP_2024_3475909 crossref_primary_10_1109_JSEN_2024_3493893 crossref_primary_10_1016_j_aei_2024_102914 crossref_primary_10_1109_TSP_2024_3495552 crossref_primary_10_1109_ACCESS_2024_3479093  | 
    
| Cites_doi | 10.1109/LAWP.2020.2995244 10.1109/TSP.2017.2787102 10.1109/JLT.2017.2652070 10.1109/TSP.2012.2205571 10.1016/j.sigpro.2019.107326 10.1109/TSP.2020.2969042 10.1109/TSP.2018.2865407 10.1109/ICASSP.2015.7178591 10.1109/TSP.2017.2690524 10.1016/j.sigpro.2020.107507 10.1109/TMI.2010.2086464 10.1109/ACCESS.2019.2908207 10.1016/j.camwa.2018.11.001 10.1109/TSP.2017.2718975 10.1109/MSP.2014.2298533 10.1109/ICC.2018.8422449 10.1016/j.sigpro.2020.107497 10.1109/JSTSP.2015.2509907 10.1109/TSP.2020.2975370 10.1109/JSEN.2018.2879879 10.1109/TCSII.2019.2897620 10.1109/TSP.2018.2860556 10.20855/ijav.2016.21.1392 10.1093/acprof:oso/9780199237197.003.0007 10.11606/t.3.2021.tde-21032022-113440 10.1016/j.sigpro.2020.107752 10.1109/ASRU46091.2019.9003849 10.1109/TPAMI.2012.254 10.1038/sdata.2018.211 10.1109/TSIPN.2021.3110051  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TSP.2023.3236151 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | 10_1109_TSP_2023_3236151 10016658  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Louisiana Board of Regents Research Competitiveness Subprogram grantid: LEQSF(2021-22)-RD-A-34  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c292t-bdb680f9d434c779d6a4510043c08c08000737a9c50821d2666c18ceae78e1303 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Mon Jun 30 10:20:09 EDT 2025 Wed Oct 01 03:34:39 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Wed Aug 27 02:25:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c292t-bdb680f9d434c779d6a4510043c08c08000737a9c50821d2666c18ceae78e1303 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3576-0021 0000-0002-0178-1246  | 
    
| PQID | 2769403691 | 
    
| PQPubID | 85478 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2023_3236151 proquest_journals_2769403691 ieee_primary_10016658 crossref_primary_10_1109_TSP_2023_3236151  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-01 | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref15 ref14 ref31 Haykin (ref13) 2008 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Widrow (ref6) 1985 ref29 ref8 ref7 ref9 ref4 ref3 ref5  | 
    
| References_xml | – ident: ref30 doi: 10.1109/LAWP.2020.2995244 – ident: ref3 doi: 10.1109/TSP.2017.2787102 – ident: ref7 doi: 10.1109/JLT.2017.2652070 – ident: ref20 doi: 10.1109/TSP.2012.2205571 – ident: ref15 doi: 10.1016/j.sigpro.2019.107326 – volume-title: Adaptive Signal Processing year: 1985 ident: ref6 – ident: ref1 doi: 10.1109/TSP.2020.2969042 – ident: ref23 doi: 10.1109/TSP.2018.2865407 – volume-title: Adaptive Filter Theory year: 2008 ident: ref13 – ident: ref25 doi: 10.1109/ICASSP.2015.7178591 – ident: ref17 doi: 10.1109/TSP.2017.2690524 – ident: ref5 doi: 10.1016/j.sigpro.2020.107507 – ident: ref24 doi: 10.1109/TMI.2010.2086464 – ident: ref22 doi: 10.1109/ACCESS.2019.2908207 – ident: ref28 doi: 10.1016/j.camwa.2018.11.001 – ident: ref10 doi: 10.1109/TSP.2017.2718975 – ident: ref26 doi: 10.1109/MSP.2014.2298533 – ident: ref12 doi: 10.1109/ICC.2018.8422449 – ident: ref14 doi: 10.1016/j.sigpro.2020.107497 – ident: ref19 doi: 10.1109/JSTSP.2015.2509907 – ident: ref2 doi: 10.1109/TSP.2020.2975370 – ident: ref8 doi: 10.1109/JSEN.2018.2879879 – ident: ref11 doi: 10.1109/TCSII.2019.2897620 – ident: ref16 doi: 10.1109/TSP.2018.2860556 – ident: ref29 doi: 10.20855/ijav.2016.21.1392 – ident: ref31 doi: 10.1093/acprof:oso/9780199237197.003.0007 – ident: ref21 doi: 10.11606/t.3.2021.tde-21032022-113440 – ident: ref4 doi: 10.1016/j.sigpro.2020.107752 – ident: ref9 doi: 10.1109/ASRU46091.2019.9003849 – ident: ref18 doi: 10.1109/TPAMI.2012.254 – ident: ref32 doi: 10.1038/sdata.2018.211 – ident: ref27 doi: 10.1109/TSIPN.2021.3110051  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.434714 | 
    
| Snippet | Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive filters Algorithms Filtering algorithms Filtering theory Mathematical analysis Multi-channel and multi-relational signal processing Newton's method Performance evaluation Series (mathematics) Signal processing Signal processing algorithms stochastic gradient-descent tensor calculus tensor least-mean-squares (TLMS) filter Tensors Time-domain analysis Time-varying systems  | 
    
| Title | General Tensor Least-Mean-Squares Filter for Multi-Channel Multi-Relational Signals | 
    
| URI | https://ieeexplore.ieee.org/document/10016658 https://www.proquest.com/docview/2769403691  | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg9ePKTr2jRpjiKOIW4I3WC30qSpDEens73415uXpmMqire25IWQl773kpfvewhdC89XXEht_aRKMclpjoX-gLmXU238Qi4Mtmo8oaMZeZiHcwtWN1gYpZS5fKZceDS5_GwlKzgq6wNfENUus4VaLKI1WGuTMiDEFOPS8UKAw4jNm5ykx_vT-MmFMuFuAFQj4eCLDzJFVX5YYuNehgdo0gysvlXy4lalcOXHN87Gf4_8EO3bQNO5rVfGEdpRxTHa26IfPEGx5Zx2pnovu1o7j1DHB49VWuD4rQJgkjNcQDbd0ZGtY6C6GNAIhVrat-Yqne4jXjwDFXMHzYb307sRtkUWsPS5X2KRCRp5Oc9IQCRjPKMpCYFGLpBeBDTkkMtjKZc6kvMHmfbnVA5AsYpFChzgKWoXq0KdIUfxTMhUeMLPFQmCTJCAKhZqYd1RzoMu6jfTnkjLQA6FMJaJ2Yl4PNGKSkBRiVVUF91sJF5r9o0_2nZg3rfa1VPeRb1GtYn9P98Tn1FOtPPmg_NfxC7Qrg9IB3Pa0kPtcl2pSx1_lOLKrLtP4RzVbg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAhlYGJymiePEI0JUBdoKKa3ULYodB1VUKZR24dfjc5KKh0BsSeSzLJ9zd_b5-w7gUjiu4kJq6ydVQmjGMiL0B8KdjGnj53NhsFX9AeuO6P3YH5dgdYOFUUqZy2fKxkeTy09ncolHZS3kC2LaZa7Dhk8p9Qu41ippQKkpx6UjBo_4YTCuspIObw2jRxsLhdseko347S9eyJRV-WGLjYPp7MKgGlpxr-TZXi6ELd-_sTb-e-x7sFOGmtZ1sTb2YU3lB7D9iYDwEKKSddoa6t3sbG71sJIP6askJ9HrEqFJVmeC-XRLx7aWAesSxCPkalq-VZfpdB_R5AnJmOsw6twOb7qkLLNApMvdBRGpYKGT8ZR6VAYBT1lCfSSS86QTIhE5ZvOChEsdy7ntVHt0JtuoWhWECl3gEdTyWa6OwVI8FTIRjnAzRT0vFdRjKvC1sO4o414DWtW0x7LkIMdSGNPY7EUcHmtFxaiouFRUA65WEi8F_8Yfbes475_aFVPegGal2rj8Q99iN2CcavfN2ye_iF3AZnfY78W9u8HDKWy5iHswZy9NqC3mS3Wmo5GFODdr8AM6jdi7 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Tensor+Least-Mean-Squares+Filter+for+Multi-Channel+Multi-Relational+Signals&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chang%2C+Shih+Yu&rft.au=Wu%2C+Hsiao-Chun&rft.date=2022-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=6257&rft.epage=6271&rft_id=info:doi/10.1109%2FTSP.2023.3236151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2023_3236151 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |