General Tensor Least-Mean-Squares Filter for Multi-Channel Multi-Relational Signals

Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 70; pp. 1 - 15
Main Authors Chang, Shih Yu, Wu, Hsiao-Chun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2023.3236151

Cover

Abstract Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low, they have been widely adopted in many real-time signal processing applications. The input of any conventional LMS filter has to be a sequence of scalar samples (one-dimensional time series), whereas such assumption is too restrictive nowadays for multi-channel (high-dimensional) signals and multi-relational data in the rise of a big-data era. It is crucial to deal with high-dimensional data-arrays, a.k.a. tensors, to manifest the variety and complex interrelations of data. Owing to lack of a sufficient mathematical framework to govern relevant tensor operations, the general tensor LMS filter, whose input is allowed to be an arbitrary tensor, has never been established for realization to the best of our knowledge. In this work, we will dedicate a new mathematical framework for tensors to establish the general tensor least-mean-squares (TLMS) filter theory and propose two novel TLMS algorithms with update rules based on stochastic gradient-descent and Newton's methods, respectively. Furthermore, as we establish the tensor calculus theory, the performance evaluation on convergence-rate and misadjustment for our proposed TLMS filters can be conducted. Finally, the memory and computational complexities of the new TLMS algorithms are also studied in this paper.
AbstractList Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample so as to track time-varying dynamics. As the memory and computational complexities required for the realization of LMS filters are very low, they have been widely adopted in many real-time signal processing applications. The input of any conventional LMS filter has to be a sequence of scalar samples (one-dimensional time series), whereas such assumption is too restrictive nowadays for multi-channel (high-dimensional) signals and multi-relational data in the rise of a big-data era. It is crucial to deal with high-dimensional data-arrays, a.k.a. tensors, to manifest the variety and complex interrelations of data. Owing to lack of a sufficient mathematical framework to govern relevant tensor operations, the general tensor LMS filter, whose input is allowed to be an arbitrary tensor, has never been established for realization to the best of our knowledge. In this work, we will dedicate a new mathematical framework for tensors to establish the general tensor least-mean-squares (TLMS) filter theory and propose two novel TLMS algorithms with update rules based on stochastic gradient-descent and Newton's methods, respectively. Furthermore, as we establish the tensor calculus theory, the performance evaluation on convergence-rate and misadjustment for our proposed TLMS filters can be conducted. Finally, the memory and computational complexities of the new TLMS algorithms are also studied in this paper.
Author Wu, Hsiao-Chun
Chang, Shih Yu
Author_xml – sequence: 1
  givenname: Shih Yu
  orcidid: 0000-0002-3576-0021
  surname: Chang
  fullname: Chang, Shih Yu
  organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA
– sequence: 2
  givenname: Hsiao-Chun
  orcidid: 0000-0002-0178-1246
  surname: Wu
  fullname: Wu, Hsiao-Chun
  organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA
BookMark eNp9UE1Lw0AUXKSCtXr34KHgeevbj2yyRym2Ci2KqeAtbJMX3RI37W5y8N-7tT2IB-HBvMebGYY5JwPXOiTkisGEMdC3q_x5woGLieBCsYSdkCHTklGQqRrEHRJBkyx9OyPnIWwAmJRaDUk-R4feNOMVutD68QJN6OgSjaP5rjcew3hmmw79uI7fZd90lk4_jHPYHK8XbExnWxc9cvseIVyQ0zoCXh5xRF5n96vpA108zR-ndwtacs07uq7WKoNaV1LIMk11pYxMGIAUJWRxACAVqdFlAhlnFVdKlSwr0WCaIRMgRuTm4Lv17a7H0BWbtvf7BAVPlZYglGaRpQ6s0rcheKyL0nY_iTtvbFMwKPYFFrHAYl9gcSwwCuGPcOvtp_Ff_0muDxKLiL_owJRKMvENB2l8Gg
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TBC_2023_3278111
crossref_primary_10_1109_TBC_2024_3417342
crossref_primary_10_1109_TITS_2023_3299557
crossref_primary_10_1109_JSYST_2023_3327911
crossref_primary_10_1109_LSP_2024_3475909
crossref_primary_10_1109_JSEN_2024_3493893
crossref_primary_10_1016_j_aei_2024_102914
crossref_primary_10_1109_TSP_2024_3495552
crossref_primary_10_1109_ACCESS_2024_3479093
Cites_doi 10.1109/LAWP.2020.2995244
10.1109/TSP.2017.2787102
10.1109/JLT.2017.2652070
10.1109/TSP.2012.2205571
10.1016/j.sigpro.2019.107326
10.1109/TSP.2020.2969042
10.1109/TSP.2018.2865407
10.1109/ICASSP.2015.7178591
10.1109/TSP.2017.2690524
10.1016/j.sigpro.2020.107507
10.1109/TMI.2010.2086464
10.1109/ACCESS.2019.2908207
10.1016/j.camwa.2018.11.001
10.1109/TSP.2017.2718975
10.1109/MSP.2014.2298533
10.1109/ICC.2018.8422449
10.1016/j.sigpro.2020.107497
10.1109/JSTSP.2015.2509907
10.1109/TSP.2020.2975370
10.1109/JSEN.2018.2879879
10.1109/TCSII.2019.2897620
10.1109/TSP.2018.2860556
10.20855/ijav.2016.21.1392
10.1093/acprof:oso/9780199237197.003.0007
10.11606/t.3.2021.tde-21032022-113440
10.1016/j.sigpro.2020.107752
10.1109/ASRU46091.2019.9003849
10.1109/TPAMI.2012.254
10.1038/sdata.2018.211
10.1109/TSIPN.2021.3110051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2023.3236151
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 15
ExternalDocumentID 10_1109_TSP_2023_3236151
10016658
Genre orig-research
GrantInformation_xml – fundername: Louisiana Board of Regents Research Competitiveness Subprogram
  grantid: LEQSF(2021-22)-RD-A-34
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-bdb680f9d434c779d6a4510043c08c08000737a9c50821d2666c18ceae78e1303
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:20:09 EDT 2025
Wed Oct 01 03:34:39 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Aug 27 02:25:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-bdb680f9d434c779d6a4510043c08c08000737a9c50821d2666c18ceae78e1303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3576-0021
0000-0002-0178-1246
PQID 2769403691
PQPubID 85478
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSP_2023_3236151
proquest_journals_2769403691
ieee_primary_10016658
crossref_primary_10_1109_TSP_2023_3236151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
Haykin (ref13) 2008
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Widrow (ref6) 1985
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref30
  doi: 10.1109/LAWP.2020.2995244
– ident: ref3
  doi: 10.1109/TSP.2017.2787102
– ident: ref7
  doi: 10.1109/JLT.2017.2652070
– ident: ref20
  doi: 10.1109/TSP.2012.2205571
– ident: ref15
  doi: 10.1016/j.sigpro.2019.107326
– volume-title: Adaptive Signal Processing
  year: 1985
  ident: ref6
– ident: ref1
  doi: 10.1109/TSP.2020.2969042
– ident: ref23
  doi: 10.1109/TSP.2018.2865407
– volume-title: Adaptive Filter Theory
  year: 2008
  ident: ref13
– ident: ref25
  doi: 10.1109/ICASSP.2015.7178591
– ident: ref17
  doi: 10.1109/TSP.2017.2690524
– ident: ref5
  doi: 10.1016/j.sigpro.2020.107507
– ident: ref24
  doi: 10.1109/TMI.2010.2086464
– ident: ref22
  doi: 10.1109/ACCESS.2019.2908207
– ident: ref28
  doi: 10.1016/j.camwa.2018.11.001
– ident: ref10
  doi: 10.1109/TSP.2017.2718975
– ident: ref26
  doi: 10.1109/MSP.2014.2298533
– ident: ref12
  doi: 10.1109/ICC.2018.8422449
– ident: ref14
  doi: 10.1016/j.sigpro.2020.107497
– ident: ref19
  doi: 10.1109/JSTSP.2015.2509907
– ident: ref2
  doi: 10.1109/TSP.2020.2975370
– ident: ref8
  doi: 10.1109/JSEN.2018.2879879
– ident: ref11
  doi: 10.1109/TCSII.2019.2897620
– ident: ref16
  doi: 10.1109/TSP.2018.2860556
– ident: ref29
  doi: 10.20855/ijav.2016.21.1392
– ident: ref31
  doi: 10.1093/acprof:oso/9780199237197.003.0007
– ident: ref21
  doi: 10.11606/t.3.2021.tde-21032022-113440
– ident: ref4
  doi: 10.1016/j.sigpro.2020.107752
– ident: ref9
  doi: 10.1109/ASRU46091.2019.9003849
– ident: ref18
  doi: 10.1109/TPAMI.2012.254
– ident: ref32
  doi: 10.1038/sdata.2018.211
– ident: ref27
  doi: 10.1109/TSIPN.2021.3110051
SSID ssj0014496
Score 2.434714
Snippet Least-mean-squares (LMS) algorithms constitute a prevalent approach to implement the linear adaptive filters whose coefficients can be updated sample by sample...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive filters
Algorithms
Filtering algorithms
Filtering theory
Mathematical analysis
Multi-channel and multi-relational signal processing
Newton's method
Performance evaluation
Series (mathematics)
Signal processing
Signal processing algorithms
stochastic gradient-descent
tensor calculus
tensor least-mean-squares (TLMS) filter
Tensors
Time-domain analysis
Time-varying systems
Title General Tensor Least-Mean-Squares Filter for Multi-Channel Multi-Relational Signals
URI https://ieeexplore.ieee.org/document/10016658
https://www.proquest.com/docview/2769403691
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg9ePKTr2jRpjiKOIW4I3WC30qSpDEens73415uXpmMqire25IWQl773kpfvewhdC89XXEht_aRKMclpjoX-gLmXU238Qi4Mtmo8oaMZeZiHcwtWN1gYpZS5fKZceDS5_GwlKzgq6wNfENUus4VaLKI1WGuTMiDEFOPS8UKAw4jNm5ykx_vT-MmFMuFuAFQj4eCLDzJFVX5YYuNehgdo0gysvlXy4lalcOXHN87Gf4_8EO3bQNO5rVfGEdpRxTHa26IfPEGx5Zx2pnovu1o7j1DHB49VWuD4rQJgkjNcQDbd0ZGtY6C6GNAIhVrat-Yqne4jXjwDFXMHzYb307sRtkUWsPS5X2KRCRp5Oc9IQCRjPKMpCYFGLpBeBDTkkMtjKZc6kvMHmfbnVA5AsYpFChzgKWoXq0KdIUfxTMhUeMLPFQmCTJCAKhZqYd1RzoMu6jfTnkjLQA6FMJaJ2Yl4PNGKSkBRiVVUF91sJF5r9o0_2nZg3rfa1VPeRb1GtYn9P98Tn1FOtPPmg_NfxC7Qrg9IB3Pa0kPtcl2pSx1_lOLKrLtP4RzVbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAhlYGJymiePEI0JUBdoKKa3ULYodB1VUKZR24dfjc5KKh0BsSeSzLJ9zd_b5-w7gUjiu4kJq6ydVQmjGMiL0B8KdjGnj53NhsFX9AeuO6P3YH5dgdYOFUUqZy2fKxkeTy09ncolHZS3kC2LaZa7Dhk8p9Qu41ippQKkpx6UjBo_4YTCuspIObw2jRxsLhdseko347S9eyJRV-WGLjYPp7MKgGlpxr-TZXi6ELd-_sTb-e-x7sFOGmtZ1sTb2YU3lB7D9iYDwEKKSddoa6t3sbG71sJIP6askJ9HrEqFJVmeC-XRLx7aWAesSxCPkalq-VZfpdB_R5AnJmOsw6twOb7qkLLNApMvdBRGpYKGT8ZR6VAYBT1lCfSSS86QTIhE5ZvOChEsdy7ntVHt0JtuoWhWECl3gEdTyWa6OwVI8FTIRjnAzRT0vFdRjKvC1sO4o414DWtW0x7LkIMdSGNPY7EUcHmtFxaiouFRUA65WEi8F_8Yfbes475_aFVPegGal2rj8Q99iN2CcavfN2ye_iF3AZnfY78W9u8HDKWy5iHswZy9NqC3mS3Wmo5GFODdr8AM6jdi7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Tensor+Least-Mean-Squares+Filter+for+Multi-Channel+Multi-Relational+Signals&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chang%2C+Shih+Yu&rft.au=Wu%2C+Hsiao-Chun&rft.date=2022-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=6257&rft.epage=6271&rft_id=info:doi/10.1109%2FTSP.2023.3236151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2023_3236151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon