Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications
A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing...
Saved in:
| Published in | IEEE transactions on wireless communications Vol. 22; no. 11; p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1276 1558-2248 |
| DOI | 10.1109/TWC.2023.3254130 |
Cover
| Abstract | A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D 3 QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D 3 QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D 3 QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts. |
|---|---|
| AbstractList | A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D 3 QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D 3 QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D 3 QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts. A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network ([Formula Omitted]QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots’ trajectories, [Formula Omitted]QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed [Formula Omitted]QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts. |
| Author | Yi, Wenqiang Mu, Xidong Gao, Xinyu Liu, Yuanwei |
| Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0003-4058-8024 surname: Gao fullname: Gao, Xinyu organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 2 givenname: Xidong orcidid: 0000-0001-8351-360X surname: Mu fullname: Mu, Xidong organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 3 givenname: Wenqiang orcidid: 0000-0003-4732-5040 surname: Yi fullname: Yi, Wenqiang organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K – sequence: 4 givenname: Yuanwei orcidid: 0000-0002-6389-8941 surname: Liu fullname: Liu, Yuanwei organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K |
| BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnF30nGKnxVtFSCIsbISS6Vq9QutjP035PSDoiB6W54n7tXzwgNjDWA0DXBE0Jwdrf6zCcUUzZhVHDC8BkaEiHSmFKeDg47kzGhibxAI-83GJNECjFELzMToG31GkyIVk5toArW7aN78Hptosa66G32Hr8uF9NI6RrqaNG1QcfOljZEud1uO6MrFbQ1_hKdN6r1cHWaY_Tx-LDKn-P58mmWT-dxRTMa4rIsM-AiqUFyqRpgXGEKWcoSIirFBceY0aavSjmuKaQNa2rKSFbWpMRMVmyMbo93d85-deBDsbGdM_3LgqZpljAsuehT8piqnPXeQVNUOvwUDU7ptiC4OIgrenHFQVxxEteD-A-4c3qr3P4_5OaIaAD4FccJloSyb75ueYo |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TVT_2023_3332334 crossref_primary_10_1109_IOTM_001_2400208 crossref_primary_10_1007_s11276_025_03936_0 crossref_primary_10_1109_TWC_2024_3462450 crossref_primary_10_2478_amns_2024_1863 |
| Cites_doi | 10.1109/TWC.2019.2936025 10.1109/JSAC.2020.3000806 10.1109/JPROC.2022.3170656 10.1109/ICRA.2019.8794090 10.1109/TVT.2019.2949235 10.1109/TCCN.2021.3068750 10.1109/LCOMM.2020.3025978 10.1144/iavcei001.11 10.1109/LWC.2019.2951765 10.1109/LCOMM.2020.2974196 10.1109/TWC.2020.2988907 10.1007/s10514-019-09890-z 10.1109/TVT.2020.3024005 10.1109/TWC.2021.3057232 10.1109/LNET.2020.3037741 10.1109/TWC.2021.3122409 10.1023/B:TELS.0000029038.31947.d1 10.1109/TITS.2020.2974929 10.1036/1097-8542.434200 10.1109/TCOMM.2021.3082779 10.1016/0305-0548(94)00059-H 10.1109/ACCESS.2019.2935192 10.1109/ACCESS.2021.3065760 10.1109/VTCSpring.2013.6692652 10.1109/TWC.2021.3062089 10.17148/IARJSET.2015.2305 10.1016/j.robot.2020.103604 10.1109/MCOM.2017.1500657CM 10.1609/aaai.v30i1.10295 10.1109/TCOMM.2020.3032695 10.1002/9781119213154 10.1109/MCOM.001.1900107 10.1109/IROS45743.2020.9341096 10.1109/MCOM.111.2001118 10.1109/MCOM.2015.7263349 10.1109/TVT.2015.2480766 10.1109/LWC.2020.2999097 10.1109/LRA.2019.2897368 10.1109/ICC42927.2021.9500747 10.1109/TWC.2021.3108020 10.1109/TWC.2020.3006915 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2023.3254130 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TWC_2023_3254130 10070612 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX AETIX AIBXA CITATION EJD H~9 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-bbb9e457de646afe34a02e983715ca4540032f276240d2e8f3fd2319bd1b036c3 |
| IEDL.DBID | RIE |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 10:49:41 EDT 2025 Wed Oct 01 04:51:05 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Wed Aug 27 02:14:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-bbb9e457de646afe34a02e983715ca4540032f276240d2e8f3fd2319bd1b036c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4732-5040 0000-0002-6389-8941 0000-0003-4058-8024 0000-0001-8351-360X |
| PQID | 2889730645 |
| PQPubID | 105736 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_TWC_2023_3254130 ieee_primary_10070612 crossref_primary_10_1109_TWC_2023_3254130 proquest_journals_2889730645 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Walton (ref29) 2009 ref24 ref46 ref23 ref45 ref26 Wang (ref44) ref25 ref20 ref42 ref22 ref21 ref43 Van Laarhoven (ref41) 2017 ref28 ref27 ref8 ref7 Rappaport (ref30) 2014 ref9 ref4 ref3 ref6 ref5 ref40 Zhao (ref10) 2019 |
| References_xml | – ident: ref36 doi: 10.1109/TWC.2019.2936025 – ident: ref7 doi: 10.1109/JSAC.2020.3000806 – ident: ref9 doi: 10.1109/JPROC.2022.3170656 – ident: ref26 doi: 10.1109/ICRA.2019.8794090 – volume-title: Multiple-access multiple-input multiple-output (MIMO) communication system year: 2009 ident: ref29 – ident: ref45 doi: 10.1109/TVT.2019.2949235 – ident: ref18 doi: 10.1109/TCCN.2021.3068750 – ident: ref21 doi: 10.1109/LCOMM.2020.3025978 – ident: ref35 doi: 10.1144/iavcei001.11 – ident: ref38 doi: 10.1109/LWC.2019.2951765 – ident: ref15 doi: 10.1109/LCOMM.2020.2974196 – ident: ref34 doi: 10.1109/TWC.2020.2988907 – year: 2017 ident: ref41 article-title: L2 regularization versus batch and weight normalization publication-title: arXiv:1706.05350 – ident: ref25 doi: 10.1007/s10514-019-09890-z – ident: ref19 doi: 10.1109/TVT.2020.3024005 – ident: ref22 doi: 10.1109/TWC.2021.3057232 – ident: ref31 doi: 10.1109/LNET.2020.3037741 – ident: ref17 doi: 10.1109/TWC.2021.3122409 – ident: ref3 doi: 10.1023/B:TELS.0000029038.31947.d1 – ident: ref33 doi: 10.1109/TITS.2020.2974929 – ident: ref39 doi: 10.1036/1097-8542.434200 – ident: ref12 doi: 10.1109/TCOMM.2021.3082779 – ident: ref42 doi: 10.1016/0305-0548(94)00059-H – ident: ref11 doi: 10.1109/ACCESS.2019.2935192 – ident: ref13 doi: 10.1109/ACCESS.2021.3065760 – ident: ref4 doi: 10.1109/VTCSpring.2013.6692652 – ident: ref20 doi: 10.1109/TWC.2021.3062089 – start-page: 1995 volume-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML) ident: ref44 article-title: Dueling network architectures for deep reinforcement learning – ident: ref40 doi: 10.17148/IARJSET.2015.2305 – ident: ref28 doi: 10.1016/j.robot.2020.103604 – ident: ref37 doi: 10.1109/MCOM.2017.1500657CM – ident: ref43 doi: 10.1609/aaai.v30i1.10295 – ident: ref14 doi: 10.1109/TCOMM.2020.3032695 – ident: ref2 doi: 10.1002/9781119213154 – ident: ref8 doi: 10.1109/MCOM.001.1900107 – ident: ref32 doi: 10.1109/IROS45743.2020.9341096 – ident: ref24 doi: 10.1109/MCOM.111.2001118 – ident: ref5 doi: 10.1109/MCOM.2015.7263349 – ident: ref6 doi: 10.1109/TVT.2015.2480766 – ident: ref23 doi: 10.1109/LWC.2020.2999097 – volume-title: Millimeter Wave Wireless Communications year: 2014 ident: ref30 – ident: ref27 doi: 10.1109/LRA.2019.2897368 – ident: ref1 doi: 10.1109/ICC42927.2021.9500747 – ident: ref46 doi: 10.1109/TWC.2021.3108020 – year: 2019 ident: ref10 article-title: A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks publication-title: arXiv:1907.04789 – ident: ref16 doi: 10.1109/TWC.2020.3006915 |
| SSID | ssj0017655 |
| Score | 2.4864154 |
| Snippet | A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Autoregressive models D<sup xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 QN algorithm LSTM-ARIMA algorithm Machine learning Model accuracy multi-robot system Multi-robot systems Multiple robots NOMA Nonorthogonal multiple access Phase shift Resource management RIS Robot kinematics Robots Trajectory Trajectory optimization Wireless communication |
| Title | Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications |
| URI | https://ieeexplore.ieee.org/document/10070612 https://www.proquest.com/docview/2889730645 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLg9PETpx4rApVC2qRoBXdovg1AGpRmw7w67GdNCogEFsGO7LubN-d777vALjMsE58IijSvhQolMTcg2Gikdk7RFHBdOTg0cMR7U_C22k0LcHqDgujlHLFZ8qzny6XL-diZZ_K2jajb01yDdTihBZgrSplEFPX4tScYNtYJq5ykj5rj5-6nm0T7hETDgW24HnDBrmmKj9uYmdeentgtF5YUVXy4q1y7omPb5yN_175PtgtHU3YKXbGAdhSs0Ows0E_eATuBhUfZw6N0Xp2L_jv8NpVdUDjzsKHwSMa3Q870DJJSujgumgx5_McfoGWLBtg0rsZd_uobK6ABGY4R5xzpsIoloqGNNOKhJmPFTPxahCJzPLy-QRrI0dj8iVWiSZaGl-QcRlwY_UEOQb12XymTgBkvsA6pIQwHpiJ1FIQKk25kETrjOEmaK_FnYqSedw2wHhNXQTis9QoKLUKSksFNcFVNeOtYN34Y2zDyntjXCHqJmitVZqW53KZ4iRhsQ26otNfpp2Bbfv3Am7YAvV8sVLnxu_I-YXbb58Lj9Fv |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAwJE1tx41HxEMt0CJBK7pF8WsA1KI2HeDXYztpVUAgtgy2Yt3Zvjvffd8BnGbYJBGRLDCRkgFVxN6DNDGB3TtEM8lN7OHR7Q5r9uhNP-6XYHWPhdFa--IzHbpPn8tXQzlxT2U1l9F3JnkRlmJKaVzAtWZJgwbzTU7tGXatZRqzrGTEa92ni9A1Cg-JDYjqruR5zgr5tio_7mJvYK7XoTNdWlFX8hJOchHKj2-sjf9e-wasla4mOi_2xiYs6MEWrM4REG7DbWvGyJkja7ae_Rv-O7r0dR3IOrToofUYdO7b58hxSSrkAbvBaCiGOfoCLhnvQO_6qnvRDMr2CoHEHOeBEIJrGjeUZpRlRhOaRVhzG7HWY5k5Zr6IYGPlaI2-wjoxxCjrDXKh6sLaPUl2oTIYDvQeIB5JbCgjhIu6ncgcCaE2TEhFjMk4rkJtKu5UltzjrgXGa-pjkIinVkGpU1BaKqgKZ7MZbwXvxh9jd5y858YVoq7C4VSlaXkyxylOEt5wYVe8_8u0E1hudtt36V2rc3sAK-5PBfjwECr5aKKPrBeSi2O_9z4BMI3UvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Trajectory+Design+for+RIS-NOMA+Aided+Multi-Robot+Communications&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Gao%2C+Xinyu&rft.au=Mu%2C+Xidong&rft.au=Yi%2C+Wenqiang&rft.au=Liu%2C+Yuanwei&rft.date=2023-11-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=22&rft.issue=11&rft.spage=7648&rft.epage=7662&rft_id=info:doi/10.1109%2FTWC.2023.3254130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3254130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |