Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications

A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 22; no. 11; p. 1
Main Authors Gao, Xinyu, Mu, Xidong, Yi, Wenqiang, Liu, Yuanwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2023.3254130

Cover

Abstract A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D 3 QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D 3 QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D 3 QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts.
AbstractList A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D 3 QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D 3 QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D 3 QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts.
A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network ([Formula Omitted]QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots’ trajectories, [Formula Omitted]QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed [Formula Omitted]QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts.
Author Yi, Wenqiang
Mu, Xidong
Gao, Xinyu
Liu, Yuanwei
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-4058-8024
  surname: Gao
  fullname: Gao, Xinyu
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 2
  givenname: Xidong
  orcidid: 0000-0001-8351-360X
  surname: Mu
  fullname: Mu, Xidong
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 3
  givenname: Wenqiang
  orcidid: 0000-0003-4732-5040
  surname: Yi
  fullname: Yi, Wenqiang
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 4
  givenname: Yuanwei
  orcidid: 0000-0002-6389-8941
  surname: Liu
  fullname: Liu, Yuanwei
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnF30nGKnxVtFSCIsbISS6Vq9QutjP035PSDoiB6W54n7tXzwgNjDWA0DXBE0Jwdrf6zCcUUzZhVHDC8BkaEiHSmFKeDg47kzGhibxAI-83GJNECjFELzMToG31GkyIVk5toArW7aN78Hptosa66G32Hr8uF9NI6RrqaNG1QcfOljZEud1uO6MrFbQ1_hKdN6r1cHWaY_Tx-LDKn-P58mmWT-dxRTMa4rIsM-AiqUFyqRpgXGEKWcoSIirFBceY0aavSjmuKaQNa2rKSFbWpMRMVmyMbo93d85-deBDsbGdM_3LgqZpljAsuehT8piqnPXeQVNUOvwUDU7ptiC4OIgrenHFQVxxEteD-A-4c3qr3P4_5OaIaAD4FccJloSyb75ueYo
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TVT_2023_3332334
crossref_primary_10_1109_IOTM_001_2400208
crossref_primary_10_1007_s11276_025_03936_0
crossref_primary_10_1109_TWC_2024_3462450
crossref_primary_10_2478_amns_2024_1863
Cites_doi 10.1109/TWC.2019.2936025
10.1109/JSAC.2020.3000806
10.1109/JPROC.2022.3170656
10.1109/ICRA.2019.8794090
10.1109/TVT.2019.2949235
10.1109/TCCN.2021.3068750
10.1109/LCOMM.2020.3025978
10.1144/iavcei001.11
10.1109/LWC.2019.2951765
10.1109/LCOMM.2020.2974196
10.1109/TWC.2020.2988907
10.1007/s10514-019-09890-z
10.1109/TVT.2020.3024005
10.1109/TWC.2021.3057232
10.1109/LNET.2020.3037741
10.1109/TWC.2021.3122409
10.1023/B:TELS.0000029038.31947.d1
10.1109/TITS.2020.2974929
10.1036/1097-8542.434200
10.1109/TCOMM.2021.3082779
10.1016/0305-0548(94)00059-H
10.1109/ACCESS.2019.2935192
10.1109/ACCESS.2021.3065760
10.1109/VTCSpring.2013.6692652
10.1109/TWC.2021.3062089
10.17148/IARJSET.2015.2305
10.1016/j.robot.2020.103604
10.1109/MCOM.2017.1500657CM
10.1609/aaai.v30i1.10295
10.1109/TCOMM.2020.3032695
10.1002/9781119213154
10.1109/MCOM.001.1900107
10.1109/IROS45743.2020.9341096
10.1109/MCOM.111.2001118
10.1109/MCOM.2015.7263349
10.1109/TVT.2015.2480766
10.1109/LWC.2020.2999097
10.1109/LRA.2019.2897368
10.1109/ICC42927.2021.9500747
10.1109/TWC.2021.3108020
10.1109/TWC.2020.3006915
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3254130
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1
ExternalDocumentID 10_1109_TWC_2023_3254130
10070612
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
AETIX
AIBXA
CITATION
EJD
H~9
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-bbb9e457de646afe34a02e983715ca4540032f276240d2e8f3fd2319bd1b036c3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 10:49:41 EDT 2025
Wed Oct 01 04:51:05 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Wed Aug 27 02:14:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-bbb9e457de646afe34a02e983715ca4540032f276240d2e8f3fd2319bd1b036c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4732-5040
0000-0002-6389-8941
0000-0003-4058-8024
0000-0001-8351-360X
PQID 2889730645
PQPubID 105736
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TWC_2023_3254130
ieee_primary_10070612
crossref_primary_10_1109_TWC_2023_3254130
proquest_journals_2889730645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Walton (ref29) 2009
ref24
ref46
ref23
ref45
ref26
Wang (ref44)
ref25
ref20
ref42
ref22
ref21
ref43
Van Laarhoven (ref41) 2017
ref28
ref27
ref8
ref7
Rappaport (ref30) 2014
ref9
ref4
ref3
ref6
ref5
ref40
Zhao (ref10) 2019
References_xml – ident: ref36
  doi: 10.1109/TWC.2019.2936025
– ident: ref7
  doi: 10.1109/JSAC.2020.3000806
– ident: ref9
  doi: 10.1109/JPROC.2022.3170656
– ident: ref26
  doi: 10.1109/ICRA.2019.8794090
– volume-title: Multiple-access multiple-input multiple-output (MIMO) communication system
  year: 2009
  ident: ref29
– ident: ref45
  doi: 10.1109/TVT.2019.2949235
– ident: ref18
  doi: 10.1109/TCCN.2021.3068750
– ident: ref21
  doi: 10.1109/LCOMM.2020.3025978
– ident: ref35
  doi: 10.1144/iavcei001.11
– ident: ref38
  doi: 10.1109/LWC.2019.2951765
– ident: ref15
  doi: 10.1109/LCOMM.2020.2974196
– ident: ref34
  doi: 10.1109/TWC.2020.2988907
– year: 2017
  ident: ref41
  article-title: L2 regularization versus batch and weight normalization
  publication-title: arXiv:1706.05350
– ident: ref25
  doi: 10.1007/s10514-019-09890-z
– ident: ref19
  doi: 10.1109/TVT.2020.3024005
– ident: ref22
  doi: 10.1109/TWC.2021.3057232
– ident: ref31
  doi: 10.1109/LNET.2020.3037741
– ident: ref17
  doi: 10.1109/TWC.2021.3122409
– ident: ref3
  doi: 10.1023/B:TELS.0000029038.31947.d1
– ident: ref33
  doi: 10.1109/TITS.2020.2974929
– ident: ref39
  doi: 10.1036/1097-8542.434200
– ident: ref12
  doi: 10.1109/TCOMM.2021.3082779
– ident: ref42
  doi: 10.1016/0305-0548(94)00059-H
– ident: ref11
  doi: 10.1109/ACCESS.2019.2935192
– ident: ref13
  doi: 10.1109/ACCESS.2021.3065760
– ident: ref4
  doi: 10.1109/VTCSpring.2013.6692652
– ident: ref20
  doi: 10.1109/TWC.2021.3062089
– start-page: 1995
  volume-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML)
  ident: ref44
  article-title: Dueling network architectures for deep reinforcement learning
– ident: ref40
  doi: 10.17148/IARJSET.2015.2305
– ident: ref28
  doi: 10.1016/j.robot.2020.103604
– ident: ref37
  doi: 10.1109/MCOM.2017.1500657CM
– ident: ref43
  doi: 10.1609/aaai.v30i1.10295
– ident: ref14
  doi: 10.1109/TCOMM.2020.3032695
– ident: ref2
  doi: 10.1002/9781119213154
– ident: ref8
  doi: 10.1109/MCOM.001.1900107
– ident: ref32
  doi: 10.1109/IROS45743.2020.9341096
– ident: ref24
  doi: 10.1109/MCOM.111.2001118
– ident: ref5
  doi: 10.1109/MCOM.2015.7263349
– ident: ref6
  doi: 10.1109/TVT.2015.2480766
– ident: ref23
  doi: 10.1109/LWC.2020.2999097
– volume-title: Millimeter Wave Wireless Communications
  year: 2014
  ident: ref30
– ident: ref27
  doi: 10.1109/LRA.2019.2897368
– ident: ref1
  doi: 10.1109/ICC42927.2021.9500747
– ident: ref46
  doi: 10.1109/TWC.2021.3108020
– year: 2019
  ident: ref10
  article-title: A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks
  publication-title: arXiv:1907.04789
– ident: ref16
  doi: 10.1109/TWC.2020.3006915
SSID ssj0017655
Score 2.4864154
Snippet A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Autoregressive models
D<sup xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 QN algorithm
LSTM-ARIMA algorithm
Machine learning
Model accuracy
multi-robot system
Multi-robot systems
Multiple robots
NOMA
Nonorthogonal multiple access
Phase shift
Resource management
RIS
Robot kinematics
Robots
Trajectory
Trajectory optimization
Wireless communication
Title Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications
URI https://ieeexplore.ieee.org/document/10070612
https://www.proquest.com/docview/2889730645
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLg9PETpx4rApVC2qRoBXdovg1AGpRmw7w67GdNCogEFsGO7LubN-d777vALjMsE58IijSvhQolMTcg2Gikdk7RFHBdOTg0cMR7U_C22k0LcHqDgujlHLFZ8qzny6XL-diZZ_K2jajb01yDdTihBZgrSplEFPX4tScYNtYJq5ykj5rj5-6nm0T7hETDgW24HnDBrmmKj9uYmdeentgtF5YUVXy4q1y7omPb5yN_175PtgtHU3YKXbGAdhSs0Ows0E_eATuBhUfZw6N0Xp2L_jv8NpVdUDjzsKHwSMa3Q870DJJSujgumgx5_McfoGWLBtg0rsZd_uobK6ABGY4R5xzpsIoloqGNNOKhJmPFTPxahCJzPLy-QRrI0dj8iVWiSZaGl-QcRlwY_UEOQb12XymTgBkvsA6pIQwHpiJ1FIQKk25kETrjOEmaK_FnYqSedw2wHhNXQTis9QoKLUKSksFNcFVNeOtYN34Y2zDyntjXCHqJmitVZqW53KZ4iRhsQ26otNfpp2Bbfv3Am7YAvV8sVLnxu_I-YXbb58Lj9Fv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbAwJE1tx41HxEMt0CJBK7pF8WsA1KI2HeDXYztpVUAgtgy2Yt3Zvjvffd8BnGbYJBGRLDCRkgFVxN6DNDGB3TtEM8lN7OHR7Q5r9uhNP-6XYHWPhdFa--IzHbpPn8tXQzlxT2U1l9F3JnkRlmJKaVzAtWZJgwbzTU7tGXatZRqzrGTEa92ni9A1Cg-JDYjqruR5zgr5tio_7mJvYK7XoTNdWlFX8hJOchHKj2-sjf9e-wasla4mOi_2xiYs6MEWrM4REG7DbWvGyJkja7ae_Rv-O7r0dR3IOrToofUYdO7b58hxSSrkAbvBaCiGOfoCLhnvQO_6qnvRDMr2CoHEHOeBEIJrGjeUZpRlRhOaRVhzG7HWY5k5Zr6IYGPlaI2-wjoxxCjrDXKh6sLaPUl2oTIYDvQeIB5JbCgjhIu6ncgcCaE2TEhFjMk4rkJtKu5UltzjrgXGa-pjkIinVkGpU1BaKqgKZ7MZbwXvxh9jd5y858YVoq7C4VSlaXkyxylOEt5wYVe8_8u0E1hudtt36V2rc3sAK-5PBfjwECr5aKKPrBeSi2O_9z4BMI3UvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Trajectory+Design+for+RIS-NOMA+Aided+Multi-Robot+Communications&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Gao%2C+Xinyu&rft.au=Mu%2C+Xidong&rft.au=Yi%2C+Wenqiang&rft.au=Liu%2C+Yuanwei&rft.date=2023-11-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=22&rft.issue=11&rft.spage=7648&rft.epage=7662&rft_id=info:doi/10.1109%2FTWC.2023.3254130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3254130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon