IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches

This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 72; no. 11; pp. 1 - 11
Main Authors Amiriara, Hamid, Ashtiani, Farid, Mirmohseni, Mahtab, Nasiri-Kenari, Masoumeh
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2023.3282272

Cover

Abstract This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure.
AbstractList This article concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure.
This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure.
Author Mirmohseni, Mahtab
Amiriara, Hamid
Nasiri-Kenari, Masoumeh
Ashtiani, Farid
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0002-0860-0452
  surname: Amiriara
  fullname: Amiriara, Hamid
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: Farid
  orcidid: 0000-0002-6955-1711
  surname: Ashtiani
  fullname: Ashtiani, Farid
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mahtab
  orcidid: 0000-0002-5247-5820
  surname: Mirmohseni
  fullname: Mirmohseni, Mahtab
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 4
  givenname: Masoumeh
  orcidid: 0000-0002-2290-4460
  surname: Nasiri-Kenari
  fullname: Nasiri-Kenari, Masoumeh
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
BookMark eNp9kM1PwkAQxTdGEwG9e_CwiefifrS0460hfpCgJAJ6bLbbqS7Ctu4Wv_56i3AwHjxN5uX95mVel-zbyiIhJ5z1OWdwPnuY9QUTsi9FIkQs9kiHg4QAZAT7pMMYTwKIwuiQdL1ftGsYAu-Q1eh-Gsw9Opp6X2mjGlNZaizd6KkpsKC3o-mEPhqHS_Se3mHzXrkXf0GHlX3DDzqpG7MyX1tQ2dav9LOxSMeonDX2iaZ17apWRH9EDkq19Hi8mz0yv7qcDW-C8eR6NEzHgRYgmiCPtYojGWuJkYSQlQnECkGBzGMhFMocQOU5UzyJRFGCLkAzziJVIoR5iLJHzrZ32-DXNfomW1RrZ9vITCSwsUaDsHWxrUu7ynuHZVY7s1LuM-Ms25SataVmm1KzXaktMviDaNP8vN44ZZb_gadb0CDirxweSsml_AZvSoZz
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_OJCOMS_2024_3403850
crossref_primary_10_1109_ACCESS_2024_3395301
crossref_primary_10_1109_OJCOMS_2024_3487847
crossref_primary_10_1109_TVT_2024_3457876
crossref_primary_10_1109_OJCOMS_2025_3548537
crossref_primary_10_1109_TGCN_2024_3403527
Cites_doi 10.1109/comst.2020.3004197
10.1145/2020408.2020410
10.1109/comst.2022.3142532
10.1109/jsac.2020.3018823
10.1109/tcomm.2021.3051897
10.1109/twc.2021.3108020
10.1109/twc.2021.3073140
10.1103/physrevx.6.041008
10.1109/globecom42002.2020.9322586
10.1109/tvt.2019.2953809
10.1109/twc.2019.2936025
10.1109/tcomm.2022.3159658
10.1109/lcomm.2020.3041510
10.1109/tcomm.2020.3047098
10.1109/tcomm.2021.3087620
10.1109/lwc.2021.3104613
10.1109/lwc.2020.2968303
10.1109/26.795811
10.1109/tcomm.2021.3097726
10.1109/tcomm.2021.3136563
10.1109/lcomm.2021.3093362
10.1109/mwc.010.2000528
10.1109/twc.2020.3024860
10.1109/lwc.2020.2993699
10.1109/comst.2022.3155305
10.1109/tvt.2020.3031657
10.1201/9781315218427-12
10.1109/msp.2015.2481563
10.1016/j.sorms.2012.08.001
10.1109/ojcoms.2021.3057679
10.3390/s22145405
10.1109/access.2022.3157651
10.1109/access.2021.3079171
10.2307/2325085
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3282272
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 11
ExternalDocumentID 10_1109_TVT_2023_3282272
10143313
Genre orig-research
GrantInformation_xml – fundername: Iran National Foundation (INSF)
  grantid: 4001804
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-b7ca7537c3e53940f897ae9a93b722ae3b99abb0a1852df9cd9c0105afe94b4e3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 08:41:32 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Oct 01 02:27:12 EDT 2025
Wed Aug 27 02:56:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-b7ca7537c3e53940f897ae9a93b722ae3b99abb0a1852df9cd9c0105afe94b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0860-0452
0000-0002-5247-5820
0000-0002-6955-1711
0000-0002-2290-4460
PQID 2890105564
PQPubID 85454
PageCount 11
ParticipantIDs proquest_journals_2890105564
crossref_primary_10_1109_TVT_2023_3282272
crossref_citationtrail_10_1109_TVT_2023_3282272
ieee_primary_10143313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
Alwazani (ref7) 2021
ref28
ref27
ref29
ref8
(ref26) 2020
ref9
ref4
Yu (ref36) 2018
ref3
ref6
ref5
Bertsekas (ref32) 2009
References_xml – ident: ref2
  doi: 10.1109/comst.2020.3004197
– year: 2021
  ident: ref7
  article-title: Performance analysis under IRS-user association for distributed IRSs assisted MISO systems
– ident: ref31
  doi: 10.1145/2020408.2020410
– ident: ref13
  doi: 10.1109/comst.2022.3142532
– ident: ref20
  doi: 10.1109/jsac.2020.3018823
– ident: ref4
  doi: 10.1109/tcomm.2021.3051897
– year: 2020
  ident: ref26
  article-title: Press releases: DOCOMO conducts worlds first successful trial of transparent dynamic metasurface
– ident: ref28
  doi: 10.1109/twc.2021.3108020
– ident: ref8
  doi: 10.1109/twc.2021.3073140
– ident: ref24
  doi: 10.1103/physrevx.6.041008
– ident: ref10
  doi: 10.1109/globecom42002.2020.9322586
– ident: ref14
  doi: 10.1109/tvt.2019.2953809
– ident: ref34
  doi: 10.1109/twc.2019.2936025
– ident: ref1
  doi: 10.1109/tcomm.2022.3159658
– ident: ref19
  doi: 10.1109/lcomm.2020.3041510
– ident: ref30
  doi: 10.1109/tcomm.2020.3047098
– ident: ref6
  doi: 10.1109/tcomm.2021.3087620
– ident: ref29
  doi: 10.1109/lwc.2021.3104613
– ident: ref27
  doi: 10.1109/lwc.2020.2968303
– ident: ref33
  doi: 10.1109/26.795811
– ident: ref18
  doi: 10.1109/tcomm.2021.3097726
– ident: ref12
  doi: 10.1109/tcomm.2021.3136563
– ident: ref9
  doi: 10.1109/lcomm.2021.3093362
– ident: ref11
  doi: 10.1109/mwc.010.2000528
– ident: ref21
  doi: 10.1109/twc.2020.3024860
– ident: ref17
  doi: 10.1109/lwc.2020.2993699
– ident: ref25
  doi: 10.1109/comst.2022.3155305
– ident: ref5
  doi: 10.1109/tvt.2020.3031657
– start-page: 12-1
  volume-title: Intelligent Systems
  year: 2018
  ident: ref36
  article-title: LevenbergMarquardt training
  doi: 10.1201/9781315218427-12
– volume-title: Convex Optimization Theory
  year: 2009
  ident: ref32
– ident: ref35
  doi: 10.1109/msp.2015.2481563
– ident: ref22
  doi: 10.1016/j.sorms.2012.08.001
– ident: ref3
  doi: 10.1109/ojcoms.2021.3057679
– ident: ref23
  doi: 10.3390/s22145405
– ident: ref16
  doi: 10.1109/access.2022.3157651
– ident: ref15
  doi: 10.1109/access.2021.3079171
– ident: ref37
  doi: 10.2307/2325085
SSID ssj0014491
Score 2.519169
Snippet This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO)...
This article concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Array signal processing
Beamforming
Complexity
Computational complexity
Convex analysis
Convex optimization (CO)
Convexity
Downlink
Intelligent reflecting surface (IRS)
IRS-user association
Machine learning
Machine learning (ML)
MISO communication
Mixed integer
Neural networks
Optimization
Signal to noise ratio
Wireless communications
Wireless networks
Title IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches
URI https://ieeexplore.ieee.org/document/10143313
https://www.proquest.com/docview/2890105564
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFF04MXDxtj7djqjRAJmACJgOG2tF1niDCMQGL86-3rOoIajbdlabcmX_va1_e99yF0I-os4UAbTH0qHapY6GhfJXW8KBREBb6IzD1kr9_ojOnDJJjYZHWTC6OUMuQz5cKjieUnC7mGq7Ia6MoSAhq1u2HUyJO1NiEDSq08Xl2vYH0uKGKSHquNnkYuyIS7BEiTof9lDzKiKj8ssdle2oeoXwwsZ5W8uOuVcOXHt5qN_x75ETqwB03czGfGMdpR2Qna3yo_eIrm3cehM9ZzEG-BhKcZhvfNaaIS3OsOBxgYsjNtEXE_54wv73ALyOrveKANztxmcmKe6faGm6mwLdv6jJu2ZrlaltG4fT9qdRwrv-BIn_krR4SSa2cmlBoz0E9PIxZyxTgjIvR9rohgjAvhcci_TlImEyZBb5OnilFBFTlDpWyRqXOE9UFAO440oL7UltkjLI2oaBCZ6F9oHyiooFoBSCxtbXKQyJjFxkfxWKwhjAHC2EJYQbebHq95XY4_2pYBka12ORgVVC1Aj-3KXcYQeDWiofTil26XaA--nickVlFp9bZWV_pkshLXZkZ-Aj3c3To
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6MHtSDPzGiqD148bAx1o5Rb4RIQPmRCBhuS9t1hgjDCCTGv96-rhDUaLwtS5s2-drX99rvvQ-ha1FiMQfaYOJT6VDFQkfHKonjVUJBVOCLirmHbHfKjQG9HwZDm6xucmGUUoZ8plz4NG_58VQu4KqsCLqyhIBG7VZAKQ2ydK3VowGlViCvpPew9gyWr5IeK_af-i4IhbsEaJOh_-UUMrIqP2yxOWDq-6iznFrGK3lxF3Phyo9vVRv_PfcDtGddTVzN1sYh2lDpEdpdK0B4jCbNx54z0KsQr8GERymG_9VRrGLcbva6GDiyY20TcSdjjc9ucQ3o6u-4q03OxOZyYp7q9oadqbAt3PqMq7ZquZrl0KB-1681HCvA4Eif-XNHhJLrcCaUGjVQUE8qLOSKcUZE6PtcEcEYF8LjkIEdJ0zGTILiJk8Uo4IqcoI202mqThHWroAOHWlAfalts0dYUqGiTGSsh9BRUJBHxSUgkbTVyUEkYxyZKMVjkYYwAggjC2Ee3ax6vGaVOf5omwNE1tplYORRYQl6ZPfuLIKnVyMbSs9-6XaFthv9ditqNTsP52gHRsrSEwtoc_62UBfaT5mLS7M6PwH9FuCH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IRS-User+Association+in+IRS-Aided+MISO+Wireless+Networks%3A+Convex+Optimization+and+Machine+Learning+Approaches&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Amiriara%2C+Hamid&rft.au=Ashtiani%2C+Farid&rft.au=Mirmohseni%2C+Mahtab&rft.au=Nasiri-Kenari%2C+Masoumeh&rft.date=2023-11-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTVT.2023.3282272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2023_3282272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon