IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches
This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 72; no. 11; pp. 1 - 11 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2023.3282272 |
Cover
| Abstract | This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure. |
|---|---|
| AbstractList | This article concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure. This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure. |
| Author | Mirmohseni, Mahtab Amiriara, Hamid Nasiri-Kenari, Masoumeh Ashtiani, Farid |
| Author_xml | – sequence: 1 givenname: Hamid orcidid: 0000-0002-0860-0452 surname: Amiriara fullname: Amiriara, Hamid organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: Farid orcidid: 0000-0002-6955-1711 surname: Ashtiani fullname: Ashtiani, Farid organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: Mahtab orcidid: 0000-0002-5247-5820 surname: Mirmohseni fullname: Mirmohseni, Mahtab organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 4 givenname: Masoumeh orcidid: 0000-0002-2290-4460 surname: Nasiri-Kenari fullname: Nasiri-Kenari, Masoumeh organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran |
| BookMark | eNp9kM1PwkAQxTdGEwG9e_CwiefifrS0460hfpCgJAJ6bLbbqS7Ctu4Wv_56i3AwHjxN5uX95mVel-zbyiIhJ5z1OWdwPnuY9QUTsi9FIkQs9kiHg4QAZAT7pMMYTwKIwuiQdL1ftGsYAu-Q1eh-Gsw9Opp6X2mjGlNZaizd6KkpsKC3o-mEPhqHS_Se3mHzXrkXf0GHlX3DDzqpG7MyX1tQ2dav9LOxSMeonDX2iaZ17apWRH9EDkq19Hi8mz0yv7qcDW-C8eR6NEzHgRYgmiCPtYojGWuJkYSQlQnECkGBzGMhFMocQOU5UzyJRFGCLkAzziJVIoR5iLJHzrZ32-DXNfomW1RrZ9vITCSwsUaDsHWxrUu7ynuHZVY7s1LuM-Ms25SataVmm1KzXaktMviDaNP8vN44ZZb_gadb0CDirxweSsml_AZvSoZz |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_OJCOMS_2024_3403850 crossref_primary_10_1109_ACCESS_2024_3395301 crossref_primary_10_1109_OJCOMS_2024_3487847 crossref_primary_10_1109_TVT_2024_3457876 crossref_primary_10_1109_OJCOMS_2025_3548537 crossref_primary_10_1109_TGCN_2024_3403527 |
| Cites_doi | 10.1109/comst.2020.3004197 10.1145/2020408.2020410 10.1109/comst.2022.3142532 10.1109/jsac.2020.3018823 10.1109/tcomm.2021.3051897 10.1109/twc.2021.3108020 10.1109/twc.2021.3073140 10.1103/physrevx.6.041008 10.1109/globecom42002.2020.9322586 10.1109/tvt.2019.2953809 10.1109/twc.2019.2936025 10.1109/tcomm.2022.3159658 10.1109/lcomm.2020.3041510 10.1109/tcomm.2020.3047098 10.1109/tcomm.2021.3087620 10.1109/lwc.2021.3104613 10.1109/lwc.2020.2968303 10.1109/26.795811 10.1109/tcomm.2021.3097726 10.1109/tcomm.2021.3136563 10.1109/lcomm.2021.3093362 10.1109/mwc.010.2000528 10.1109/twc.2020.3024860 10.1109/lwc.2020.2993699 10.1109/comst.2022.3155305 10.1109/tvt.2020.3031657 10.1201/9781315218427-12 10.1109/msp.2015.2481563 10.1016/j.sorms.2012.08.001 10.1109/ojcoms.2021.3057679 10.3390/s22145405 10.1109/access.2022.3157651 10.1109/access.2021.3079171 10.2307/2325085 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2023.3282272 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TVT_2023_3282272 10143313 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Iran National Foundation (INSF) grantid: 4001804 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c292t-b7ca7537c3e53940f897ae9a93b722ae3b99abb0a1852df9cd9c0105afe94b4e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 08:41:32 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Oct 01 02:27:12 EDT 2025 Wed Aug 27 02:56:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-b7ca7537c3e53940f897ae9a93b722ae3b99abb0a1852df9cd9c0105afe94b4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0860-0452 0000-0002-5247-5820 0000-0002-6955-1711 0000-0002-2290-4460 |
| PQID | 2890105564 |
| PQPubID | 85454 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2890105564 crossref_primary_10_1109_TVT_2023_3282272 crossref_citationtrail_10_1109_TVT_2023_3282272 ieee_primary_10143313 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 Alwazani (ref7) 2021 ref28 ref27 ref29 ref8 (ref26) 2020 ref9 ref4 Yu (ref36) 2018 ref3 ref6 ref5 Bertsekas (ref32) 2009 |
| References_xml | – ident: ref2 doi: 10.1109/comst.2020.3004197 – year: 2021 ident: ref7 article-title: Performance analysis under IRS-user association for distributed IRSs assisted MISO systems – ident: ref31 doi: 10.1145/2020408.2020410 – ident: ref13 doi: 10.1109/comst.2022.3142532 – ident: ref20 doi: 10.1109/jsac.2020.3018823 – ident: ref4 doi: 10.1109/tcomm.2021.3051897 – year: 2020 ident: ref26 article-title: Press releases: DOCOMO conducts worlds first successful trial of transparent dynamic metasurface – ident: ref28 doi: 10.1109/twc.2021.3108020 – ident: ref8 doi: 10.1109/twc.2021.3073140 – ident: ref24 doi: 10.1103/physrevx.6.041008 – ident: ref10 doi: 10.1109/globecom42002.2020.9322586 – ident: ref14 doi: 10.1109/tvt.2019.2953809 – ident: ref34 doi: 10.1109/twc.2019.2936025 – ident: ref1 doi: 10.1109/tcomm.2022.3159658 – ident: ref19 doi: 10.1109/lcomm.2020.3041510 – ident: ref30 doi: 10.1109/tcomm.2020.3047098 – ident: ref6 doi: 10.1109/tcomm.2021.3087620 – ident: ref29 doi: 10.1109/lwc.2021.3104613 – ident: ref27 doi: 10.1109/lwc.2020.2968303 – ident: ref33 doi: 10.1109/26.795811 – ident: ref18 doi: 10.1109/tcomm.2021.3097726 – ident: ref12 doi: 10.1109/tcomm.2021.3136563 – ident: ref9 doi: 10.1109/lcomm.2021.3093362 – ident: ref11 doi: 10.1109/mwc.010.2000528 – ident: ref21 doi: 10.1109/twc.2020.3024860 – ident: ref17 doi: 10.1109/lwc.2020.2993699 – ident: ref25 doi: 10.1109/comst.2022.3155305 – ident: ref5 doi: 10.1109/tvt.2020.3031657 – start-page: 12-1 volume-title: Intelligent Systems year: 2018 ident: ref36 article-title: LevenbergMarquardt training doi: 10.1201/9781315218427-12 – volume-title: Convex Optimization Theory year: 2009 ident: ref32 – ident: ref35 doi: 10.1109/msp.2015.2481563 – ident: ref22 doi: 10.1016/j.sorms.2012.08.001 – ident: ref3 doi: 10.1109/ojcoms.2021.3057679 – ident: ref23 doi: 10.3390/s22145405 – ident: ref16 doi: 10.1109/access.2022.3157651 – ident: ref15 doi: 10.1109/access.2021.3079171 – ident: ref37 doi: 10.2307/2325085 |
| SSID | ssj0014491 |
| Score | 2.519169 |
| Snippet | This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO)... This article concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Array signal processing Beamforming Complexity Computational complexity Convex analysis Convex optimization (CO) Convexity Downlink Intelligent reflecting surface (IRS) IRS-user association Machine learning Machine learning (ML) MISO communication Mixed integer Neural networks Optimization Signal to noise ratio Wireless communications Wireless networks |
| Title | IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches |
| URI | https://ieeexplore.ieee.org/document/10143313 https://www.proquest.com/docview/2890105564 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFF04MXDxtj7djqjRAJmACJgOG2tF1niDCMQGL86-3rOoIajbdlabcmX_va1_e99yF0I-os4UAbTH0qHapY6GhfJXW8KBREBb6IzD1kr9_ojOnDJJjYZHWTC6OUMuQz5cKjieUnC7mGq7Ia6MoSAhq1u2HUyJO1NiEDSq08Xl2vYH0uKGKSHquNnkYuyIS7BEiTof9lDzKiKj8ssdle2oeoXwwsZ5W8uOuVcOXHt5qN_x75ETqwB03czGfGMdpR2Qna3yo_eIrm3cehM9ZzEG-BhKcZhvfNaaIS3OsOBxgYsjNtEXE_54wv73ALyOrveKANztxmcmKe6faGm6mwLdv6jJu2ZrlaltG4fT9qdRwrv-BIn_krR4SSa2cmlBoz0E9PIxZyxTgjIvR9rohgjAvhcci_TlImEyZBb5OnilFBFTlDpWyRqXOE9UFAO440oL7UltkjLI2oaBCZ6F9oHyiooFoBSCxtbXKQyJjFxkfxWKwhjAHC2EJYQbebHq95XY4_2pYBka12ORgVVC1Aj-3KXcYQeDWiofTil26XaA--nickVlFp9bZWV_pkshLXZkZ-Aj3c3To |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6MHtSDPzGiqD148bAx1o5Rb4RIQPmRCBhuS9t1hgjDCCTGv96-rhDUaLwtS5s2-drX99rvvQ-ha1FiMQfaYOJT6VDFQkfHKonjVUJBVOCLirmHbHfKjQG9HwZDm6xucmGUUoZ8plz4NG_58VQu4KqsCLqyhIBG7VZAKQ2ydK3VowGlViCvpPew9gyWr5IeK_af-i4IhbsEaJOh_-UUMrIqP2yxOWDq-6iznFrGK3lxF3Phyo9vVRv_PfcDtGddTVzN1sYh2lDpEdpdK0B4jCbNx54z0KsQr8GERymG_9VRrGLcbva6GDiyY20TcSdjjc9ucQ3o6u-4q03OxOZyYp7q9oadqbAt3PqMq7ZquZrl0KB-1681HCvA4Eif-XNHhJLrcCaUGjVQUE8qLOSKcUZE6PtcEcEYF8LjkIEdJ0zGTILiJk8Uo4IqcoI202mqThHWroAOHWlAfalts0dYUqGiTGSsh9BRUJBHxSUgkbTVyUEkYxyZKMVjkYYwAggjC2Ee3ax6vGaVOf5omwNE1tplYORRYQl6ZPfuLIKnVyMbSs9-6XaFthv9ditqNTsP52gHRsrSEwtoc_62UBfaT5mLS7M6PwH9FuCH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IRS-User+Association+in+IRS-Aided+MISO+Wireless+Networks%3A+Convex+Optimization+and+Machine+Learning+Approaches&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Amiriara%2C+Hamid&rft.au=Ashtiani%2C+Farid&rft.au=Mirmohseni%2C+Mahtab&rft.au=Nasiri-Kenari%2C+Masoumeh&rft.date=2023-11-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTVT.2023.3282272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2023_3282272 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |