Decomposition pathways of dinitramic acid and the dinitramide ion

Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. T...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 119; no. 1; pp. 232 - 240
Main Authors Alavi, Saman, Thompson, Donald L
Format Journal Article
LanguageEnglish
Published 01.07.2003
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
DOI10.1063/1.1577330

Cover

Abstract Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. The rates and pathways for the decomposition of HDN and the corresponding dinitramide ion are subjects of the present work. Density functional theory calculations at the B3LYP/6-311G(d,p) level are carried out to determine the geometries, vibrational frequencies, and zero-point energies of the reactants, products, and transition states involved in the gas phase decomposition of HDN. These geometries are then used in the modified Gaussian-2 method (G2M) to calculate energies to sufficient accuracy to predict the rates of the decomposition reactions. The lowest energy pathway for N2O formation initially involves an internal proton transfer in the HDN molecule. The system then passes through a four-center transition state that has a protonated bridge oxygen atom. The energy of this geometry is 35.2 kcal/mol higher than the reactant from which it is formed. This path has not been previously identified. The rates of the N2O elimination pathways are calculated using the RRKM theory. The rates of HDN and DN− decomposition are compared to each other and to the rate of N–N bond fission in dinitramic acid.
AbstractList NRC publication: No
Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. The rates and pathways for the decomposition of HDN and the corresponding dinitramide ion are subjects of the present work. Density functional theory calculations at the B3LYP/6-311G(d,p) level are carried out to determine the geometries, vibrational frequencies, and zero-point energies of the reactants, products, and transition states involved in the gas phase decomposition of HDN. These geometries are then used in the modified Gaussian-2 method (G2M) to calculate energies to sufficient accuracy to predict the rates of the decomposition reactions. The lowest energy pathway for N2O formation initially involves an internal proton transfer in the HDN molecule. The system then passes through a four-center transition state that has a protonated bridge oxygen atom. The energy of this geometry is 35.2 kcal/mol higher than the reactant from which it is formed. This path has not been previously identified. The rates of the N2O elimination pathways are calculated using the RRKM theory. The rates of HDN and DN− decomposition are compared to each other and to the rate of N–N bond fission in dinitramic acid.
Author Thompson, Donald L
Alavi, Saman
Author_xml – sequence: 1
  fullname: Alavi, Saman
– sequence: 2
  fullname: Thompson, Donald L
BookMark eNptUE1LAzEUDFLBtnrwH-TqYduXbDfZPZaqrVDwoufwNh800ibLJiD9925tURAvb3jDzHvDTMgoxGAJuWcwYyDKOZuxSsqyhCsyZlA3hRQNjMgYgLOiESBuyCSlDwBgki_GZPlodTx0MfnsY6Ad5t0nHhONjhoffO7x4DVF7Q3FYGje2V_eWDp4bsm1w32ydxeckvfnp7fVpti-rl9Wy22hecNzgVVrWiN57RxzzcK1IDXayslaSikApbOtrhuHIHQjRQXGcBQOeItGVxbKKZmf7-o-ptRbp7TPeEo9hPF7xUCdGlBMXRoYHA9_HF3vD9gf_9VuztrQa40BDf6II_rhVcpe-ROoQaH098AzHzocNsZLXgtRlV-B8HkV
CitedBy_id crossref_primary_10_1088_1742_6596_2891_3_032008
crossref_primary_10_1007_s10973_014_3688_4
crossref_primary_10_1039_b900915a
crossref_primary_10_1134_S0010508216050087
crossref_primary_10_1021_acs_jpca_8b06348
crossref_primary_10_1021_jp911277r
crossref_primary_10_1080_00268976_2017_1301589
crossref_primary_10_1063_1_1593011
crossref_primary_10_3390_ma16237437
crossref_primary_10_1007_s00214_013_1412_2
crossref_primary_10_1039_C9NJ06246G
crossref_primary_10_1039_D3RA08053F
crossref_primary_10_1063_1_1990121
crossref_primary_10_1080_00268976_2018_1453093
crossref_primary_10_1080_08927022_2018_1518578
crossref_primary_10_1039_D3RA06708D
crossref_primary_10_1016_j_chemphys_2008_02_044
crossref_primary_10_1016_j_mtcomm_2024_110974
crossref_primary_10_1007_s10973_015_4564_6
Cites_doi 10.1021/jp952144j
10.1063/1.456415
10.1002/kin.550250705
10.1063/1.470313
10.1021/jp9625063
10.1016/0009-2614(92)86093-W
10.1063/1.464480
10.1063/1.464913
10.1063/1.437698
10.1021/ja9709280
10.1023/A:1009555405171
10.1016/S0040-6031(01)00776-6
10.1016/S0166-1280(97)00206-6
10.1063/1.1535439
10.1021/j100018a015
10.1063/1.453520
10.1016/0010-2180(93)90206-I
10.1016/S0010-2180(01)00269-3
10.1103/PhysRev.46.618
10.1002/qua.560100102
10.1063/1.1489995
10.1016/0009-2614(93)90107-C
10.1016/S0022-2860(00)00697-9
10.1021/j100127a008
10.1021/jp9911447
10.1002/qua.560140503
10.1007/BF00697140
10.1080/01442350110071957
10.1021/jp963116j
10.1063/1.473925
10.1016/S0009-2614(89)87395-6
ContentType Journal Article
DBID -LJ
GXV
AAYXX
CITATION
DOI 10.1063/1.1577330
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences
Chemistry
Physics
EISSN 1089-7690
EndPage 240
ExternalDocumentID 10_1063_1_1577330
oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665
GroupedDBID ---
-DZ
-ET
-LJ
-~X
123
186
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABPPZ
ABRJW
ABUFD
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
GXV
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
VOH
WH7
YQT
YZZ
ZCG
ZXP
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c292t-a5bdbd728ff1f94fb07cae5f7877760a7febc89fa06c97650dd2a6f02badc5e03
ISSN 0021-9606
IngestDate Tue Jul 01 01:54:49 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Oct 24 21:11:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-a5bdbd728ff1f94fb07cae5f7877760a7febc89fa06c97650dd2a6f02badc5e03
PageCount 9
ParticipantIDs crossref_citationtrail_10_1063_1_1577330
crossref_primary_10_1063_1_1577330
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-07-01
PublicationDateYYYYMMDD 2003-07-01
PublicationDate_xml – month: 07
  year: 2003
  text: 2003-07-01
  day: 01
PublicationDecade 2000
PublicationTitle The Journal of chemical physics
PublicationYear 2003
References (2024020610322608100_r3) 1993; 25
2024020610322608100_r18
(2024020610322608100_r16) 1999; 103
2024020610322608100_r19
(2024020610322608100_r17) 1997; 119
2024020610322608100_r37
(2024020610322608100_r6) 1997; 101
2024020610322608100_r32
(2024020610322608100_r21) 2002; 117
2024020610322608100_r12
(2024020610322608100_r26) 1993; 98
(2024020610322608100_r10) 1993; 97
(2024020610322608100_r4) 1996; 100
(2024020610322608100_r35) 1979; 70
(2024020610322608100_r38) 2001; 20
(2024020610322608100_r31) 1989; 90
(2024020610322608100_r11) 1998; 427
(2024020610322608100_r27) 1992; 190
(2024020610322608100_r8) 2001; 126
(2024020610322608100_r23) 1978; 14
2024020610322608100_r28
(2024020610322608100_r22) 1995; 103
2024020610322608100_r1
(2024020610322608100_r36) 1997; 106
(2024020610322608100_r7) 2000; 49
(2024020610322608100_r13) 1995; 99
(2024020610322608100_r14) 2001; 559
(2024020610322608100_r20) 1993; 98
(2024020610322608100_r24) 1987; 87
(2024020610322608100_r25) 1989; 157
(2024020610322608100_r5) 1997; 101
(2024020610322608100_r9) 2002; 384
(2024020610322608100_r30) 1976; 10
(2024020610322608100_r34) 1994; 43
(2024020610322608100_r33) 1993; 216
(2024020610322608100_r2) 1993; 92
(2024020610322608100_r15) 2003; 118
(2024020610322608100_r29) 1934; 46
References_xml – volume: 100
  start-page: 3248
  year: 1996
  ident: 2024020610322608100_r4
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952144j
– volume: 90
  start-page: 5622
  year: 1989
  ident: 2024020610322608100_r31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456415
– volume: 25
  start-page: 549
  year: 1993
  ident: 2024020610322608100_r3
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550250705
– ident: 2024020610322608100_r28
– ident: 2024020610322608100_r1
– volume: 103
  start-page: 7414
  year: 1995
  ident: 2024020610322608100_r22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470313
– ident: 2024020610322608100_r32
– volume: 101
  start-page: 5646
  year: 1997
  ident: 2024020610322608100_r6
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9625063
– volume: 190
  start-page: 1
  year: 1992
  ident: 2024020610322608100_r27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)86093-W
– volume: 98
  start-page: 8718
  year: 1993
  ident: 2024020610322608100_r26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464480
– volume: 98
  start-page: 5648
  year: 1993
  ident: 2024020610322608100_r20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 70
  start-page: 1593
  year: 1979
  ident: 2024020610322608100_r35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437698
– volume: 119
  start-page: 9411
  year: 1997
  ident: 2024020610322608100_r17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9709280
– ident: 2024020610322608100_r18
– volume: 49
  start-page: 1974
  year: 2000
  ident: 2024020610322608100_r7
  publication-title: Russ. Chem. Bull.
  doi: 10.1023/A:1009555405171
– ident: 2024020610322608100_r37
– volume: 384
  start-page: 47
  year: 2002
  ident: 2024020610322608100_r9
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(01)00776-6
– volume: 427
  start-page: 123
  year: 1998
  ident: 2024020610322608100_r11
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/S0166-1280(97)00206-6
– volume: 118
  start-page: 2599
  year: 2003
  ident: 2024020610322608100_r15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1535439
– volume: 99
  start-page: 6842
  year: 1995
  ident: 2024020610322608100_r13
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100018a015
– volume: 87
  start-page: 5968
  year: 1987
  ident: 2024020610322608100_r24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.453520
– volume: 92
  start-page: 178
  year: 1993
  ident: 2024020610322608100_r2
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(93)90206-I
– volume: 126
  start-page: 1516
  year: 2001
  ident: 2024020610322608100_r8
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(01)00269-3
– ident: 2024020610322608100_r12
– volume: 46
  start-page: 618
  year: 1934
  ident: 2024020610322608100_r29
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 10
  start-page: 1
  year: 1976
  ident: 2024020610322608100_r30
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560100102
– volume: 117
  start-page: 2599
  year: 2002
  ident: 2024020610322608100_r21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1489995
– volume: 216
  start-page: 348
  year: 1993
  ident: 2024020610322608100_r33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)90107-C
– ident: 2024020610322608100_r19
– volume: 559
  start-page: 147
  year: 2001
  ident: 2024020610322608100_r14
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(00)00697-9
– volume: 97
  start-page: 6602
  year: 1993
  ident: 2024020610322608100_r10
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100127a008
– volume: 103
  start-page: 6774
  year: 1999
  ident: 2024020610322608100_r16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9911447
– volume: 14
  start-page: 545
  year: 1978
  ident: 2024020610322608100_r23
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560140503
– volume: 43
  start-page: 1522
  year: 1994
  ident: 2024020610322608100_r34
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/BF00697140
– volume: 20
  start-page: 617
  year: 2001
  ident: 2024020610322608100_r38
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350110071957
– volume: 101
  start-page: 7217
  year: 1997
  ident: 2024020610322608100_r5
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp963116j
– volume: 106
  start-page: 8710
  year: 1997
  ident: 2024020610322608100_r36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473925
– volume: 157
  start-page: 479
  year: 1989
  ident: 2024020610322608100_r25
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(89)87395-6
SSID ssj0001724
Score 1.8371221
Snippet NRC publication: No
Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N...
SourceID crossref
nrccanada
SourceType Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms chemical exchanges
density functional theory
dissociation
hydrogen compounds
molecular configurations
negative ions
reaction rate constants
vibrational states
Title Decomposition pathways of dinitramic acid and the dinitramide ion
URI https://nrc-publications.canada.ca/eng/view/object/?id=f30ffdcb-759f-4759-a904-d5fd18eaf43a
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_0pNUXsddKrVqW0oeCxG6-L4_BD6TUUqiCb2E_8USjXNOW9q93JtlsTnoPtfiyOYa9zTG_zeS3c_MB8B5PFBJtowySOFdBkuo0mJgkDsjhj2x_okxECc6nX7KT8-TTRXox9Alts0saua_-LMwr-R9UUYa4UpbsI5D1i6IAPyO-OCLCOP4TxoeGIsJd2BWVSL38JX63sRn4Rpo2M-o1vyfUVPs4SS_XZq9H5GrYMHP0VPWVBDrfh6fe5bX4Oe18yTfDzhriSoiTk7vZpTP0DoXYB58OAf5hQAebhRYWKQ0d9vfDNM9j95fK3wWrFRmoakqXqp6pSrWD6OT1HT7DFXE5Kra3DCsRWmQ-gpXy8PTzN_8eRWrlamh3P6evC5XFH_3tH7CJVbxJGyon5ijC2QasO-WxsgPqBSyZegyrB31LvTE8-9rpcgzPnU39_hLKByiyHkV2a9mAIiMUGaLIEEU2hyLD77yC8-Ojs4OTwDW2CFRURE0gUqmlzqOJtaEtEit5roRJbU7FGTMucmukmhRW8EwhXUy51pHILI-k0Co1PN6EUX1bm9fACsGp_BA3hTa4kJWGhzhLFmFhSb4FH3oFofK76A5qPnJdtdEHWVyFldPlFrzzU--6UieLJpVey37WIxF_8wRrbMPasHd3YNTMfphdpIeNfOv20T1hxG8v
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+pathways+of+dinitramic+acid+and+the+dinitramide+ion&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Alavi%2C+Saman&rft.au=Thompson%2C+Donald+L&rft.date=2003-07-01&rft.issn=0021-9606&rft_id=info:doi/10.1063%2F1.1577330&rft.externalDocID=oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon