Decomposition pathways of dinitramic acid and the dinitramide ion
Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. T...
Saved in:
| Published in | The Journal of chemical physics Vol. 119; no. 1; pp. 232 - 240 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.07.2003
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 |
| DOI | 10.1063/1.1577330 |
Cover
| Abstract | Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. The rates and pathways for the decomposition of HDN and the corresponding dinitramide ion are subjects of the present work. Density functional theory calculations at the B3LYP/6-311G(d,p) level are carried out to determine the geometries, vibrational frequencies, and zero-point energies of the reactants, products, and transition states involved in the gas phase decomposition of HDN. These geometries are then used in the modified Gaussian-2 method (G2M) to calculate energies to sufficient accuracy to predict the rates of the decomposition reactions. The lowest energy pathway for N2O formation initially involves an internal proton transfer in the HDN molecule. The system then passes through a four-center transition state that has a protonated bridge oxygen atom. The energy of this geometry is 35.2 kcal/mol higher than the reactant from which it is formed. This path has not been previously identified. The rates of the N2O elimination pathways are calculated using the RRKM theory. The rates of HDN and DN− decomposition are compared to each other and to the rate of N–N bond fission in dinitramic acid. |
|---|---|
| AbstractList | NRC publication: No Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N bond fission, HDN→HṄNO2+ṄO2. A molecular rearrangement pathway for the gas phase dinitramide ion N(NO2)2−[DN−], DN−→NO3−+N2O, can also occur. The rates and pathways for the decomposition of HDN and the corresponding dinitramide ion are subjects of the present work. Density functional theory calculations at the B3LYP/6-311G(d,p) level are carried out to determine the geometries, vibrational frequencies, and zero-point energies of the reactants, products, and transition states involved in the gas phase decomposition of HDN. These geometries are then used in the modified Gaussian-2 method (G2M) to calculate energies to sufficient accuracy to predict the rates of the decomposition reactions. The lowest energy pathway for N2O formation initially involves an internal proton transfer in the HDN molecule. The system then passes through a four-center transition state that has a protonated bridge oxygen atom. The energy of this geometry is 35.2 kcal/mol higher than the reactant from which it is formed. This path has not been previously identified. The rates of the N2O elimination pathways are calculated using the RRKM theory. The rates of HDN and DN− decomposition are compared to each other and to the rate of N–N bond fission in dinitramic acid. |
| Author | Thompson, Donald L Alavi, Saman |
| Author_xml | – sequence: 1 fullname: Alavi, Saman – sequence: 2 fullname: Thompson, Donald L |
| BookMark | eNptUE1LAzEUDFLBtnrwH-TqYduXbDfZPZaqrVDwoufwNh800ibLJiD9925tURAvb3jDzHvDTMgoxGAJuWcwYyDKOZuxSsqyhCsyZlA3hRQNjMgYgLOiESBuyCSlDwBgki_GZPlodTx0MfnsY6Ad5t0nHhONjhoffO7x4DVF7Q3FYGje2V_eWDp4bsm1w32ydxeckvfnp7fVpti-rl9Wy22hecNzgVVrWiN57RxzzcK1IDXayslaSikApbOtrhuHIHQjRQXGcBQOeItGVxbKKZmf7-o-ptRbp7TPeEo9hPF7xUCdGlBMXRoYHA9_HF3vD9gf_9VuztrQa40BDf6II_rhVcpe-ROoQaH098AzHzocNsZLXgtRlV-B8HkV |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2891_3_032008 crossref_primary_10_1007_s10973_014_3688_4 crossref_primary_10_1039_b900915a crossref_primary_10_1134_S0010508216050087 crossref_primary_10_1021_acs_jpca_8b06348 crossref_primary_10_1021_jp911277r crossref_primary_10_1080_00268976_2017_1301589 crossref_primary_10_1063_1_1593011 crossref_primary_10_3390_ma16237437 crossref_primary_10_1007_s00214_013_1412_2 crossref_primary_10_1039_C9NJ06246G crossref_primary_10_1039_D3RA08053F crossref_primary_10_1063_1_1990121 crossref_primary_10_1080_00268976_2018_1453093 crossref_primary_10_1080_08927022_2018_1518578 crossref_primary_10_1039_D3RA06708D crossref_primary_10_1016_j_chemphys_2008_02_044 crossref_primary_10_1016_j_mtcomm_2024_110974 crossref_primary_10_1007_s10973_015_4564_6 |
| Cites_doi | 10.1021/jp952144j 10.1063/1.456415 10.1002/kin.550250705 10.1063/1.470313 10.1021/jp9625063 10.1016/0009-2614(92)86093-W 10.1063/1.464480 10.1063/1.464913 10.1063/1.437698 10.1021/ja9709280 10.1023/A:1009555405171 10.1016/S0040-6031(01)00776-6 10.1016/S0166-1280(97)00206-6 10.1063/1.1535439 10.1021/j100018a015 10.1063/1.453520 10.1016/0010-2180(93)90206-I 10.1016/S0010-2180(01)00269-3 10.1103/PhysRev.46.618 10.1002/qua.560100102 10.1063/1.1489995 10.1016/0009-2614(93)90107-C 10.1016/S0022-2860(00)00697-9 10.1021/j100127a008 10.1021/jp9911447 10.1002/qua.560140503 10.1007/BF00697140 10.1080/01442350110071957 10.1021/jp963116j 10.1063/1.473925 10.1016/S0009-2614(89)87395-6 |
| ContentType | Journal Article |
| DBID | -LJ GXV AAYXX CITATION |
| DOI | 10.1063/1.1577330 |
| DatabaseName | National Research Council Canada Archive CISTI Source CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences Chemistry Physics |
| EISSN | 1089-7690 |
| EndPage | 240 |
| ExternalDocumentID | 10_1063_1_1577330 oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665 |
| GroupedDBID | --- -DZ -ET -LJ -~X 123 186 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAGWI AAPUP AAYIH ABJGX ABPPZ ABRJW ABUFD ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ GXV HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL VOH WH7 YQT YZZ ZCG ZXP ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c292t-a5bdbd728ff1f94fb07cae5f7877760a7febc89fa06c97650dd2a6f02badc5e03 |
| ISSN | 0021-9606 |
| IngestDate | Tue Jul 01 01:54:49 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Fri Oct 24 21:11:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c292t-a5bdbd728ff1f94fb07cae5f7877760a7febc89fa06c97650dd2a6f02badc5e03 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1063_1_1577330 crossref_primary_10_1063_1_1577330 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2003-07-01 |
| PublicationDateYYYYMMDD | 2003-07-01 |
| PublicationDate_xml | – month: 07 year: 2003 text: 2003-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | The Journal of chemical physics |
| PublicationYear | 2003 |
| References | (2024020610322608100_r3) 1993; 25 2024020610322608100_r18 (2024020610322608100_r16) 1999; 103 2024020610322608100_r19 (2024020610322608100_r17) 1997; 119 2024020610322608100_r37 (2024020610322608100_r6) 1997; 101 2024020610322608100_r32 (2024020610322608100_r21) 2002; 117 2024020610322608100_r12 (2024020610322608100_r26) 1993; 98 (2024020610322608100_r10) 1993; 97 (2024020610322608100_r4) 1996; 100 (2024020610322608100_r35) 1979; 70 (2024020610322608100_r38) 2001; 20 (2024020610322608100_r31) 1989; 90 (2024020610322608100_r11) 1998; 427 (2024020610322608100_r27) 1992; 190 (2024020610322608100_r8) 2001; 126 (2024020610322608100_r23) 1978; 14 2024020610322608100_r28 (2024020610322608100_r22) 1995; 103 2024020610322608100_r1 (2024020610322608100_r36) 1997; 106 (2024020610322608100_r7) 2000; 49 (2024020610322608100_r13) 1995; 99 (2024020610322608100_r14) 2001; 559 (2024020610322608100_r20) 1993; 98 (2024020610322608100_r24) 1987; 87 (2024020610322608100_r25) 1989; 157 (2024020610322608100_r5) 1997; 101 (2024020610322608100_r9) 2002; 384 (2024020610322608100_r30) 1976; 10 (2024020610322608100_r34) 1994; 43 (2024020610322608100_r33) 1993; 216 (2024020610322608100_r2) 1993; 92 (2024020610322608100_r15) 2003; 118 (2024020610322608100_r29) 1934; 46 |
| References_xml | – volume: 100 start-page: 3248 year: 1996 ident: 2024020610322608100_r4 publication-title: J. Phys. Chem. doi: 10.1021/jp952144j – volume: 90 start-page: 5622 year: 1989 ident: 2024020610322608100_r31 publication-title: J. Chem. Phys. doi: 10.1063/1.456415 – volume: 25 start-page: 549 year: 1993 ident: 2024020610322608100_r3 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550250705 – ident: 2024020610322608100_r28 – ident: 2024020610322608100_r1 – volume: 103 start-page: 7414 year: 1995 ident: 2024020610322608100_r22 publication-title: J. Chem. Phys. doi: 10.1063/1.470313 – ident: 2024020610322608100_r32 – volume: 101 start-page: 5646 year: 1997 ident: 2024020610322608100_r6 publication-title: J. Phys. Chem. A doi: 10.1021/jp9625063 – volume: 190 start-page: 1 year: 1992 ident: 2024020610322608100_r27 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)86093-W – volume: 98 start-page: 8718 year: 1993 ident: 2024020610322608100_r26 publication-title: J. Chem. Phys. doi: 10.1063/1.464480 – volume: 98 start-page: 5648 year: 1993 ident: 2024020610322608100_r20 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 70 start-page: 1593 year: 1979 ident: 2024020610322608100_r35 publication-title: J. Chem. Phys. doi: 10.1063/1.437698 – volume: 119 start-page: 9411 year: 1997 ident: 2024020610322608100_r17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9709280 – ident: 2024020610322608100_r18 – volume: 49 start-page: 1974 year: 2000 ident: 2024020610322608100_r7 publication-title: Russ. Chem. Bull. doi: 10.1023/A:1009555405171 – ident: 2024020610322608100_r37 – volume: 384 start-page: 47 year: 2002 ident: 2024020610322608100_r9 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(01)00776-6 – volume: 427 start-page: 123 year: 1998 ident: 2024020610322608100_r11 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/S0166-1280(97)00206-6 – volume: 118 start-page: 2599 year: 2003 ident: 2024020610322608100_r15 publication-title: J. Chem. Phys. doi: 10.1063/1.1535439 – volume: 99 start-page: 6842 year: 1995 ident: 2024020610322608100_r13 publication-title: J. Phys. Chem. doi: 10.1021/j100018a015 – volume: 87 start-page: 5968 year: 1987 ident: 2024020610322608100_r24 publication-title: J. Chem. Phys. doi: 10.1063/1.453520 – volume: 92 start-page: 178 year: 1993 ident: 2024020610322608100_r2 publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90206-I – volume: 126 start-page: 1516 year: 2001 ident: 2024020610322608100_r8 publication-title: Combust. Flame doi: 10.1016/S0010-2180(01)00269-3 – ident: 2024020610322608100_r12 – volume: 46 start-page: 618 year: 1934 ident: 2024020610322608100_r29 publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 10 start-page: 1 year: 1976 ident: 2024020610322608100_r30 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560100102 – volume: 117 start-page: 2599 year: 2002 ident: 2024020610322608100_r21 publication-title: J. Chem. Phys. doi: 10.1063/1.1489995 – volume: 216 start-page: 348 year: 1993 ident: 2024020610322608100_r33 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)90107-C – ident: 2024020610322608100_r19 – volume: 559 start-page: 147 year: 2001 ident: 2024020610322608100_r14 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(00)00697-9 – volume: 97 start-page: 6602 year: 1993 ident: 2024020610322608100_r10 publication-title: J. Phys. Chem. doi: 10.1021/j100127a008 – volume: 103 start-page: 6774 year: 1999 ident: 2024020610322608100_r16 publication-title: J. Phys. Chem. B doi: 10.1021/jp9911447 – volume: 14 start-page: 545 year: 1978 ident: 2024020610322608100_r23 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560140503 – volume: 43 start-page: 1522 year: 1994 ident: 2024020610322608100_r34 publication-title: Russ. Chem. Bull. doi: 10.1007/BF00697140 – volume: 20 start-page: 617 year: 2001 ident: 2024020610322608100_r38 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442350110071957 – volume: 101 start-page: 7217 year: 1997 ident: 2024020610322608100_r5 publication-title: J. Phys. Chem. A doi: 10.1021/jp963116j – volume: 106 start-page: 8710 year: 1997 ident: 2024020610322608100_r36 publication-title: J. Chem. Phys. doi: 10.1063/1.473925 – volume: 157 start-page: 479 year: 1989 ident: 2024020610322608100_r25 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(89)87395-6 |
| SSID | ssj0001724 |
| Score | 1.8371221 |
| Snippet | NRC publication: No Gas-phase dinitramic acid HN(NO2)2 [HDN] decomposes along two pathways, one involving a molecular rearrangement, HDN→HNO3+N2O, and a second initiated by N–N... |
| SourceID | crossref nrccanada |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 232 |
| SubjectTerms | chemical exchanges density functional theory dissociation hydrogen compounds molecular configurations negative ions reaction rate constants vibrational states |
| Title | Decomposition pathways of dinitramic acid and the dinitramide ion |
| URI | https://nrc-publications.canada.ca/eng/view/object/?id=f30ffdcb-759f-4759-a904-d5fd18eaf43a |
| Volume | 119 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_0pNUXsddKrVqW0oeCxG6-L4_BD6TUUqiCb2E_8USjXNOW9q93JtlsTnoPtfiyOYa9zTG_zeS3c_MB8B5PFBJtowySOFdBkuo0mJgkDsjhj2x_okxECc6nX7KT8-TTRXox9Alts0saua_-LMwr-R9UUYa4UpbsI5D1i6IAPyO-OCLCOP4TxoeGIsJd2BWVSL38JX63sRn4Rpo2M-o1vyfUVPs4SS_XZq9H5GrYMHP0VPWVBDrfh6fe5bX4Oe18yTfDzhriSoiTk7vZpTP0DoXYB58OAf5hQAebhRYWKQ0d9vfDNM9j95fK3wWrFRmoakqXqp6pSrWD6OT1HT7DFXE5Kra3DCsRWmQ-gpXy8PTzN_8eRWrlamh3P6evC5XFH_3tH7CJVbxJGyon5ijC2QasO-WxsgPqBSyZegyrB31LvTE8-9rpcgzPnU39_hLKByiyHkV2a9mAIiMUGaLIEEU2hyLD77yC8-Ojs4OTwDW2CFRURE0gUqmlzqOJtaEtEit5roRJbU7FGTMucmukmhRW8EwhXUy51pHILI-k0Co1PN6EUX1bm9fACsGp_BA3hTa4kJWGhzhLFmFhSb4FH3oFofK76A5qPnJdtdEHWVyFldPlFrzzU--6UieLJpVey37WIxF_8wRrbMPasHd3YNTMfphdpIeNfOv20T1hxG8v |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+pathways+of+dinitramic+acid+and+the+dinitramide+ion&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Alavi%2C+Saman&rft.au=Thompson%2C+Donald+L&rft.date=2003-07-01&rft.issn=0021-9606&rft_id=info:doi/10.1063%2F1.1577330&rft.externalDocID=oai_cisti_icist_nrc_cnrc_ca_cistinparc_12328665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |