Water, Collagen, and Lipid Content in the Human Skin and Muscles Assessed with Near‐Infrared Diffuse Reflectance Spectroscopy and Multi‐Spectral Optoacoustic Tomography

Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science p. e05619
Main Authors Davydov, Denis, Kurnikov, Alexey, Subochev, Pavel, Budylin, Gleb, Fadeev, Nikolay, Filippov, Ivan, Mokrysheva, Natalia, Urusova, Liliya, Razansky, Daniel, Shirshin, Evgeny
Format Journal Article
LanguageEnglish
Published Germany 13.08.2025
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202505619

Cover

Abstract Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi‐spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near‐infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high‐resolution depth‐resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia.
AbstractList Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia.
Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia.Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia.
Author Subochev, Pavel
Fadeev, Nikolay
Urusova, Liliya
Shirshin, Evgeny
Davydov, Denis
Razansky, Daniel
Filippov, Ivan
Mokrysheva, Natalia
Kurnikov, Alexey
Budylin, Gleb
Author_xml – sequence: 1
  givenname: Denis
  surname: Davydov
  fullname: Davydov, Denis
  organization: Laboratory of Clinical Biophotonics Institute for Regenerative Medicine I.M. Sechenov First Moscow State Medical University Moscow 119048 Russia, Medical research and Educational Institute Lomonosov Moscow State University Moscow 119991 Russia
– sequence: 2
  givenname: Alexey
  surname: Kurnikov
  fullname: Kurnikov, Alexey
  organization: Laboratory of ultrasound and optoacoustic diagnostics Division of radiophysics methods in medicine A.V. Gaponov‐Grekhov Institute of Applied Physics RAS Nizhny Novgorod 603950 Russia
– sequence: 3
  givenname: Pavel
  surname: Subochev
  fullname: Subochev, Pavel
  organization: Laboratory of ultrasound and optoacoustic diagnostics Division of radiophysics methods in medicine A.V. Gaponov‐Grekhov Institute of Applied Physics RAS Nizhny Novgorod 603950 Russia
– sequence: 4
  givenname: Gleb
  surname: Budylin
  fullname: Budylin, Gleb
  organization: Laboratory of Clinical Biophotonics Institute for Regenerative Medicine I.M. Sechenov First Moscow State Medical University Moscow 119048 Russia
– sequence: 5
  givenname: Nikolay
  surname: Fadeev
  fullname: Fadeev, Nikolay
  organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia
– sequence: 6
  givenname: Ivan
  surname: Filippov
  fullname: Filippov, Ivan
  organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia
– sequence: 7
  givenname: Natalia
  surname: Mokrysheva
  fullname: Mokrysheva, Natalia
  organization: Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia
– sequence: 8
  givenname: Liliya
  surname: Urusova
  fullname: Urusova, Liliya
  organization: Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia
– sequence: 9
  givenname: Daniel
  surname: Razansky
  fullname: Razansky, Daniel
  organization: Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology Faculty of Medicine University of Zurich Zurich 8057 Switzerland, Institute for Biomedical Engineering Department of Information Technology and Electrical Engineering ETH Zurich Zurich 8093 Switzerland
– sequence: 10
  givenname: Evgeny
  surname: Shirshin
  fullname: Shirshin, Evgeny
  organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia, Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40799083$$D View this record in MEDLINE/PubMed
BookMark eNpNkc9uEzEQxi3UipbSK0fkI4cm9b_Nro9VKLRSoBIt4ria2uNmYddebG9RbjwCD8JT8SQ4SqiQRvJ45jef7PlekAMfPBLyirM5Z0ycg31Mc8FExaoF18_IseC6mclGqYP_8iNymtJXxhivZK1485wcKVZrzRp5TH5_gYzxjC5D38MD-jMK3tJVN3a21HxGn2nnaV4jvZoG8PT2W7lumQ9TMj0mepESlrD0R5fX9CNC_PPz17V3EWIpvu2cmxLST-h6NBm8QXo7liyGZMK42Uv1uStTuwb09GbMAUyYUu4MvQtDeIgwrjcvyaGDPuHp_jwhn99d3i2vZqub99fLi9XMCC3yDMQCKi2UapgR3CrNuNJSo3BOWCWVrBg4UzFllOF1XaMGxa016O6FhUrKE_JmpzvG8H3ClNuhSwbLhjyWR7VSSM254tWioK_36HQ_oG3H2A0QN-2_DRdgvgNM-XGK6J4Qztqti-3WxfbJRfkXttKTiw
Cites_doi 10.1016/j.bone.2017.06.010
10.1371/journal.pone.0058902
10.1007/s00223-011-9497-x
10.1117/1.3086616
10.1016/j.pacs.2023.100468
10.1364/BOE.7.003951
10.1364/BOE.483135
10.3389/fmed.2022.859555
10.1016/j.pquantelec.2018.10.001
10.1364/OL.41.001006
10.1038/lsa.2014.18
10.1364/AO.56.000303
10.1039/C5AN00278H
10.1002/jbio.202400143
10.18287/JBPE22.08.040509
10.1016/j.metabol.2023.155533
10.1364/BOE.469380
10.1088/0031-9155/58/11/R37
10.1038/nprot.2012.009
10.1093/rheumatology/keac346
10.1117/1.3626212
10.1002/advs.202301322
10.1002/jbio.202100268
10.1117/1.JBO.28.5.057002
10.18287/JBPE24.10.010303
10.1111/srt.12390
10.3390/biomedicines11020351
10.1118/1.3703598
10.1055/s-0044-1788887
10.1021/acsami.1c17661
10.1039/C6CS00765A
10.1039/D3AY01901B
10.1039/D3CS00565H
10.1117/1.3184425
10.1088/1612-2011/13/2/025605
10.1070/QEL17212
10.1038/s41377-025-01894-y
10.1109/TMI.2017.2706200
10.1117/1.JBO.17.7.077005
10.1117/1.JBO.27.6.065002
10.1038/s41598-020-71220-6
10.1038/s41598-024-70099-x
10.3390/diagnostics13030457
10.1016/j.pacs.2020.100220
10.1088/2399-6528/abb322
10.1002/advs.202004226
10.1002/advs.202308336
10.1142/S1793545811001319
10.1038/srep40683
10.1117/1.JBO.22.1.015006
10.1109/TMI.2013.2272079
10.1002/jbio.202300509
10.1016/j.neo.2022.100778
10.3390/photonics11010049
10.3389/fphy.2022.1028258
10.1364/AO.12.000555
10.1146/annurev.biochem.77.032207.120833
10.1519/JSC.0b013e31824f2040
10.1038/s41591-019-0669-y
10.1117/1.3563534
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/advs.202505619
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 40799083
10_1002_advs_202505619
Genre Journal Article
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAYXX
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
NPM
7X8
PUEGO
ID FETCH-LOGICAL-c292t-a26a5924480c21d49014939e2ff2d434350afc504c4c1777e9a41ddcefb2da533
ISSN 2198-3844
IngestDate Fri Sep 05 15:11:25 EDT 2025
Thu Aug 14 01:42:16 EDT 2025
Thu Aug 21 00:14:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords collagen
lipids
diffuse reflectance spectroscopy
muscles
multi‐spectral optoacoustic tomography
Language English
License 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-a26a5924480c21d49014939e2ff2d434350afc504c4c1777e9a41ddcefb2da533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1002/advs.202505619
PMID 40799083
PQID 3239114156
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3239114156
pubmed_primary_40799083
crossref_primary_10_1002_advs_202505619
PublicationCentury 2000
PublicationDate 2025-08-13
PublicationDateYYYYMMDD 2025-08-13
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-13
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
References Eklouh‐Molinier C. (e_1_2_9_3_1) 2015; 140
Yakimov B. P. (e_1_2_9_25_1) 2022; 8
Wang Y. (e_1_2_9_44_1) 2017; 56
Ivankovic I. (e_1_2_9_17_1) 2024; 11
Tseng S.‐H. (e_1_2_9_26_1) 2012; 17
Korobov A. (e_1_2_9_31_1) 2024; 17
Kumavor P. D. (e_1_2_9_46_1) 2011; 16
Budylin G. S. (e_1_2_9_16_1) 2022; 15
Subochev P. V. (e_1_2_9_33_1) 2025; 14
Jüstel D. (e_1_2_9_41_1) 2023; 10
Bashkatov A. N. (e_1_2_9_57_1) 2011; 04
Perekatova V. (e_1_2_9_19_1) 2023; 13
Subochev P. (e_1_2_9_61_1) 2016; 7
Subochev P. (e_1_2_9_60_1) 2016; 41
Ermilov S. A. (e_1_2_9_32_1) 2009; 14
Orlova A. (e_1_2_9_48_1) 2022; 26
Shepherd J. A. (e_1_2_9_6_1) 2017; 104
e_1_2_9_62_1
Gazzotti Rebecca S. S. (e_1_2_9_5_1) 2024; 28
Smolyanskaya O. A. (e_1_2_9_4_1) 2018; 62
Bardadin I. (e_1_2_9_24_1) 2024; 11
Lv S. (e_1_2_9_8_1) 2022; 9
Deán‐Ben X. L. (e_1_2_9_38_1) 2022; 10
Regensburger A. P. (e_1_2_9_39_1) 2019; 25
Bauer A. Q. (e_1_2_9_43_1) 2011; 16
Davydov D. A. (e_1_2_9_50_1) 2024; 10
Tzeng S.‐Y. (e_1_2_9_13_1) 2018; 24
Merčep E. (e_1_2_9_35_1) 2017; 36
Turchin I. (e_1_2_9_20_1) 2023; 11
Nyman J. S. (e_1_2_9_10_1) 2011; 89
e_1_2_9_49_1
Tascilar K. (e_1_2_9_40_1) 2023; 62
Yuan S. (e_1_2_9_1_1) 2023; 144
Shirshin E. (e_1_2_9_14_1) 2024; 16
Luís Deán‐Ben X. (e_1_2_9_29_1) 2014; 3
Akhmedzhanova K. G. (e_1_2_9_47_1) 2022; 13
Davydov D. А. (e_1_2_9_22_1) 2024; 18
Wagner A. L. (e_1_2_9_36_1) 2021; 21
Karlas A. (e_1_2_9_37_1) 2023; 30
Chen Z. (e_1_2_9_42_1) 2024; 53
Shoulders M. D. (e_1_2_9_52_1) 2009; 78
Deán‐Ben X. L. (e_1_2_9_63_1) 2013; 32
Taroni P. (e_1_2_9_54_1) 2017; 7
Davydov D. A. (e_1_2_9_15_1) 2023; 28
Peyvasteh M. (e_1_2_9_55_1) 2020; 4
Warren R. V. (e_1_2_9_23_1) 2022; 27
Sekar S. K. V. (e_1_2_9_56_1) 2017; 22
Subochev P. (e_1_2_9_59_1) 2016; 13
Nazarov D. A. (e_1_2_9_28_1) 2023; 14
Geraskin D. (e_1_2_9_51_1) 2009; 14
Wang J.‐G. (e_1_2_9_2_1) 2013; 27
Islam M. A. (e_1_2_9_9_1) 2013; 8
Jacques S. L. (e_1_2_9_58_1) 2013; 58
Deán‐Ben X. L. (e_1_2_9_18_1) 2017; 46
Różdżyńska‐Świątkowska A. (e_1_2_9_7_1) 2016
Chen X. (e_1_2_9_12_1) 2012; 7
Yakimov B. P. (e_1_2_9_21_1) 2020; 50
Yakimov B. P. (e_1_2_9_11_1) 2020; 10
Xi L. (e_1_2_9_45_1) 2012; 39
Rebling J. (e_1_2_9_30_1) 2021; 8
Serra N. (e_1_2_9_27_1) 2024; 14
Hale G. M. (e_1_2_9_53_1) 1973; 12
Kalva S. K. (e_1_2_9_34_1) 2022; 14
References_xml – volume: 104
  start-page: 101
  year: 2017
  ident: e_1_2_9_6_1
  publication-title: Bone
  doi: 10.1016/j.bone.2017.06.010
– volume: 8
  year: 2013
  ident: e_1_2_9_9_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058902
– volume: 89
  start-page: 111
  year: 2011
  ident: e_1_2_9_10_1
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-011-9497-x
– volume: 14
  year: 2009
  ident: e_1_2_9_32_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3086616
– volume: 30
  year: 2023
  ident: e_1_2_9_37_1
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2023.100468
– volume: 7
  start-page: 3951
  year: 2016
  ident: e_1_2_9_61_1
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.003951
– volume: 14
  start-page: 1509
  year: 2023
  ident: e_1_2_9_28_1
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.483135
– volume: 9
  year: 2022
  ident: e_1_2_9_8_1
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2022.859555
– volume: 62
  start-page: 1
  year: 2018
  ident: e_1_2_9_4_1
  publication-title: Quantum Electron
  doi: 10.1016/j.pquantelec.2018.10.001
– volume: 41
  start-page: 1006
  year: 2016
  ident: e_1_2_9_60_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.001006
– volume: 3
  year: 2014
  ident: e_1_2_9_29_1
  publication-title: Light Sci Appl.
  doi: 10.1038/lsa.2014.18
– volume: 56
  start-page: 303
  year: 2017
  ident: e_1_2_9_44_1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.000303
– volume: 140
  start-page: 6260
  year: 2015
  ident: e_1_2_9_3_1
  publication-title: Analyst
  doi: 10.1039/C5AN00278H
– volume: 17
  year: 2024
  ident: e_1_2_9_31_1
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.202400143
– volume: 8
  year: 2022
  ident: e_1_2_9_25_1
  publication-title: J. Biomed. Photon. Eng.
  doi: 10.18287/JBPE22.08.040509
– volume: 144
  year: 2023
  ident: e_1_2_9_1_1
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2023.155533
– volume: 13
  start-page: 5695
  year: 2022
  ident: e_1_2_9_47_1
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.469380
– volume: 58
  start-page: R37
  year: 2013
  ident: e_1_2_9_58_1
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/11/R37
– volume: 7
  start-page: 654
  year: 2012
  ident: e_1_2_9_12_1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.009
– volume: 62
  start-page: 841
  year: 2023
  ident: e_1_2_9_40_1
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keac346
– ident: e_1_2_9_49_1
– volume: 16
  year: 2011
  ident: e_1_2_9_43_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3626212
– volume: 10
  year: 2023
  ident: e_1_2_9_41_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301322
– volume: 15
  year: 2022
  ident: e_1_2_9_16_1
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.202100268
– volume: 28
  year: 2023
  ident: e_1_2_9_15_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.28.5.057002
– volume: 10
  start-page: 21
  year: 2024
  ident: e_1_2_9_50_1
  publication-title: J. Biomed. Photonics Eng.
  doi: 10.18287/JBPE24.10.010303
– volume: 24
  start-page: 59
  year: 2018
  ident: e_1_2_9_13_1
  publication-title: Skin Res. Technol.
  doi: 10.1111/srt.12390
– volume: 11
  start-page: 351
  year: 2023
  ident: e_1_2_9_20_1
  publication-title: Biomedicines
  doi: 10.3390/biomedicines11020351
– volume: 39
  start-page: 2584
  year: 2012
  ident: e_1_2_9_45_1
  publication-title: Med. Phys.
  doi: 10.1118/1.3703598
– volume: 28
  start-page: 594
  year: 2024
  ident: e_1_2_9_5_1
  publication-title: Semin. Musculoskelet Radiol.
  doi: 10.1055/s-0044-1788887
– volume: 14
  start-page: 172
  year: 2022
  ident: e_1_2_9_34_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c17661
– volume: 46
  start-page: 2158
  year: 2017
  ident: e_1_2_9_18_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00765A
– volume: 16
  start-page: 175
  year: 2024
  ident: e_1_2_9_14_1
  publication-title: Anal. Methods
  doi: 10.1039/D3AY01901B
– volume: 53
  start-page: 6068
  year: 2024
  ident: e_1_2_9_42_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00565H
– volume: 14
  year: 2009
  ident: e_1_2_9_51_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3184425
– volume: 13
  year: 2016
  ident: e_1_2_9_59_1
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-2011/13/2/025605
– volume: 50
  start-page: 41
  year: 2020
  ident: e_1_2_9_21_1
  publication-title: Quantum Elec (Woodbury)
  doi: 10.1070/QEL17212
– volume: 14
  start-page: 239
  year: 2025
  ident: e_1_2_9_33_1
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-025-01894-y
– ident: e_1_2_9_62_1
– volume: 36
  start-page: 2129
  year: 2017
  ident: e_1_2_9_35_1
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2706200
– volume: 17
  year: 2012
  ident: e_1_2_9_26_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.7.077005
– volume: 27
  year: 2022
  ident: e_1_2_9_23_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.27.6.065002
– volume: 10
  year: 2020
  ident: e_1_2_9_11_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71220-6
– volume: 14
  year: 2024
  ident: e_1_2_9_27_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-70099-x
– volume: 13
  start-page: 457
  year: 2023
  ident: e_1_2_9_19_1
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13030457
– volume: 21
  year: 2021
  ident: e_1_2_9_36_1
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2020.100220
– volume: 4
  year: 2020
  ident: e_1_2_9_55_1
  publication-title: J. Phys. Commun.
  doi: 10.1088/2399-6528/abb322
– volume: 8
  year: 2021
  ident: e_1_2_9_30_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004226
– start-page: 45
  volume-title: JIMD Reports
  year: 2016
  ident: e_1_2_9_7_1
– volume: 11
  year: 2024
  ident: e_1_2_9_17_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202308336
– volume: 04
  start-page: 9
  year: 2011
  ident: e_1_2_9_57_1
  publication-title: J. Innov. Opt. Health Sci.
  doi: 10.1142/S1793545811001319
– volume: 7
  year: 2017
  ident: e_1_2_9_54_1
  publication-title: Sci. Rep.
  doi: 10.1038/srep40683
– volume: 22
  year: 2017
  ident: e_1_2_9_56_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.1.015006
– volume: 32
  start-page: 2050
  year: 2013
  ident: e_1_2_9_63_1
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2272079
– volume: 18
  year: 2024
  ident: e_1_2_9_22_1
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.202300509
– volume: 26
  year: 2022
  ident: e_1_2_9_48_1
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2022.100778
– volume: 11
  start-page: 49
  year: 2024
  ident: e_1_2_9_24_1
  publication-title: Photonics
  doi: 10.3390/photonics11010049
– volume: 10
  year: 2022
  ident: e_1_2_9_38_1
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.1028258
– volume: 12
  start-page: 555
  year: 1973
  ident: e_1_2_9_53_1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.12.000555
– volume: 78
  start-page: 929
  year: 2009
  ident: e_1_2_9_52_1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.032207.120833
– volume: 27
  start-page: 236
  year: 2013
  ident: e_1_2_9_2_1
  publication-title: The J. Strength Condition. Res.
  doi: 10.1519/JSC.0b013e31824f2040
– volume: 25
  start-page: 1905
  year: 2019
  ident: e_1_2_9_39_1
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0669-y
– volume: 16
  year: 2011
  ident: e_1_2_9_46_1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3563534
SSID ssj0001537418
Score 2.3285425
SecondaryResourceType online_first
Snippet Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e05619
Title Water, Collagen, and Lipid Content in the Human Skin and Muscles Assessed with Near‐Infrared Diffuse Reflectance Spectroscopy and Multi‐Spectral Optoacoustic Tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/40799083
https://www.proquest.com/docview/3239114156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZKJ6F9QYzX8jIZCQlQF0gcp0k-bmwwECsIOrFvURLbUsWWVGtaqfwOfgQ_kzu_pKm0ScCXtLIjV9Xz6Hx3Pj9HyHMISZQIytiT3C882CG4l-Qs8pgYJQqdCBHgbeST8ej4lH88i856vV-dqqVFU7wuf155r-R_UIUxwBVvyf4Dsu2iMADfAV94AsLw_CuMv-e2rQaG_2AYKleLiR2pxVArT1WNK2U0-XrstmWqKxZzrIgbmmNfV4U-BuZ7Hyp1qQvTD6dKLebY2kFhel9fL8CO9Q1qYNazlV3ovJl6ZhgA_zxrajCzukvYcFJfdDWxndytKzyw--86Xb5ciXpp7KCRPHHnTNX0h5nAGzmyPQcAu4ctv5bGGV7Ktl7kYCFWthf9-3NZdJMbwBEUmzUGT2ojCAY18cKE846RlRj1pFfaf6Mnm4slKrFr727zRcBvdqHZAIEsbMRJuN4H2-pEN3WDbLE4DqI-2do_PPn0bZ27i0IU_XEaoD57s_mL2-SmW2PT3bkmhtG-zOQ2uWWDELpvGLVDerK6Q3asmZ_Tl1aL_NVd8ltTbI86gu1RQJxqelFLLzqtKNCLanpRpJd-x9KLOnpRpBfdoBe19KIdetEuvexCXXrRLr3oml73yOm7o8nbY8829_BKlrLGy9kojyD454lfskBwPM5Pw1QypZjA686Rn6sy8nnJyyCOY5nmPBCilKpgIocg5T7pV3UlHxIqojSULCpzDi-Dx1woP5UjEYShTGNRpgPywmGQzYyGS2bUulmGwGUtcAPyzEGUgZnFs7O8kvCXspCF4BZgtmNAHhjs2rUc1o-unXlMttfsfkL6zeVCPgVntil2Lbfg8-Bo_OXrrk4K_QFI9aai
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water%2C+Collagen%2C+and+Lipid+Content+in+the+Human+Skin+and+Muscles+Assessed+with+Near-Infrared+Diffuse+Reflectance+Spectroscopy+and+Multi-Spectral+Optoacoustic+Tomography&rft.jtitle=Advanced+science&rft.au=Davydov%2C+Denis&rft.au=Kurnikov%2C+Alexey&rft.au=Subochev%2C+Pavel&rft.au=Budylin%2C+Gleb&rft.date=2025-08-13&rft.eissn=2198-3844&rft.spage=e05619&rft_id=info:doi/10.1002%2Fadvs.202505619&rft_id=info%3Apmid%2F40799083&rft.externalDocID=40799083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon