Water, Collagen, and Lipid Content in the Human Skin and Muscles Assessed with Near‐Infrared Diffuse Reflectance Spectroscopy and Multi‐Spectral Optoacoustic Tomography
Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy...
Saved in:
Published in | Advanced science p. e05619 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
13.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.202505619 |
Cover
Abstract | Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi‐spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near‐infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high‐resolution depth‐resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia. |
---|---|
AbstractList | Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia. Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia.Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall body composition is hampered by high variability and optical heterogeneity of biological tissues. Here, a theoretical and experimental strategy merging multi-spectral optoacoustic tomography (MSOT) and diffuse reflectance spectroscopy (DRS) is introduced to characterize skin and subcutaneous tissue composition in the near-infrared range. Water, lipids, and collagen exhibit distinct absorption peaks, with lipids demonstrating significantly higher absorption than collagen at comparable mass concentrations. Diminished lipid absorption in subjects with thin hypodermis allows the DRS method to detect distinct collagen band at 910 nm, whose magnitude correlates with the muscle mass, as confirmed by bioimpedance analysis. Conversely, strong lipid peak at 930 nm in subjects with pronounced hypodermis overshadows collagen signals by an order of magnitude, making DRS characterization insufficient. MSOT overcomes this limitation by offering high-resolution depth-resolved 3D imaging to accurately delineate the dermis, hypodermis, and muscle layers in vivo and quantify each chromophore's contribution individually. The findings demonstrate the complementary capabilities of MSOT and DRS for molecularly specific, noninvasive body composition analysis, potentially enhancing diagnostic approaches for a number of conditions, such as obesity and sarcopenia. |
Author | Subochev, Pavel Fadeev, Nikolay Urusova, Liliya Shirshin, Evgeny Davydov, Denis Razansky, Daniel Filippov, Ivan Mokrysheva, Natalia Kurnikov, Alexey Budylin, Gleb |
Author_xml | – sequence: 1 givenname: Denis surname: Davydov fullname: Davydov, Denis organization: Laboratory of Clinical Biophotonics Institute for Regenerative Medicine I.M. Sechenov First Moscow State Medical University Moscow 119048 Russia, Medical research and Educational Institute Lomonosov Moscow State University Moscow 119991 Russia – sequence: 2 givenname: Alexey surname: Kurnikov fullname: Kurnikov, Alexey organization: Laboratory of ultrasound and optoacoustic diagnostics Division of radiophysics methods in medicine A.V. Gaponov‐Grekhov Institute of Applied Physics RAS Nizhny Novgorod 603950 Russia – sequence: 3 givenname: Pavel surname: Subochev fullname: Subochev, Pavel organization: Laboratory of ultrasound and optoacoustic diagnostics Division of radiophysics methods in medicine A.V. Gaponov‐Grekhov Institute of Applied Physics RAS Nizhny Novgorod 603950 Russia – sequence: 4 givenname: Gleb surname: Budylin fullname: Budylin, Gleb organization: Laboratory of Clinical Biophotonics Institute for Regenerative Medicine I.M. Sechenov First Moscow State Medical University Moscow 119048 Russia – sequence: 5 givenname: Nikolay surname: Fadeev fullname: Fadeev, Nikolay organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia – sequence: 6 givenname: Ivan surname: Filippov fullname: Filippov, Ivan organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia – sequence: 7 givenname: Natalia surname: Mokrysheva fullname: Mokrysheva, Natalia organization: Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia – sequence: 8 givenname: Liliya surname: Urusova fullname: Urusova, Liliya organization: Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia – sequence: 9 givenname: Daniel surname: Razansky fullname: Razansky, Daniel organization: Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology Faculty of Medicine University of Zurich Zurich 8057 Switzerland, Institute for Biomedical Engineering Department of Information Technology and Electrical Engineering ETH Zurich Zurich 8093 Switzerland – sequence: 10 givenname: Evgeny surname: Shirshin fullname: Shirshin, Evgeny organization: Faculty of Рhysics M.V. Lomonosov Moscow State University Moscow 119991 Russia, Laboratory of Endocrine Biophotonics Endocrinology Research Center Moscow 117292 Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40799083$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc9uEzEQxi3UipbSK0fkI4cm9b_Nro9VKLRSoBIt4ria2uNmYddebG9RbjwCD8JT8SQ4SqiQRvJ45jef7PlekAMfPBLyirM5Z0ycg31Mc8FExaoF18_IseC6mclGqYP_8iNymtJXxhivZK1485wcKVZrzRp5TH5_gYzxjC5D38MD-jMK3tJVN3a21HxGn2nnaV4jvZoG8PT2W7lumQ9TMj0mepESlrD0R5fX9CNC_PPz17V3EWIpvu2cmxLST-h6NBm8QXo7liyGZMK42Uv1uStTuwb09GbMAUyYUu4MvQtDeIgwrjcvyaGDPuHp_jwhn99d3i2vZqub99fLi9XMCC3yDMQCKi2UapgR3CrNuNJSo3BOWCWVrBg4UzFllOF1XaMGxa016O6FhUrKE_JmpzvG8H3ClNuhSwbLhjyWR7VSSM254tWioK_36HQ_oG3H2A0QN-2_DRdgvgNM-XGK6J4Qztqti-3WxfbJRfkXttKTiw |
Cites_doi | 10.1016/j.bone.2017.06.010 10.1371/journal.pone.0058902 10.1007/s00223-011-9497-x 10.1117/1.3086616 10.1016/j.pacs.2023.100468 10.1364/BOE.7.003951 10.1364/BOE.483135 10.3389/fmed.2022.859555 10.1016/j.pquantelec.2018.10.001 10.1364/OL.41.001006 10.1038/lsa.2014.18 10.1364/AO.56.000303 10.1039/C5AN00278H 10.1002/jbio.202400143 10.18287/JBPE22.08.040509 10.1016/j.metabol.2023.155533 10.1364/BOE.469380 10.1088/0031-9155/58/11/R37 10.1038/nprot.2012.009 10.1093/rheumatology/keac346 10.1117/1.3626212 10.1002/advs.202301322 10.1002/jbio.202100268 10.1117/1.JBO.28.5.057002 10.18287/JBPE24.10.010303 10.1111/srt.12390 10.3390/biomedicines11020351 10.1118/1.3703598 10.1055/s-0044-1788887 10.1021/acsami.1c17661 10.1039/C6CS00765A 10.1039/D3AY01901B 10.1039/D3CS00565H 10.1117/1.3184425 10.1088/1612-2011/13/2/025605 10.1070/QEL17212 10.1038/s41377-025-01894-y 10.1109/TMI.2017.2706200 10.1117/1.JBO.17.7.077005 10.1117/1.JBO.27.6.065002 10.1038/s41598-020-71220-6 10.1038/s41598-024-70099-x 10.3390/diagnostics13030457 10.1016/j.pacs.2020.100220 10.1088/2399-6528/abb322 10.1002/advs.202004226 10.1002/advs.202308336 10.1142/S1793545811001319 10.1038/srep40683 10.1117/1.JBO.22.1.015006 10.1109/TMI.2013.2272079 10.1002/jbio.202300509 10.1016/j.neo.2022.100778 10.3390/photonics11010049 10.3389/fphy.2022.1028258 10.1364/AO.12.000555 10.1146/annurev.biochem.77.032207.120833 10.1519/JSC.0b013e31824f2040 10.1038/s41591-019-0669-y 10.1117/1.3563534 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/advs.202505619 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
ExternalDocumentID | 40799083 10_1002_advs_202505619 |
Genre | Journal Article |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAYXX AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN NPM 7X8 PUEGO |
ID | FETCH-LOGICAL-c292t-a26a5924480c21d49014939e2ff2d434350afc504c4c1777e9a41ddcefb2da533 |
ISSN | 2198-3844 |
IngestDate | Fri Sep 05 15:11:25 EDT 2025 Thu Aug 14 01:42:16 EDT 2025 Thu Aug 21 00:14:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | collagen lipids diffuse reflectance spectroscopy muscles multi‐spectral optoacoustic tomography |
Language | English |
License | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-a26a5924480c21d49014939e2ff2d434350afc504c4c1777e9a41ddcefb2da533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1002/advs.202505619 |
PMID | 40799083 |
PQID | 3239114156 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3239114156 pubmed_primary_40799083 crossref_primary_10_1002_advs_202505619 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-13 |
PublicationDateYYYYMMDD | 2025-08-13 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
References | Eklouh‐Molinier C. (e_1_2_9_3_1) 2015; 140 Yakimov B. P. (e_1_2_9_25_1) 2022; 8 Wang Y. (e_1_2_9_44_1) 2017; 56 Ivankovic I. (e_1_2_9_17_1) 2024; 11 Tseng S.‐H. (e_1_2_9_26_1) 2012; 17 Korobov A. (e_1_2_9_31_1) 2024; 17 Kumavor P. D. (e_1_2_9_46_1) 2011; 16 Budylin G. S. (e_1_2_9_16_1) 2022; 15 Subochev P. V. (e_1_2_9_33_1) 2025; 14 Jüstel D. (e_1_2_9_41_1) 2023; 10 Bashkatov A. N. (e_1_2_9_57_1) 2011; 04 Perekatova V. (e_1_2_9_19_1) 2023; 13 Subochev P. (e_1_2_9_61_1) 2016; 7 Subochev P. (e_1_2_9_60_1) 2016; 41 Ermilov S. A. (e_1_2_9_32_1) 2009; 14 Orlova A. (e_1_2_9_48_1) 2022; 26 Shepherd J. A. (e_1_2_9_6_1) 2017; 104 e_1_2_9_62_1 Gazzotti Rebecca S. S. (e_1_2_9_5_1) 2024; 28 Smolyanskaya O. A. (e_1_2_9_4_1) 2018; 62 Bardadin I. (e_1_2_9_24_1) 2024; 11 Lv S. (e_1_2_9_8_1) 2022; 9 Deán‐Ben X. L. (e_1_2_9_38_1) 2022; 10 Regensburger A. P. (e_1_2_9_39_1) 2019; 25 Bauer A. Q. (e_1_2_9_43_1) 2011; 16 Davydov D. A. (e_1_2_9_50_1) 2024; 10 Tzeng S.‐Y. (e_1_2_9_13_1) 2018; 24 Merčep E. (e_1_2_9_35_1) 2017; 36 Turchin I. (e_1_2_9_20_1) 2023; 11 Nyman J. S. (e_1_2_9_10_1) 2011; 89 e_1_2_9_49_1 Tascilar K. (e_1_2_9_40_1) 2023; 62 Yuan S. (e_1_2_9_1_1) 2023; 144 Shirshin E. (e_1_2_9_14_1) 2024; 16 Luís Deán‐Ben X. (e_1_2_9_29_1) 2014; 3 Akhmedzhanova K. G. (e_1_2_9_47_1) 2022; 13 Davydov D. А. (e_1_2_9_22_1) 2024; 18 Wagner A. L. (e_1_2_9_36_1) 2021; 21 Karlas A. (e_1_2_9_37_1) 2023; 30 Chen Z. (e_1_2_9_42_1) 2024; 53 Shoulders M. D. (e_1_2_9_52_1) 2009; 78 Deán‐Ben X. L. (e_1_2_9_63_1) 2013; 32 Taroni P. (e_1_2_9_54_1) 2017; 7 Davydov D. A. (e_1_2_9_15_1) 2023; 28 Peyvasteh M. (e_1_2_9_55_1) 2020; 4 Warren R. V. (e_1_2_9_23_1) 2022; 27 Sekar S. K. V. (e_1_2_9_56_1) 2017; 22 Subochev P. (e_1_2_9_59_1) 2016; 13 Nazarov D. A. (e_1_2_9_28_1) 2023; 14 Geraskin D. (e_1_2_9_51_1) 2009; 14 Wang J.‐G. (e_1_2_9_2_1) 2013; 27 Islam M. A. (e_1_2_9_9_1) 2013; 8 Jacques S. L. (e_1_2_9_58_1) 2013; 58 Deán‐Ben X. L. (e_1_2_9_18_1) 2017; 46 Różdżyńska‐Świątkowska A. (e_1_2_9_7_1) 2016 Chen X. (e_1_2_9_12_1) 2012; 7 Yakimov B. P. (e_1_2_9_21_1) 2020; 50 Yakimov B. P. (e_1_2_9_11_1) 2020; 10 Xi L. (e_1_2_9_45_1) 2012; 39 Rebling J. (e_1_2_9_30_1) 2021; 8 Serra N. (e_1_2_9_27_1) 2024; 14 Hale G. M. (e_1_2_9_53_1) 1973; 12 Kalva S. K. (e_1_2_9_34_1) 2022; 14 |
References_xml | – volume: 104 start-page: 101 year: 2017 ident: e_1_2_9_6_1 publication-title: Bone doi: 10.1016/j.bone.2017.06.010 – volume: 8 year: 2013 ident: e_1_2_9_9_1 publication-title: PLoS One doi: 10.1371/journal.pone.0058902 – volume: 89 start-page: 111 year: 2011 ident: e_1_2_9_10_1 publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-011-9497-x – volume: 14 year: 2009 ident: e_1_2_9_32_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.3086616 – volume: 30 year: 2023 ident: e_1_2_9_37_1 publication-title: Photoacoustics doi: 10.1016/j.pacs.2023.100468 – volume: 7 start-page: 3951 year: 2016 ident: e_1_2_9_61_1 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003951 – volume: 14 start-page: 1509 year: 2023 ident: e_1_2_9_28_1 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.483135 – volume: 9 year: 2022 ident: e_1_2_9_8_1 publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2022.859555 – volume: 62 start-page: 1 year: 2018 ident: e_1_2_9_4_1 publication-title: Quantum Electron doi: 10.1016/j.pquantelec.2018.10.001 – volume: 41 start-page: 1006 year: 2016 ident: e_1_2_9_60_1 publication-title: Opt. Lett. doi: 10.1364/OL.41.001006 – volume: 3 year: 2014 ident: e_1_2_9_29_1 publication-title: Light Sci Appl. doi: 10.1038/lsa.2014.18 – volume: 56 start-page: 303 year: 2017 ident: e_1_2_9_44_1 publication-title: Appl. Opt. doi: 10.1364/AO.56.000303 – volume: 140 start-page: 6260 year: 2015 ident: e_1_2_9_3_1 publication-title: Analyst doi: 10.1039/C5AN00278H – volume: 17 year: 2024 ident: e_1_2_9_31_1 publication-title: J. Biophotonics doi: 10.1002/jbio.202400143 – volume: 8 year: 2022 ident: e_1_2_9_25_1 publication-title: J. Biomed. Photon. Eng. doi: 10.18287/JBPE22.08.040509 – volume: 144 year: 2023 ident: e_1_2_9_1_1 publication-title: Metabolism doi: 10.1016/j.metabol.2023.155533 – volume: 13 start-page: 5695 year: 2022 ident: e_1_2_9_47_1 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.469380 – volume: 58 start-page: R37 year: 2013 ident: e_1_2_9_58_1 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/11/R37 – volume: 7 start-page: 654 year: 2012 ident: e_1_2_9_12_1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.009 – volume: 62 start-page: 841 year: 2023 ident: e_1_2_9_40_1 publication-title: Rheumatology doi: 10.1093/rheumatology/keac346 – ident: e_1_2_9_49_1 – volume: 16 year: 2011 ident: e_1_2_9_43_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.3626212 – volume: 10 year: 2023 ident: e_1_2_9_41_1 publication-title: Adv. Sci. doi: 10.1002/advs.202301322 – volume: 15 year: 2022 ident: e_1_2_9_16_1 publication-title: J. Biophotonics doi: 10.1002/jbio.202100268 – volume: 28 year: 2023 ident: e_1_2_9_15_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.28.5.057002 – volume: 10 start-page: 21 year: 2024 ident: e_1_2_9_50_1 publication-title: J. Biomed. Photonics Eng. doi: 10.18287/JBPE24.10.010303 – volume: 24 start-page: 59 year: 2018 ident: e_1_2_9_13_1 publication-title: Skin Res. Technol. doi: 10.1111/srt.12390 – volume: 11 start-page: 351 year: 2023 ident: e_1_2_9_20_1 publication-title: Biomedicines doi: 10.3390/biomedicines11020351 – volume: 39 start-page: 2584 year: 2012 ident: e_1_2_9_45_1 publication-title: Med. Phys. doi: 10.1118/1.3703598 – volume: 28 start-page: 594 year: 2024 ident: e_1_2_9_5_1 publication-title: Semin. Musculoskelet Radiol. doi: 10.1055/s-0044-1788887 – volume: 14 start-page: 172 year: 2022 ident: e_1_2_9_34_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c17661 – volume: 46 start-page: 2158 year: 2017 ident: e_1_2_9_18_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00765A – volume: 16 start-page: 175 year: 2024 ident: e_1_2_9_14_1 publication-title: Anal. Methods doi: 10.1039/D3AY01901B – volume: 53 start-page: 6068 year: 2024 ident: e_1_2_9_42_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00565H – volume: 14 year: 2009 ident: e_1_2_9_51_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.3184425 – volume: 13 year: 2016 ident: e_1_2_9_59_1 publication-title: Laser Phys. Lett. doi: 10.1088/1612-2011/13/2/025605 – volume: 50 start-page: 41 year: 2020 ident: e_1_2_9_21_1 publication-title: Quantum Elec (Woodbury) doi: 10.1070/QEL17212 – volume: 14 start-page: 239 year: 2025 ident: e_1_2_9_33_1 publication-title: Light Sci. Appl. doi: 10.1038/s41377-025-01894-y – ident: e_1_2_9_62_1 – volume: 36 start-page: 2129 year: 2017 ident: e_1_2_9_35_1 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2706200 – volume: 17 year: 2012 ident: e_1_2_9_26_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.7.077005 – volume: 27 year: 2022 ident: e_1_2_9_23_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.27.6.065002 – volume: 10 year: 2020 ident: e_1_2_9_11_1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-71220-6 – volume: 14 year: 2024 ident: e_1_2_9_27_1 publication-title: Sci. Rep. doi: 10.1038/s41598-024-70099-x – volume: 13 start-page: 457 year: 2023 ident: e_1_2_9_19_1 publication-title: Diagnostics doi: 10.3390/diagnostics13030457 – volume: 21 year: 2021 ident: e_1_2_9_36_1 publication-title: Photoacoustics doi: 10.1016/j.pacs.2020.100220 – volume: 4 year: 2020 ident: e_1_2_9_55_1 publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/abb322 – volume: 8 year: 2021 ident: e_1_2_9_30_1 publication-title: Adv. Sci. doi: 10.1002/advs.202004226 – start-page: 45 volume-title: JIMD Reports year: 2016 ident: e_1_2_9_7_1 – volume: 11 year: 2024 ident: e_1_2_9_17_1 publication-title: Adv. Sci. doi: 10.1002/advs.202308336 – volume: 04 start-page: 9 year: 2011 ident: e_1_2_9_57_1 publication-title: J. Innov. Opt. Health Sci. doi: 10.1142/S1793545811001319 – volume: 7 year: 2017 ident: e_1_2_9_54_1 publication-title: Sci. Rep. doi: 10.1038/srep40683 – volume: 22 year: 2017 ident: e_1_2_9_56_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.1.015006 – volume: 32 start-page: 2050 year: 2013 ident: e_1_2_9_63_1 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2272079 – volume: 18 year: 2024 ident: e_1_2_9_22_1 publication-title: J. Biophotonics doi: 10.1002/jbio.202300509 – volume: 26 year: 2022 ident: e_1_2_9_48_1 publication-title: Neoplasia doi: 10.1016/j.neo.2022.100778 – volume: 11 start-page: 49 year: 2024 ident: e_1_2_9_24_1 publication-title: Photonics doi: 10.3390/photonics11010049 – volume: 10 year: 2022 ident: e_1_2_9_38_1 publication-title: Front. Phys. doi: 10.3389/fphy.2022.1028258 – volume: 12 start-page: 555 year: 1973 ident: e_1_2_9_53_1 publication-title: Appl. Opt. doi: 10.1364/AO.12.000555 – volume: 78 start-page: 929 year: 2009 ident: e_1_2_9_52_1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.032207.120833 – volume: 27 start-page: 236 year: 2013 ident: e_1_2_9_2_1 publication-title: The J. Strength Condition. Res. doi: 10.1519/JSC.0b013e31824f2040 – volume: 25 start-page: 1905 year: 2019 ident: e_1_2_9_39_1 publication-title: Nat. Med. doi: 10.1038/s41591-019-0669-y – volume: 16 year: 2011 ident: e_1_2_9_46_1 publication-title: J. Biomed. Opt. doi: 10.1117/1.3563534 |
SSID | ssj0001537418 |
Score | 2.3285425 |
SecondaryResourceType | online_first |
Snippet | Infrared spectroscopy can quantify individual body components such as lipids, water, and proteins, but extending it to a comprehensive assessment of overall... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e05619 |
Title | Water, Collagen, and Lipid Content in the Human Skin and Muscles Assessed with Near‐Infrared Diffuse Reflectance Spectroscopy and Multi‐Spectral Optoacoustic Tomography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40799083 https://www.proquest.com/docview/3239114156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZKJ6F9QYzX8jIZCQlQF0gcp0k-bmwwECsIOrFvURLbUsWWVGtaqfwOfgQ_kzu_pKm0ScCXtLIjV9Xz6Hx3Pj9HyHMISZQIytiT3C882CG4l-Qs8pgYJQqdCBHgbeST8ej4lH88i856vV-dqqVFU7wuf155r-R_UIUxwBVvyf4Dsu2iMADfAV94AsLw_CuMv-e2rQaG_2AYKleLiR2pxVArT1WNK2U0-XrstmWqKxZzrIgbmmNfV4U-BuZ7Hyp1qQvTD6dKLebY2kFhel9fL8CO9Q1qYNazlV3ovJl6ZhgA_zxrajCzukvYcFJfdDWxndytKzyw--86Xb5ciXpp7KCRPHHnTNX0h5nAGzmyPQcAu4ctv5bGGV7Ktl7kYCFWthf9-3NZdJMbwBEUmzUGT2ojCAY18cKE846RlRj1pFfaf6Mnm4slKrFr727zRcBvdqHZAIEsbMRJuN4H2-pEN3WDbLE4DqI-2do_PPn0bZ27i0IU_XEaoD57s_mL2-SmW2PT3bkmhtG-zOQ2uWWDELpvGLVDerK6Q3asmZ_Tl1aL_NVd8ltTbI86gu1RQJxqelFLLzqtKNCLanpRpJd-x9KLOnpRpBfdoBe19KIdetEuvexCXXrRLr3oml73yOm7o8nbY8829_BKlrLGy9kojyD454lfskBwPM5Pw1QypZjA686Rn6sy8nnJyyCOY5nmPBCilKpgIocg5T7pV3UlHxIqojSULCpzDi-Dx1woP5UjEYShTGNRpgPywmGQzYyGS2bUulmGwGUtcAPyzEGUgZnFs7O8kvCXspCF4BZgtmNAHhjs2rUc1o-unXlMttfsfkL6zeVCPgVntil2Lbfg8-Bo_OXrrk4K_QFI9aai |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water%2C+Collagen%2C+and+Lipid+Content+in+the+Human+Skin+and+Muscles+Assessed+with+Near-Infrared+Diffuse+Reflectance+Spectroscopy+and+Multi-Spectral+Optoacoustic+Tomography&rft.jtitle=Advanced+science&rft.au=Davydov%2C+Denis&rft.au=Kurnikov%2C+Alexey&rft.au=Subochev%2C+Pavel&rft.au=Budylin%2C+Gleb&rft.date=2025-08-13&rft.eissn=2198-3844&rft.spage=e05619&rft_id=info:doi/10.1002%2Fadvs.202505619&rft_id=info%3Apmid%2F40799083&rft.externalDocID=40799083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |