A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration

Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, exis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14
Main Authors Chen, Tinghui, Li, Shuai, Qiao, Yan, Luo, Xin
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3363783

Cover

Abstract Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, existing calibrators are mostly based on an EC algorithm with a homogeneous learning scheme, which may lead to performance loss due to limited searching ability. On the other hand, the existing hybrid algorithm schemes based on multiple EC algorithms mostly work by training different base models with different EC algorithms and then building the ensemble for performance gain, which leads to high computational and storage costs. Motivated by these discoveries, this article proposes a novel Hybrid-of-Evolutionary-Schemes (HOEs) model with threefold ideas: 1) aggregating the principle of six different EC algorithms' learning schemes to build a hybrid evolution scheme, where the learning scheme of each EC algorithm is adopted to make the swarm evolve in sequence, thereby building an expert ensemble where each expert's learning is taken based on previous results for establishing high calibration accuracy; 2) establishing a memory system that consists of diversified and highly efficient individuals in a specific population during the update process of each expert for obtaining the solution diversity; and 3) designing a punishment system to dismiss the experts with poor calibration performance to achieve high computational efficiency. The convergence of the HOEs model is rigorously proved in theory. To validate its performance, a large dataset HSR-C has been established and published for industrial robot calibration. Empirical studies on HSR-C demonstrate that the proposed HOEs model outperforms several state-of-the-art algorithms (including both sole algorithms and HOEs model's variants) in terms of calibration accuracy, which strongly supports its potential in addressing calibration issues for industrial robots.
AbstractList Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, existing calibrators are mostly based on an EC algorithm with a homogeneous learning scheme, which may lead to performance loss due to limited searching ability. On the other hand, the existing hybrid algorithm schemes based on multiple EC algorithms mostly work by training different base models with different EC algorithms and then building the ensemble for performance gain, which leads to high computational and storage costs. Motivated by these discoveries, this article proposes a novel Hybrid-of-Evolutionary-Schemes (HOEs) model with threefold ideas: 1) aggregating the principle of six different EC algorithms’ learning schemes to build a hybrid evolution scheme, where the learning scheme of each EC algorithm is adopted to make the swarm evolve in sequence, thereby building an expert ensemble where each expert’s learning is taken based on previous results for establishing high calibration accuracy; 2) establishing a memory system that consists of diversified and highly efficient individuals in a specific population during the update process of each expert for obtaining the solution diversity; and 3) designing a punishment system to dismiss the experts with poor calibration performance to achieve high computational efficiency. The convergence of the HOEs model is rigorously proved in theory. To validate its performance, a large dataset HSR-C has been established and published for industrial robot calibration. Empirical studies on HSR-C demonstrate that the proposed HOEs model outperforms several state-of-the-art algorithms (including both sole algorithms and HOEs model’s variants) in terms of calibration accuracy, which strongly supports its potential in addressing calibration issues for industrial robots.
Author Qiao, Yan
Chen, Tinghui
Li, Shuai
Luo, Xin
Author_xml – sequence: 1
  givenname: Tinghui
  orcidid: 0000-0002-5068-5285
  surname: Chen
  fullname: Chen, Tinghui
  email: chenth199208@outlook.com
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0002-9574-9609
  surname: Li
  fullname: Li, Shuai
  email: shuai.li@oulu.fi
  organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
– sequence: 3
  givenname: Yan
  orcidid: 0000-0001-5162-0224
  surname: Qiao
  fullname: Qiao, Yan
  email: yqiao@must.edu.mo
  organization: Institute of Systems Engineering, Collaborative Laboratory for Intelligent Science and Systems, Macau University of Science and Technology, Macau, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-1348-5305
  surname: Luo
  fullname: Luo, Xin
  email: luoxin21@gmail.com
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
BookMark eNp9kE1LAzEYhINUsK3ePXgIeN6ar81ujkutH1ARpJ6XbJrUlN1NTbIF_72p7UE8eHoZmGeGdyZg1LteA3CN0QxjJO5Wzy8zggibUcppUdIzMMZ5XmSCczICY4RwmQmW8wswCWGLECo4K8bAVfDNNUOIUPZruDDGKqv7CBd90F3TaugMvLd77YM1VifH3rVDtK6X_gvOXbdLot_Aqt04b-NHF6BxHlZKDV5Gfch2Ec5la5ukE3YJzo1sg7463Sl4f1is5k_Z8vXxeV4tM0UEiZnEXDOCCyxyxZgpGctZyRtpSqpMQWWpBCqRwgzlDTEYYSRLhsWaFg0huJF0Cm6PuTvvPgcdYr11g-9TZU0ERSIXjOfJhY4u5V0IXpt6522XXqsxqg-z1mnW-jBrfZo1IfwPomz8eS16adv_wJsjaLXWv3oYEQWn9BsfAYbk
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3424261
crossref_primary_10_1109_TSMC_2025_3535783
crossref_primary_10_1088_1361_6501_ad78f6
crossref_primary_10_1109_TCSVT_2024_3404005
Cites_doi 10.1016/j.precisioneng.2014.12.002
10.1109/TIE.2014.2314051
10.1016/j.rcim.2019.101855
10.1007/s00500-018-3102-4
10.1109/TIM.2022.3221149
10.1109/LRA.2020.2972880
10.1109/TIM.2022.3191707
10.1109/TMECH.2017.2756348
10.1145/1276958.1276978
10.1109/TIM.2020.3034975
10.1109/TASE.2019.2918141
10.1109/CASE49439.2021.9551684
10.1109/TNNLS.2022.3153039
10.1109/TIM.2023.3265744
10.1109/TIE.2017.2748058
10.1109/LRA.2022.3151610
10.1109/TRO.2016.2593042
10.1109/TIE.2021.3073312
10.1016/j.rcim.2019.05.016
10.1016/j.mechmachtheory.2019.103665
10.2298/fil2015113j
10.1016/j.robot.2006.06.002
10.1016/j.eswa.2020.113917
10.1016/j.neucom.2013.12.062
10.1109/TMECH.2019.2944428
10.1109/TMECH.2019.2960303
10.1109/TCYB.2021.3079346
10.1016/j.advengsoft.2013.12.007
10.1109/LRA.2022.3211776
10.1016/j.ins.2021.08.057
10.1016/j.engappai.2022.105124
10.1007/s12065-013-0102-2
10.1016/j.neucom.2014.03.085
10.1115/1.4055313
10.1109/IRIS.2016.8066074
10.1109/CCDC49329.2020.9164756
10.1109/TNNLS.2016.2574363
10.1016/j.cam.2017.10.026
10.1177/0954406215603739
10.1016/j.rcim.2015.06.003
10.1007/s11047-018-9712-z
10.1109/TCSII.2022.3199158
10.1016/j.rcim.2021.102165
10.1007/s11831-020-09420-6
10.1016/j.rcim.2019.05.002
10.1007/s12652-020-01781-x
10.1016/j.advengsoft.2015.01.010
10.1177/1729881419883072
10.1016/j.measurement.2019.107334
10.1109/TRO.2017.2707562
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-015-1920-1
10.1109/TCSII.2021.3062639
10.1590/S1678-58782005000400002
10.1109/TPAMI.2021.3132503
10.1109/TIM.2023.3240211
10.1016/j.ins.2019.09.015
10.1109/TNNLS.2021.3105384
10.1109/TII.2019.2916566
10.1007/s00521-021-05798-x
10.1016/j.measurement.2020.107524
10.1016/j.rcim.2017.09.006
10.1016/j.apm.2020.01.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3363783
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2024_3363783
10429763
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272078
  funderid: 10.13039/501100001809
– fundername: CAAI-Huawei Mind Spore Open Fund
  grantid: CAAIXSJLJJ-2021-035A
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-a16e4217195c44f8445486baf83cf73a8c9080c1405b2f1010a8419d37b221ba3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:23:57 EDT 2025
Wed Oct 01 03:46:55 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 02:11:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-a16e4217195c44f8445486baf83cf73a8c9080c1405b2f1010a8419d37b221ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5068-5285
0000-0002-9574-9609
0000-0001-5162-0224
0000-0002-1348-5305
PQID 2930959465
PQPubID 85462
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIM_2024_3363783
ieee_primary_10429763
proquest_journals_2930959465
crossref_citationtrail_10_1109_TIM_2024_3363783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
Li (ref52) 2019; 36
ref60
ref62
ref61
References_xml – ident: ref11
  doi: 10.1016/j.precisioneng.2014.12.002
– ident: ref14
  doi: 10.1109/TIE.2014.2314051
– ident: ref13
  doi: 10.1016/j.rcim.2019.101855
– ident: ref29
  doi: 10.1007/s00500-018-3102-4
– ident: ref35
  doi: 10.1109/TIM.2022.3221149
– ident: ref44
  doi: 10.1109/LRA.2020.2972880
– ident: ref20
  doi: 10.1109/TIM.2022.3191707
– ident: ref49
  doi: 10.1109/TMECH.2017.2756348
– ident: ref60
  doi: 10.1145/1276958.1276978
– ident: ref40
  doi: 10.1109/TIM.2020.3034975
– ident: ref12
  doi: 10.1109/TASE.2019.2918141
– ident: ref7
  doi: 10.1109/CASE49439.2021.9551684
– ident: ref19
  doi: 10.1109/TNNLS.2022.3153039
– ident: ref21
  doi: 10.1109/TIM.2023.3265744
– ident: ref4
  doi: 10.1109/TIE.2017.2748058
– ident: ref27
  doi: 10.1109/LRA.2022.3151610
– ident: ref17
  doi: 10.1109/TRO.2016.2593042
– ident: ref30
  doi: 10.1109/TIE.2021.3073312
– ident: ref18
  doi: 10.1016/j.rcim.2019.05.016
– ident: ref45
  doi: 10.1016/j.mechmachtheory.2019.103665
– ident: ref56
  doi: 10.2298/fil2015113j
– ident: ref23
  doi: 10.1016/j.robot.2006.06.002
– ident: ref42
  doi: 10.1016/j.eswa.2020.113917
– ident: ref37
  doi: 10.1016/j.neucom.2013.12.062
– ident: ref15
  doi: 10.1109/TMECH.2019.2944428
– ident: ref50
  doi: 10.1109/TMECH.2019.2960303
– ident: ref22
  doi: 10.1109/TCYB.2021.3079346
– ident: ref54
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref24
  doi: 10.1109/LRA.2022.3211776
– ident: ref59
  doi: 10.1016/j.ins.2021.08.057
– ident: ref39
  doi: 10.1016/j.engappai.2022.105124
– volume: 36
  start-page: 994
  issue: 6
  year: 2019
  ident: ref52
  article-title: Kinematics parameter identification and accuracy evaluation method for neurosurgical robot
  publication-title: J. Biomed. Eng.
– ident: ref34
  doi: 10.1007/s12065-013-0102-2
– ident: ref3
  doi: 10.1016/j.neucom.2014.03.085
– ident: ref48
  doi: 10.1115/1.4055313
– ident: ref8
  doi: 10.1109/IRIS.2016.8066074
– ident: ref62
  doi: 10.1109/CCDC49329.2020.9164756
– ident: ref61
  doi: 10.1109/TNNLS.2016.2574363
– ident: ref57
  doi: 10.1016/j.cam.2017.10.026
– ident: ref9
  doi: 10.1177/0954406215603739
– ident: ref10
  doi: 10.1016/j.rcim.2015.06.003
– ident: ref38
  doi: 10.1007/s11047-018-9712-z
– ident: ref5
  doi: 10.1109/TCSII.2022.3199158
– ident: ref1
  doi: 10.1016/j.rcim.2021.102165
– ident: ref32
  doi: 10.1007/s11831-020-09420-6
– ident: ref6
  doi: 10.1016/j.rcim.2019.05.002
– ident: ref64
  doi: 10.1007/s12652-020-01781-x
– ident: ref33
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref2
  doi: 10.1177/1729881419883072
– ident: ref51
  doi: 10.1016/j.measurement.2019.107334
– ident: ref53
  doi: 10.1109/TRO.2017.2707562
– ident: ref55
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref41
  doi: 10.1007/s00521-015-1920-1
– ident: ref25
  doi: 10.1109/TCSII.2021.3062639
– ident: ref46
  doi: 10.1590/S1678-58782005000400002
– ident: ref63
  doi: 10.1109/TPAMI.2021.3132503
– ident: ref36
  doi: 10.1109/TIM.2023.3240211
– ident: ref58
  doi: 10.1016/j.ins.2019.09.015
– ident: ref26
  doi: 10.1109/TNNLS.2021.3105384
– ident: ref31
  doi: 10.1109/TII.2019.2916566
– ident: ref28
  doi: 10.1007/s00521-021-05798-x
– ident: ref47
  doi: 10.1016/j.measurement.2020.107524
– ident: ref16
  doi: 10.1016/j.rcim.2017.09.006
– ident: ref43
  doi: 10.1016/j.apm.2020.01.002
SSID ssj0007647
Score 2.490231
Snippet Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Absolute positioning accuracy
Accuracy
Algorithms
Calibration
Computational modeling
data-driven algorithm
Evolutionary algorithms
evolutionary computing (EC)
industrial robot
Industrial robots
kinematic parameters
Kinematics
Machine learning
Optimization
Robots
Service robots
Title A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration
URI https://ieeexplore.ieee.org/document/10429763
https://www.proquest.com/docview/2930959465
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BTxUxEJ4ACQkeUBHDUyQ9ePGwj223222PL_oImMDBQMJt0_a1anzskre7JPjrnbb7CGI03npoJ01mpv2mnfkG4L3i3lY6d-jfzGXcUpFJRl3m0UByoalnKhQnn1-I0yv--bq8HovVYy2Mcy4mn7lpGMa__EVrh_BUhh6Opyc6xCZsVlKkYq2HY7cSPBFkUvRghAXrP8lcHV-enWMkyPi0KERRyeK3Oyg2VfnjJI7Xy8lzuFhvLGWV_JgOvZnan084G_975y9gdwSaZJYs4yVsuGYPnj2iH9yD7Zj-abtX0M7Il9YMXU90syDzSCuBAsm86dyNWTrSevIpZXB4xKxkfjdarF7dk9QYAiWS2fJru_ref7vpCGJhMrN2CEwUQXbbk1AGZpLB7cPVyfzy42k2tmLILFOszzQVjmP0QlVpOfeSc4x0hNFeFtZXhZZWIfS0GK2Vhnl081xLTtWiqAxj1OjiNWw1beMOgFSqdF4qWbLQ50RTpWW5YNb4yrLQLWsCx2vl1HbkKQ_tMpZ1jFdyVaM666DOelTnBD48rLhNHB3_mLsftPNoXlLMBA7XBlCPXtzVCIXCMykX5Zu_LHsLO0F6epM5hK1-Nbh3iFJ6cxSt8xdWh-GB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYIeeJQiFgr4wIVDtrHjJPZxRbfaQncPaCv1FtleuyC2CdokSOXXM7azVQsCccvBL2Vm7G_smW8A3knuTKlSi_bNbMINLRLBqE0cKkhaKOqY9MnJ80UxO-Mfz_PzIVk95MJYa0PwmR37z_CWv2pM76_K0MJx90SDuAv3cs55HtO1rjfesuCRIpOiDSMw2L5KpvJweTJHX5DxcZYVWSmyW6dQKKvyx14cDpjjx7DYLi3GlXwb950em5-_sTb-99qfwKMBapJJ1I2ncMfWe7B7g4BwD-6HAFDTPoNmQj43um87ouoVmQZiCRyQTOvWXuq1JY0jRzGGwyFqJdMfg86qzRWJpSFwRDJZXzSbr92Xy5YgGiYTY3rPReHHbjriE8F0VLl9ODueLj_MkqEYQ2KYZF2iaGE5-i9U5oZzJ_D3c1Fo5URmXJkpYSSCT4P-Wq6ZQ0NPleBUrrJSM0a1yp7DTt3U9gWQUubWCSly5iudKCqVyFfMaFca5utljeBwK5zKDEzlvmDGugoeSyorFGflxVkN4hzB--se3yNLxz_a7nvp3GgXBTOCg60CVIMdtxWCIX9Ryov85V-6vYUHs-X8tDo9WXx6BQ_9TPGG5gB2uk1vXyNm6fSboKm_AE4c5M4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+and+Efficient+Ensemble+of+Diversified+Evolutionary+Computing+Algorithms+for+Accurate+Robot+Calibration&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Tinghui&rft.au=Li%2C+Shuai&rft.au=Qiao%2C+Yan&rft.au=Luo%2C+Xin&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3363783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3363783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon