A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration
Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, exis...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2024.3363783 |
Cover
| Abstract | Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, existing calibrators are mostly based on an EC algorithm with a homogeneous learning scheme, which may lead to performance loss due to limited searching ability. On the other hand, the existing hybrid algorithm schemes based on multiple EC algorithms mostly work by training different base models with different EC algorithms and then building the ensemble for performance gain, which leads to high computational and storage costs. Motivated by these discoveries, this article proposes a novel Hybrid-of-Evolutionary-Schemes (HOEs) model with threefold ideas: 1) aggregating the principle of six different EC algorithms' learning schemes to build a hybrid evolution scheme, where the learning scheme of each EC algorithm is adopted to make the swarm evolve in sequence, thereby building an expert ensemble where each expert's learning is taken based on previous results for establishing high calibration accuracy; 2) establishing a memory system that consists of diversified and highly efficient individuals in a specific population during the update process of each expert for obtaining the solution diversity; and 3) designing a punishment system to dismiss the experts with poor calibration performance to achieve high computational efficiency. The convergence of the HOEs model is rigorously proved in theory. To validate its performance, a large dataset HSR-C has been established and published for industrial robot calibration. Empirical studies on HSR-C demonstrate that the proposed HOEs model outperforms several state-of-the-art algorithms (including both sole algorithms and HOEs model's variants) in terms of calibration accuracy, which strongly supports its potential in addressing calibration issues for industrial robots. |
|---|---|
| AbstractList | Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated precisely to guarantee its absolute positioning accuracy, which can be implemented via an evolutionary computing (EC) algorithm; however, existing calibrators are mostly based on an EC algorithm with a homogeneous learning scheme, which may lead to performance loss due to limited searching ability. On the other hand, the existing hybrid algorithm schemes based on multiple EC algorithms mostly work by training different base models with different EC algorithms and then building the ensemble for performance gain, which leads to high computational and storage costs. Motivated by these discoveries, this article proposes a novel Hybrid-of-Evolutionary-Schemes (HOEs) model with threefold ideas: 1) aggregating the principle of six different EC algorithms’ learning schemes to build a hybrid evolution scheme, where the learning scheme of each EC algorithm is adopted to make the swarm evolve in sequence, thereby building an expert ensemble where each expert’s learning is taken based on previous results for establishing high calibration accuracy; 2) establishing a memory system that consists of diversified and highly efficient individuals in a specific population during the update process of each expert for obtaining the solution diversity; and 3) designing a punishment system to dismiss the experts with poor calibration performance to achieve high computational efficiency. The convergence of the HOEs model is rigorously proved in theory. To validate its performance, a large dataset HSR-C has been established and published for industrial robot calibration. Empirical studies on HSR-C demonstrate that the proposed HOEs model outperforms several state-of-the-art algorithms (including both sole algorithms and HOEs model’s variants) in terms of calibration accuracy, which strongly supports its potential in addressing calibration issues for industrial robots. |
| Author | Qiao, Yan Chen, Tinghui Li, Shuai Luo, Xin |
| Author_xml | – sequence: 1 givenname: Tinghui orcidid: 0000-0002-5068-5285 surname: Chen fullname: Chen, Tinghui email: chenth199208@outlook.com organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Shuai orcidid: 0000-0002-9574-9609 surname: Li fullname: Li, Shuai email: shuai.li@oulu.fi organization: Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland – sequence: 3 givenname: Yan orcidid: 0000-0001-5162-0224 surname: Qiao fullname: Qiao, Yan email: yqiao@must.edu.mo organization: Institute of Systems Engineering, Collaborative Laboratory for Intelligent Science and Systems, Macau University of Science and Technology, Macau, China – sequence: 4 givenname: Xin orcidid: 0000-0002-1348-5305 surname: Luo fullname: Luo, Xin email: luoxin21@gmail.com organization: College of Computer and Information Science, Southwest University, Chongqing, China |
| BookMark | eNp9kE1LAzEYhINUsK3ePXgIeN6ar81ujkutH1ARpJ6XbJrUlN1NTbIF_72p7UE8eHoZmGeGdyZg1LteA3CN0QxjJO5Wzy8zggibUcppUdIzMMZ5XmSCczICY4RwmQmW8wswCWGLECo4K8bAVfDNNUOIUPZruDDGKqv7CBd90F3TaugMvLd77YM1VifH3rVDtK6X_gvOXbdLot_Aqt04b-NHF6BxHlZKDV5Gfch2Ec5la5ukE3YJzo1sg7463Sl4f1is5k_Z8vXxeV4tM0UEiZnEXDOCCyxyxZgpGctZyRtpSqpMQWWpBCqRwgzlDTEYYSRLhsWaFg0huJF0Cm6PuTvvPgcdYr11g-9TZU0ERSIXjOfJhY4u5V0IXpt6522XXqsxqg-z1mnW-jBrfZo1IfwPomz8eS16adv_wJsjaLXWv3oYEQWn9BsfAYbk |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3424261 crossref_primary_10_1109_TSMC_2025_3535783 crossref_primary_10_1088_1361_6501_ad78f6 crossref_primary_10_1109_TCSVT_2024_3404005 |
| Cites_doi | 10.1016/j.precisioneng.2014.12.002 10.1109/TIE.2014.2314051 10.1016/j.rcim.2019.101855 10.1007/s00500-018-3102-4 10.1109/TIM.2022.3221149 10.1109/LRA.2020.2972880 10.1109/TIM.2022.3191707 10.1109/TMECH.2017.2756348 10.1145/1276958.1276978 10.1109/TIM.2020.3034975 10.1109/TASE.2019.2918141 10.1109/CASE49439.2021.9551684 10.1109/TNNLS.2022.3153039 10.1109/TIM.2023.3265744 10.1109/TIE.2017.2748058 10.1109/LRA.2022.3151610 10.1109/TRO.2016.2593042 10.1109/TIE.2021.3073312 10.1016/j.rcim.2019.05.016 10.1016/j.mechmachtheory.2019.103665 10.2298/fil2015113j 10.1016/j.robot.2006.06.002 10.1016/j.eswa.2020.113917 10.1016/j.neucom.2013.12.062 10.1109/TMECH.2019.2944428 10.1109/TMECH.2019.2960303 10.1109/TCYB.2021.3079346 10.1016/j.advengsoft.2013.12.007 10.1109/LRA.2022.3211776 10.1016/j.ins.2021.08.057 10.1016/j.engappai.2022.105124 10.1007/s12065-013-0102-2 10.1016/j.neucom.2014.03.085 10.1115/1.4055313 10.1109/IRIS.2016.8066074 10.1109/CCDC49329.2020.9164756 10.1109/TNNLS.2016.2574363 10.1016/j.cam.2017.10.026 10.1177/0954406215603739 10.1016/j.rcim.2015.06.003 10.1007/s11047-018-9712-z 10.1109/TCSII.2022.3199158 10.1016/j.rcim.2021.102165 10.1007/s11831-020-09420-6 10.1016/j.rcim.2019.05.002 10.1007/s12652-020-01781-x 10.1016/j.advengsoft.2015.01.010 10.1177/1729881419883072 10.1016/j.measurement.2019.107334 10.1109/TRO.2017.2707562 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-015-1920-1 10.1109/TCSII.2021.3062639 10.1590/S1678-58782005000400002 10.1109/TPAMI.2021.3132503 10.1109/TIM.2023.3240211 10.1016/j.ins.2019.09.015 10.1109/TNNLS.2021.3105384 10.1109/TII.2019.2916566 10.1007/s00521-021-05798-x 10.1016/j.measurement.2020.107524 10.1016/j.rcim.2017.09.006 10.1016/j.apm.2020.01.002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2024.3363783 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TIM_2024_3363783 10429763 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62272078 funderid: 10.13039/501100001809 – fundername: CAAI-Huawei Mind Spore Open Fund grantid: CAAIXSJLJJ-2021-035A |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c292t-a16e4217195c44f8445486baf83cf73a8c9080c1405b2f1010a8419d37b221ba3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 08:23:57 EDT 2025 Wed Oct 01 03:46:55 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 02:11:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-a16e4217195c44f8445486baf83cf73a8c9080c1405b2f1010a8419d37b221ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5068-5285 0000-0002-9574-9609 0000-0001-5162-0224 0000-0002-1348-5305 |
| PQID | 2930959465 |
| PQPubID | 85462 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2024_3363783 ieee_primary_10429763 proquest_journals_2930959465 crossref_citationtrail_10_1109_TIM_2024_3363783 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 Li (ref52) 2019; 36 ref60 ref62 ref61 |
| References_xml | – ident: ref11 doi: 10.1016/j.precisioneng.2014.12.002 – ident: ref14 doi: 10.1109/TIE.2014.2314051 – ident: ref13 doi: 10.1016/j.rcim.2019.101855 – ident: ref29 doi: 10.1007/s00500-018-3102-4 – ident: ref35 doi: 10.1109/TIM.2022.3221149 – ident: ref44 doi: 10.1109/LRA.2020.2972880 – ident: ref20 doi: 10.1109/TIM.2022.3191707 – ident: ref49 doi: 10.1109/TMECH.2017.2756348 – ident: ref60 doi: 10.1145/1276958.1276978 – ident: ref40 doi: 10.1109/TIM.2020.3034975 – ident: ref12 doi: 10.1109/TASE.2019.2918141 – ident: ref7 doi: 10.1109/CASE49439.2021.9551684 – ident: ref19 doi: 10.1109/TNNLS.2022.3153039 – ident: ref21 doi: 10.1109/TIM.2023.3265744 – ident: ref4 doi: 10.1109/TIE.2017.2748058 – ident: ref27 doi: 10.1109/LRA.2022.3151610 – ident: ref17 doi: 10.1109/TRO.2016.2593042 – ident: ref30 doi: 10.1109/TIE.2021.3073312 – ident: ref18 doi: 10.1016/j.rcim.2019.05.016 – ident: ref45 doi: 10.1016/j.mechmachtheory.2019.103665 – ident: ref56 doi: 10.2298/fil2015113j – ident: ref23 doi: 10.1016/j.robot.2006.06.002 – ident: ref42 doi: 10.1016/j.eswa.2020.113917 – ident: ref37 doi: 10.1016/j.neucom.2013.12.062 – ident: ref15 doi: 10.1109/TMECH.2019.2944428 – ident: ref50 doi: 10.1109/TMECH.2019.2960303 – ident: ref22 doi: 10.1109/TCYB.2021.3079346 – ident: ref54 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref24 doi: 10.1109/LRA.2022.3211776 – ident: ref59 doi: 10.1016/j.ins.2021.08.057 – ident: ref39 doi: 10.1016/j.engappai.2022.105124 – volume: 36 start-page: 994 issue: 6 year: 2019 ident: ref52 article-title: Kinematics parameter identification and accuracy evaluation method for neurosurgical robot publication-title: J. Biomed. Eng. – ident: ref34 doi: 10.1007/s12065-013-0102-2 – ident: ref3 doi: 10.1016/j.neucom.2014.03.085 – ident: ref48 doi: 10.1115/1.4055313 – ident: ref8 doi: 10.1109/IRIS.2016.8066074 – ident: ref62 doi: 10.1109/CCDC49329.2020.9164756 – ident: ref61 doi: 10.1109/TNNLS.2016.2574363 – ident: ref57 doi: 10.1016/j.cam.2017.10.026 – ident: ref9 doi: 10.1177/0954406215603739 – ident: ref10 doi: 10.1016/j.rcim.2015.06.003 – ident: ref38 doi: 10.1007/s11047-018-9712-z – ident: ref5 doi: 10.1109/TCSII.2022.3199158 – ident: ref1 doi: 10.1016/j.rcim.2021.102165 – ident: ref32 doi: 10.1007/s11831-020-09420-6 – ident: ref6 doi: 10.1016/j.rcim.2019.05.002 – ident: ref64 doi: 10.1007/s12652-020-01781-x – ident: ref33 doi: 10.1016/j.advengsoft.2015.01.010 – ident: ref2 doi: 10.1177/1729881419883072 – ident: ref51 doi: 10.1016/j.measurement.2019.107334 – ident: ref53 doi: 10.1109/TRO.2017.2707562 – ident: ref55 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref41 doi: 10.1007/s00521-015-1920-1 – ident: ref25 doi: 10.1109/TCSII.2021.3062639 – ident: ref46 doi: 10.1590/S1678-58782005000400002 – ident: ref63 doi: 10.1109/TPAMI.2021.3132503 – ident: ref36 doi: 10.1109/TIM.2023.3240211 – ident: ref58 doi: 10.1016/j.ins.2019.09.015 – ident: ref26 doi: 10.1109/TNNLS.2021.3105384 – ident: ref31 doi: 10.1109/TII.2019.2916566 – ident: ref28 doi: 10.1007/s00521-021-05798-x – ident: ref47 doi: 10.1016/j.measurement.2020.107524 – ident: ref16 doi: 10.1016/j.rcim.2017.09.006 – ident: ref43 doi: 10.1016/j.apm.2020.01.002 |
| SSID | ssj0007647 |
| Score | 2.490231 |
| Snippet | Industrial robots are regarded as essential instruments for advanced industry upgrading. The kinematic parameters of an industrial robot should be calibrated... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Absolute positioning accuracy Accuracy Algorithms Calibration Computational modeling data-driven algorithm Evolutionary algorithms evolutionary computing (EC) industrial robot Industrial robots kinematic parameters Kinematics Machine learning Optimization Robots Service robots |
| Title | A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration |
| URI | https://ieeexplore.ieee.org/document/10429763 https://www.proquest.com/docview/2930959465 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BTxUxEJ4ACQkeUBHDUyQ9ePGwj223222PL_oImMDBQMJt0_a1anzskre7JPjrnbb7CGI03npoJ01mpv2mnfkG4L3i3lY6d-jfzGXcUpFJRl3m0UByoalnKhQnn1-I0yv--bq8HovVYy2Mcy4mn7lpGMa__EVrh_BUhh6Opyc6xCZsVlKkYq2HY7cSPBFkUvRghAXrP8lcHV-enWMkyPi0KERRyeK3Oyg2VfnjJI7Xy8lzuFhvLGWV_JgOvZnan084G_975y9gdwSaZJYs4yVsuGYPnj2iH9yD7Zj-abtX0M7Il9YMXU90syDzSCuBAsm86dyNWTrSevIpZXB4xKxkfjdarF7dk9QYAiWS2fJru_ref7vpCGJhMrN2CEwUQXbbk1AGZpLB7cPVyfzy42k2tmLILFOszzQVjmP0QlVpOfeSc4x0hNFeFtZXhZZWIfS0GK2Vhnl081xLTtWiqAxj1OjiNWw1beMOgFSqdF4qWbLQ50RTpWW5YNb4yrLQLWsCx2vl1HbkKQ_tMpZ1jFdyVaM666DOelTnBD48rLhNHB3_mLsftPNoXlLMBA7XBlCPXtzVCIXCMykX5Zu_LHsLO0F6epM5hK1-Nbh3iFJ6cxSt8xdWh-GB |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYIeeJQiFgr4wIVDtrHjJPZxRbfaQncPaCv1FtleuyC2CdokSOXXM7azVQsCccvBL2Vm7G_smW8A3knuTKlSi_bNbMINLRLBqE0cKkhaKOqY9MnJ80UxO-Mfz_PzIVk95MJYa0PwmR37z_CWv2pM76_K0MJx90SDuAv3cs55HtO1rjfesuCRIpOiDSMw2L5KpvJweTJHX5DxcZYVWSmyW6dQKKvyx14cDpjjx7DYLi3GlXwb950em5-_sTb-99qfwKMBapJJ1I2ncMfWe7B7g4BwD-6HAFDTPoNmQj43um87ouoVmQZiCRyQTOvWXuq1JY0jRzGGwyFqJdMfg86qzRWJpSFwRDJZXzSbr92Xy5YgGiYTY3rPReHHbjriE8F0VLl9ODueLj_MkqEYQ2KYZF2iaGE5-i9U5oZzJ_D3c1Fo5URmXJkpYSSCT4P-Wq6ZQ0NPleBUrrJSM0a1yp7DTt3U9gWQUubWCSly5iudKCqVyFfMaFca5utljeBwK5zKDEzlvmDGugoeSyorFGflxVkN4hzB--se3yNLxz_a7nvp3GgXBTOCg60CVIMdtxWCIX9Ryov85V-6vYUHs-X8tDo9WXx6BQ_9TPGG5gB2uk1vXyNm6fSboKm_AE4c5M4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+and+Efficient+Ensemble+of+Diversified+Evolutionary+Computing+Algorithms+for+Accurate+Robot+Calibration&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Tinghui&rft.au=Li%2C+Shuai&rft.au=Qiao%2C+Yan&rft.au=Luo%2C+Xin&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3363783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3363783 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |