A convolutional neural network-based model for knowledge base completion and its application to search personalization

In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations i...

Full description

Saved in:
Bibliographic Details
Published inSemantic Web Vol. 10; no. 5; pp. 947 - 960
Main Authors Nguyen, Dai Quoc, Nguyen, Dat Quoc, Nguyen, Tu Dinh, Phung, Dinh
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2019
Subjects
Online AccessGet full text
ISSN1570-0844
2210-4968
DOI10.3233/SW-180318

Cover

Abstract In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation, tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user, document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines.
AbstractList In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation, tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user, document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines.
Author Nguyen, Dai Quoc
Phung, Dinh
Nguyen, Tu Dinh
Nguyen, Dat Quoc
Author_xml – sequence: 1
  givenname: Dai Quoc
  surname: Nguyen
  fullname: Nguyen, Dai Quoc
  organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu
– sequence: 2
  givenname: Dat Quoc
  surname: Nguyen
  fullname: Nguyen, Dat Quoc
  organization: The University of Melbourne, Melbourne, Australia. E-mail: dqnguyen@unimelb.edu.au
– sequence: 3
  givenname: Tu Dinh
  surname: Nguyen
  fullname: Nguyen, Tu Dinh
  organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu
– sequence: 4
  givenname: Dinh
  surname: Phung
  fullname: Phung, Dinh
  organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu
BookMark eNptULtqwzAUFSWFpmmG_oGgUwc3eli2NIbQFwQ6JJDR3Ehy68SxXMlOaL--ttOp9C4H7nlwONdoVLnKInRLyQNnnM9Wm4hKwqm8QGPGKIlilcgRGlORkojIOL5C0xB2pDtBEy7FGB3nWLvq6Mq2KVwFJa5s6wdoTs7voy0Ea_DBGVvi3Hm8r9yptObd4p7pvIe6tL0VQ2Vw0QQMdV0WGoZf43Cw4PUHrq0PfX7xPTA36DKHMtjpL07Q-ulxvXiJlm_Pr4v5MtJMsSZKleAxUJ0TkyYAMhZGcOCcATdWiq0lItVAKZcMlGRcEBODlolVhMcm5RN0d46tvftsbWiynWt9VyNkjCmqVMJi1almZ5X2LgRv80wXzVCz8VCUGSVZP2-22mTneTvH_R9H7YsD-K9_tD9jtn2y
CitedBy_id crossref_primary_10_1016_j_ipm_2022_103004
crossref_primary_10_3390_app132212380
crossref_primary_10_3390_electronics14020324
crossref_primary_10_1007_s13042_024_02179_3
crossref_primary_10_1016_j_ress_2025_110917
crossref_primary_10_1007_s10489_020_02165_6
crossref_primary_10_1016_j_eswa_2021_115273
crossref_primary_10_1145_3627704
crossref_primary_10_1007_s00521_022_07439_3
crossref_primary_10_1109_TAI_2021_3087116
crossref_primary_10_1007_s10489_021_02947_6
crossref_primary_10_1016_j_aei_2023_102084
crossref_primary_10_1007_s10489_025_06230_w
crossref_primary_10_1007_s10115_023_01866_x
Cites_doi 10.7551/mitpress/1120.003.0082
10.1609/aaai.v30i1.10089
10.1609/aaai.v32i1.11573
10.3233/SW-140134
10.1609/aaai.v28i1.8870
10.1145/1376616.1376746
10.1145/1059981.1059982
10.1145/2600428.2609482
10.18653/v1/K16-1005
10.18653/v1/P16-1136
10.1145/2505515.2505642
10.1145/2488388.2488511
10.1145/2348283.2348312
10.1609/aaai.v29i1.9491
10.1145/1935826.1935848
10.1007/978-3-319-56608-5_54
10.1145/1076034.1076111
10.1007/978-3-319-16354-3_67
10.3115/v1/P15-1067
10.1145/1242572.1242651
10.18653/v1/P17-1132
10.1609/aaai.v25i1.7917
10.18653/v1/N18-1133
10.18653/v1/P17-1021
10.1609/aaai.v30i1.10314
10.1109/5.726791
10.1145/1242572.1242667
10.18653/v1/P17-1088
10.1145/3020165.3022129
10.18653/v1/D15-1174
10.18653/v1/W15-4007
10.1002/asi.23735
10.1109/JPROC.2015.2483592
10.18653/v1/N16-1105
10.1109/ICDE.2008.4497504
10.1007/978-3-319-30671-1_13
10.18653/v1/N18-2053
10.18653/v1/N16-1054
10.18653/v1/D15-1191
10.3115/v1/D14-1181
10.18653/v1/D15-1038
10.18653/v1/D15-1082
10.1145/1835449.1835485
10.1145/2566486.2568032
10.1145/3109859.3109920
10.18653/v1/P16-1219
10.1145/1498759.1498786
10.1145/2556195.2556250
10.1145/2911451.2911491
10.1145/3038912.3052558
ContentType Journal Article
Copyright Copyright IOS Press BV 2019
Copyright_xml – notice: Copyright IOS Press BV 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/SW-180318
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2210-4968
EndPage 960
ExternalDocumentID 10_3233_SW_180318
GroupedDBID 0R~
4.4
AAFWJ
AAYXX
ABJNI
ACGFS
ACPQW
ADMLS
ADZMO
AENEX
AJNRN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
CITATION
EBS
EJD
H13
HZ~
IOS
MET
MIO
MV1
NGNOM
O9-
OK1
PQQKQ
TUS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-79534a1cf0d76aa845d53a332a3de85be057ca11382a982350d4ac86e9034d73
ISSN 1570-0844
IngestDate Mon Jun 30 08:06:31 EDT 2025
Wed Aug 27 16:26:15 EDT 2025
Thu Apr 24 23:05:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-79534a1cf0d76aa845d53a332a3de85be057ca11382a982350d4ac86e9034d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://content.iospress.com:443/download/semantic-web/sw318?id=semantic-web%2Fsw318
PQID 2291996249
PQPubID 2046381
PageCount 14
ParticipantIDs proquest_journals_2291996249
crossref_citationtrail_10_3233_SW_180318
crossref_primary_10_3233_SW_180318
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Semantic Web
PublicationYear 2019
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
References 10.3233/SW-180318_ref43
10.3233/SW-180318_ref44
10.3233/SW-180318_ref45
10.3233/SW-180318_ref46
10.3233/SW-180318_ref40
10.3233/SW-180318_ref41
10.3233/SW-180318_ref42
10.3233/SW-180318_ref47
10.3233/SW-180318_ref48
10.3233/SW-180318_ref49
10.3233/SW-180318_ref10
10.3233/SW-180318_ref54
10.3233/SW-180318_ref11
10.3233/SW-180318_ref55
10.3233/SW-180318_ref12
10.3233/SW-180318_ref56
10.3233/SW-180318_ref57
10.3233/SW-180318_ref50
10.3233/SW-180318_ref51
10.3233/SW-180318_ref52
10.3233/SW-180318_ref53
10.3233/SW-180318_ref18
10.3233/SW-180318_ref19
Lehmann (10.3233/SW-180318_ref25) 2015; 6
10.3233/SW-180318_ref58
10.3233/SW-180318_ref15
10.3233/SW-180318_ref59
10.3233/SW-180318_ref16
10.3233/SW-180318_ref17
Cai (10.3233/SW-180318_ref6) 2017; 68
Nickel (10.3233/SW-180318_ref35) 2016; 104
10.3233/SW-180318_ref60
10.3233/SW-180318_ref21
10.3233/SW-180318_ref65
10.3233/SW-180318_ref22
10.3233/SW-180318_ref61
10.3233/SW-180318_ref62
10.3233/SW-180318_ref63
10.3233/SW-180318_ref20
10.3233/SW-180318_ref64
10.3233/SW-180318_ref29
10.3233/SW-180318_ref26
10.3233/SW-180318_ref27
10.3233/SW-180318_ref28
10.3233/SW-180318_ref32
10.3233/SW-180318_ref33
10.3233/SW-180318_ref34
Lecun (10.3233/SW-180318_ref24) 1998; 86
10.3233/SW-180318_ref30
10.3233/SW-180318_ref5
10.3233/SW-180318_ref36
10.3233/SW-180318_ref7
10.3233/SW-180318_ref38
10.3233/SW-180318_ref8
10.3233/SW-180318_ref1
Fox (10.3233/SW-180318_ref13) 2005; 23
10.3233/SW-180318_ref2
10.3233/SW-180318_ref3
10.3233/SW-180318_ref4
Collobert (10.3233/SW-180318_ref9) 2011; 12
References_xml – ident: 10.3233/SW-180318_ref2
  doi: 10.7551/mitpress/1120.003.0082
– ident: 10.3233/SW-180318_ref20
  doi: 10.1609/aaai.v30i1.10089
– ident: 10.3233/SW-180318_ref10
  doi: 10.1609/aaai.v32i1.11573
– volume: 6
  start-page: 167
  year: 2015
  ident: 10.3233/SW-180318_ref25
  article-title: DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia
  publication-title: Semantic Web
  doi: 10.3233/SW-140134
– ident: 10.3233/SW-180318_ref54
  doi: 10.1609/aaai.v28i1.8870
– ident: 10.3233/SW-180318_ref3
  doi: 10.1145/1376616.1376746
– volume: 23
  start-page: 147
  issue: 2
  year: 2005
  ident: 10.3233/SW-180318_ref13
  article-title: Evaluating implicit measures to improve web search
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/1059981.1059982
– ident: 10.3233/SW-180318_ref50
  doi: 10.1145/2600428.2609482
– ident: 10.3233/SW-180318_ref33
  doi: 10.18653/v1/K16-1005
– ident: 10.3233/SW-180318_ref62
– ident: 10.3233/SW-180318_ref47
  doi: 10.18653/v1/P16-1136
– ident: 10.3233/SW-180318_ref18
  doi: 10.1145/2505515.2505642
– ident: 10.3233/SW-180318_ref56
  doi: 10.1145/2488388.2488511
– ident: 10.3233/SW-180318_ref1
  doi: 10.1145/2348283.2348312
– ident: 10.3233/SW-180318_ref27
  doi: 10.1609/aaai.v29i1.9491
– ident: 10.3233/SW-180318_ref43
  doi: 10.1145/1935826.1935848
– ident: 10.3233/SW-180318_ref49
  doi: 10.1007/978-3-319-56608-5_54
– ident: 10.3233/SW-180318_ref42
  doi: 10.1145/1076034.1076111
– ident: 10.3233/SW-180318_ref52
  doi: 10.1007/978-3-319-16354-3_67
– ident: 10.3233/SW-180318_ref28
– ident: 10.3233/SW-180318_ref19
  doi: 10.3115/v1/P15-1067
– ident: 10.3233/SW-180318_ref11
  doi: 10.1145/1242572.1242651
– ident: 10.3233/SW-180318_ref61
  doi: 10.18653/v1/P17-1132
– ident: 10.3233/SW-180318_ref5
  doi: 10.1609/aaai.v25i1.7917
– ident: 10.3233/SW-180318_ref40
– ident: 10.3233/SW-180318_ref7
  doi: 10.18653/v1/N18-1133
– ident: 10.3233/SW-180318_ref17
  doi: 10.18653/v1/P17-1021
– ident: 10.3233/SW-180318_ref36
  doi: 10.1609/aaai.v30i1.10314
– ident: 10.3233/SW-180318_ref48
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.3233/SW-180318_ref24
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 10.3233/SW-180318_ref41
  doi: 10.1145/1242572.1242667
– ident: 10.3233/SW-180318_ref4
– ident: 10.3233/SW-180318_ref59
  doi: 10.18653/v1/P17-1088
– volume: 12
  start-page: 2493
  year: 2011
  ident: 10.3233/SW-180318_ref9
  article-title: Natural language processing (almost) from scratch
  publication-title: Journal of Machine Learning Research
– ident: 10.3233/SW-180318_ref51
  doi: 10.1145/3020165.3022129
– ident: 10.3233/SW-180318_ref46
  doi: 10.18653/v1/D15-1174
– ident: 10.3233/SW-180318_ref45
  doi: 10.18653/v1/W15-4007
– volume: 68
  start-page: 855
  issue: 4
  year: 2017
  ident: 10.3233/SW-180318_ref6
  article-title: Behavior-based personalization in web search
  publication-title: Journal of the Association for Information Science and Technology
  doi: 10.1002/asi.23735
– ident: 10.3233/SW-180318_ref12
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.3233/SW-180318_ref35
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2483592
– ident: 10.3233/SW-180318_ref65
  doi: 10.18653/v1/N16-1105
– ident: 10.3233/SW-180318_ref21
  doi: 10.1109/ICDE.2008.4497504
– ident: 10.3233/SW-180318_ref64
  doi: 10.1007/978-3-319-30671-1_13
– ident: 10.3233/SW-180318_ref32
  doi: 10.18653/v1/N18-2053
– ident: 10.3233/SW-180318_ref53
– ident: 10.3233/SW-180318_ref34
  doi: 10.18653/v1/N16-1054
– ident: 10.3233/SW-180318_ref29
  doi: 10.18653/v1/D15-1191
– ident: 10.3233/SW-180318_ref22
  doi: 10.3115/v1/D14-1181
– ident: 10.3233/SW-180318_ref57
– ident: 10.3233/SW-180318_ref16
  doi: 10.18653/v1/D15-1038
– ident: 10.3233/SW-180318_ref26
  doi: 10.18653/v1/D15-1082
– ident: 10.3233/SW-180318_ref30
  doi: 10.1145/1835449.1835485
– ident: 10.3233/SW-180318_ref55
  doi: 10.1145/2566486.2568032
– ident: 10.3233/SW-180318_ref15
  doi: 10.1145/3109859.3109920
– ident: 10.3233/SW-180318_ref63
– ident: 10.3233/SW-180318_ref58
  doi: 10.18653/v1/P16-1219
– ident: 10.3233/SW-180318_ref44
  doi: 10.1145/1498759.1498786
– ident: 10.3233/SW-180318_ref38
  doi: 10.1145/2556195.2556250
– ident: 10.3233/SW-180318_ref8
  doi: 10.1145/2911451.2911491
– ident: 10.3233/SW-180318_ref60
  doi: 10.1145/3038912.3052558
SSID ssj0000516385
Score 2.3649848
Snippet In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 947
SubjectTerms Artificial neural networks
Convolution
Customization
Feature maps
Knowledge base
Knowledge management
Mathematical analysis
Matrix algebra
Matrix methods
Neural networks
Queries
Search engines
Title A convolutional neural network-based model for knowledge base completion and its application to search personalization
URI https://www.proquest.com/docview/2291996249
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2210-4968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000516385
  issn: 1570-0844
  databaseCode: ADMLS
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xGMhCCCFVgcZ27OSxglUT6gaomdq3yHHcbRK03UiQ2D_Bv8z5I19ThYCXNPI5ceX75e58Pt8h9Iolgqy04PCJr0jAciUCKWy5F1CGkRKhshlvjk_40Sn7uIyWg8GvTtRSVeZv1fXOcyX_w1VoA76aU7L_wNnmpdAA98BfuAKH4fpXPJ7YoHE_BMy1SU5pf2xod2A0VOFq3dhowsZ_NjIUF02uyzoe2ewgdLazjVHqXSLb2mC_btno7dm5_gasuVCjhc4bv_JZ9dMLM3kx-lJt1C5K2aOkFQjf9fnI9Wisa9P0-bzy2tU7J8x5qJ5zoht35AL72lglK22FTSzrPArathFYgwYscbV2GhE97kAx6sjbxKXrvKkHKDF-6ul8EYSxkVqtsqs3-E8-ZdPT2SxLD5fp6-1lYMqQme16X5PlFtojgnMyRHuTD8ezeeO2AxkGEiuyWXj9n3f5qsyQ75oB-1ZOX8lbyyW9h-76JQeeOPzcRwO9foDudBJRPkQ_JriHJOyQhHtIwhZJGJCEGyRhQ8EtkjAgCQOScAdJuNxghyR8A0mPUDo9TN8fBb4iR6BIQspAJBFlMlSrcSG4lDGLiohKSomkhY6jXIP1r2Ro8lrKJCY0GhdMqpjrZExZIehjNFxv1voJwozTVc55wUlOmeBjGVJ4TuoY3porJvfRm3oCM-Wz1ZuiKV8zWLWauc7mi8zN9T562XTduhQtuzod1FzI_Bf8PSMkMUH4hCVP_0x-hm636D5Aw_Kq0s_BGC3zFx4gvwEeIJJs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network-based+model+for+knowledge+base+completion+and+its+application+to+search+personalization&rft.jtitle=Semantic+Web&rft.au=Nguyen%2C+Dai+Quoc&rft.au=Nguyen%2C+Dat+Quoc&rft.au=Tu+Dinh+Nguyen&rft.au=Dinh+Phung&rft.date=2019-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1570-0844&rft.eissn=2210-4968&rft.volume=10&rft.issue=5&rft.spage=947&rft_id=info:doi/10.3233%2FSW-180318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0844&client=summon