A convolutional neural network-based model for knowledge base completion and its application to search personalization
In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations i...
Saved in:
Published in | Semantic Web Vol. 10; no. 5; pp. 947 - 960 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Sage Publications Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1570-0844 2210-4968 |
DOI | 10.3233/SW-180318 |
Cover
Abstract | In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation, tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user, document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines. |
---|---|
AbstractList | In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation, tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user, document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines. |
Author | Nguyen, Dai Quoc Phung, Dinh Nguyen, Tu Dinh Nguyen, Dat Quoc |
Author_xml | – sequence: 1 givenname: Dai Quoc surname: Nguyen fullname: Nguyen, Dai Quoc organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu – sequence: 2 givenname: Dat Quoc surname: Nguyen fullname: Nguyen, Dat Quoc organization: The University of Melbourne, Melbourne, Australia. E-mail: dqnguyen@unimelb.edu.au – sequence: 3 givenname: Tu Dinh surname: Nguyen fullname: Nguyen, Tu Dinh organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu – sequence: 4 givenname: Dinh surname: Phung fullname: Phung, Dinh organization: Monash University, Melbourne, Australia. E-mails: dai.nguyen@monash.edu, tu.dinh.nguyen@monash.edu, dinh.phung@monash.edu |
BookMark | eNptULtqwzAUFSWFpmmG_oGgUwc3eli2NIbQFwQ6JJDR3Ehy68SxXMlOaL--ttOp9C4H7nlwONdoVLnKInRLyQNnnM9Wm4hKwqm8QGPGKIlilcgRGlORkojIOL5C0xB2pDtBEy7FGB3nWLvq6Mq2KVwFJa5s6wdoTs7voy0Ea_DBGVvi3Hm8r9yptObd4p7pvIe6tL0VQ2Vw0QQMdV0WGoZf43Cw4PUHrq0PfX7xPTA36DKHMtjpL07Q-ulxvXiJlm_Pr4v5MtJMsSZKleAxUJ0TkyYAMhZGcOCcATdWiq0lItVAKZcMlGRcEBODlolVhMcm5RN0d46tvftsbWiynWt9VyNkjCmqVMJi1almZ5X2LgRv80wXzVCz8VCUGSVZP2-22mTneTvH_R9H7YsD-K9_tD9jtn2y |
CitedBy_id | crossref_primary_10_1016_j_ipm_2022_103004 crossref_primary_10_3390_app132212380 crossref_primary_10_3390_electronics14020324 crossref_primary_10_1007_s13042_024_02179_3 crossref_primary_10_1016_j_ress_2025_110917 crossref_primary_10_1007_s10489_020_02165_6 crossref_primary_10_1016_j_eswa_2021_115273 crossref_primary_10_1145_3627704 crossref_primary_10_1007_s00521_022_07439_3 crossref_primary_10_1109_TAI_2021_3087116 crossref_primary_10_1007_s10489_021_02947_6 crossref_primary_10_1016_j_aei_2023_102084 crossref_primary_10_1007_s10489_025_06230_w crossref_primary_10_1007_s10115_023_01866_x |
Cites_doi | 10.7551/mitpress/1120.003.0082 10.1609/aaai.v30i1.10089 10.1609/aaai.v32i1.11573 10.3233/SW-140134 10.1609/aaai.v28i1.8870 10.1145/1376616.1376746 10.1145/1059981.1059982 10.1145/2600428.2609482 10.18653/v1/K16-1005 10.18653/v1/P16-1136 10.1145/2505515.2505642 10.1145/2488388.2488511 10.1145/2348283.2348312 10.1609/aaai.v29i1.9491 10.1145/1935826.1935848 10.1007/978-3-319-56608-5_54 10.1145/1076034.1076111 10.1007/978-3-319-16354-3_67 10.3115/v1/P15-1067 10.1145/1242572.1242651 10.18653/v1/P17-1132 10.1609/aaai.v25i1.7917 10.18653/v1/N18-1133 10.18653/v1/P17-1021 10.1609/aaai.v30i1.10314 10.1109/5.726791 10.1145/1242572.1242667 10.18653/v1/P17-1088 10.1145/3020165.3022129 10.18653/v1/D15-1174 10.18653/v1/W15-4007 10.1002/asi.23735 10.1109/JPROC.2015.2483592 10.18653/v1/N16-1105 10.1109/ICDE.2008.4497504 10.1007/978-3-319-30671-1_13 10.18653/v1/N18-2053 10.18653/v1/N16-1054 10.18653/v1/D15-1191 10.3115/v1/D14-1181 10.18653/v1/D15-1038 10.18653/v1/D15-1082 10.1145/1835449.1835485 10.1145/2566486.2568032 10.1145/3109859.3109920 10.18653/v1/P16-1219 10.1145/1498759.1498786 10.1145/2556195.2556250 10.1145/2911451.2911491 10.1145/3038912.3052558 |
ContentType | Journal Article |
Copyright | Copyright IOS Press BV 2019 |
Copyright_xml | – notice: Copyright IOS Press BV 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/SW-180318 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2210-4968 |
EndPage | 960 |
ExternalDocumentID | 10_3233_SW_180318 |
GroupedDBID | 0R~ 4.4 AAFWJ AAYXX ABJNI ACGFS ACPQW ADMLS ADZMO AENEX AJNRN ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF CITATION EBS EJD H13 HZ~ IOS MET MIO MV1 NGNOM O9- OK1 PQQKQ TUS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-79534a1cf0d76aa845d53a332a3de85be057ca11382a982350d4ac86e9034d73 |
ISSN | 1570-0844 |
IngestDate | Mon Jun 30 08:06:31 EDT 2025 Wed Aug 27 16:26:15 EDT 2025 Thu Apr 24 23:05:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-79534a1cf0d76aa845d53a332a3de85be057ca11382a982350d4ac86e9034d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://content.iospress.com:443/download/semantic-web/sw318?id=semantic-web%2Fsw318 |
PQID | 2291996249 |
PQPubID | 2046381 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2291996249 crossref_citationtrail_10_3233_SW_180318 crossref_primary_10_3233_SW_180318 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Semantic Web |
PublicationYear | 2019 |
Publisher | Sage Publications Ltd |
Publisher_xml | – name: Sage Publications Ltd |
References | 10.3233/SW-180318_ref43 10.3233/SW-180318_ref44 10.3233/SW-180318_ref45 10.3233/SW-180318_ref46 10.3233/SW-180318_ref40 10.3233/SW-180318_ref41 10.3233/SW-180318_ref42 10.3233/SW-180318_ref47 10.3233/SW-180318_ref48 10.3233/SW-180318_ref49 10.3233/SW-180318_ref10 10.3233/SW-180318_ref54 10.3233/SW-180318_ref11 10.3233/SW-180318_ref55 10.3233/SW-180318_ref12 10.3233/SW-180318_ref56 10.3233/SW-180318_ref57 10.3233/SW-180318_ref50 10.3233/SW-180318_ref51 10.3233/SW-180318_ref52 10.3233/SW-180318_ref53 10.3233/SW-180318_ref18 10.3233/SW-180318_ref19 Lehmann (10.3233/SW-180318_ref25) 2015; 6 10.3233/SW-180318_ref58 10.3233/SW-180318_ref15 10.3233/SW-180318_ref59 10.3233/SW-180318_ref16 10.3233/SW-180318_ref17 Cai (10.3233/SW-180318_ref6) 2017; 68 Nickel (10.3233/SW-180318_ref35) 2016; 104 10.3233/SW-180318_ref60 10.3233/SW-180318_ref21 10.3233/SW-180318_ref65 10.3233/SW-180318_ref22 10.3233/SW-180318_ref61 10.3233/SW-180318_ref62 10.3233/SW-180318_ref63 10.3233/SW-180318_ref20 10.3233/SW-180318_ref64 10.3233/SW-180318_ref29 10.3233/SW-180318_ref26 10.3233/SW-180318_ref27 10.3233/SW-180318_ref28 10.3233/SW-180318_ref32 10.3233/SW-180318_ref33 10.3233/SW-180318_ref34 Lecun (10.3233/SW-180318_ref24) 1998; 86 10.3233/SW-180318_ref30 10.3233/SW-180318_ref5 10.3233/SW-180318_ref36 10.3233/SW-180318_ref7 10.3233/SW-180318_ref38 10.3233/SW-180318_ref8 10.3233/SW-180318_ref1 Fox (10.3233/SW-180318_ref13) 2005; 23 10.3233/SW-180318_ref2 10.3233/SW-180318_ref3 10.3233/SW-180318_ref4 Collobert (10.3233/SW-180318_ref9) 2011; 12 |
References_xml | – ident: 10.3233/SW-180318_ref2 doi: 10.7551/mitpress/1120.003.0082 – ident: 10.3233/SW-180318_ref20 doi: 10.1609/aaai.v30i1.10089 – ident: 10.3233/SW-180318_ref10 doi: 10.1609/aaai.v32i1.11573 – volume: 6 start-page: 167 year: 2015 ident: 10.3233/SW-180318_ref25 article-title: DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia publication-title: Semantic Web doi: 10.3233/SW-140134 – ident: 10.3233/SW-180318_ref54 doi: 10.1609/aaai.v28i1.8870 – ident: 10.3233/SW-180318_ref3 doi: 10.1145/1376616.1376746 – volume: 23 start-page: 147 issue: 2 year: 2005 ident: 10.3233/SW-180318_ref13 article-title: Evaluating implicit measures to improve web search publication-title: ACM Transactions on Information Systems doi: 10.1145/1059981.1059982 – ident: 10.3233/SW-180318_ref50 doi: 10.1145/2600428.2609482 – ident: 10.3233/SW-180318_ref33 doi: 10.18653/v1/K16-1005 – ident: 10.3233/SW-180318_ref62 – ident: 10.3233/SW-180318_ref47 doi: 10.18653/v1/P16-1136 – ident: 10.3233/SW-180318_ref18 doi: 10.1145/2505515.2505642 – ident: 10.3233/SW-180318_ref56 doi: 10.1145/2488388.2488511 – ident: 10.3233/SW-180318_ref1 doi: 10.1145/2348283.2348312 – ident: 10.3233/SW-180318_ref27 doi: 10.1609/aaai.v29i1.9491 – ident: 10.3233/SW-180318_ref43 doi: 10.1145/1935826.1935848 – ident: 10.3233/SW-180318_ref49 doi: 10.1007/978-3-319-56608-5_54 – ident: 10.3233/SW-180318_ref42 doi: 10.1145/1076034.1076111 – ident: 10.3233/SW-180318_ref52 doi: 10.1007/978-3-319-16354-3_67 – ident: 10.3233/SW-180318_ref28 – ident: 10.3233/SW-180318_ref19 doi: 10.3115/v1/P15-1067 – ident: 10.3233/SW-180318_ref11 doi: 10.1145/1242572.1242651 – ident: 10.3233/SW-180318_ref61 doi: 10.18653/v1/P17-1132 – ident: 10.3233/SW-180318_ref5 doi: 10.1609/aaai.v25i1.7917 – ident: 10.3233/SW-180318_ref40 – ident: 10.3233/SW-180318_ref7 doi: 10.18653/v1/N18-1133 – ident: 10.3233/SW-180318_ref17 doi: 10.18653/v1/P17-1021 – ident: 10.3233/SW-180318_ref36 doi: 10.1609/aaai.v30i1.10314 – ident: 10.3233/SW-180318_ref48 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.3233/SW-180318_ref24 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – ident: 10.3233/SW-180318_ref41 doi: 10.1145/1242572.1242667 – ident: 10.3233/SW-180318_ref4 – ident: 10.3233/SW-180318_ref59 doi: 10.18653/v1/P17-1088 – volume: 12 start-page: 2493 year: 2011 ident: 10.3233/SW-180318_ref9 article-title: Natural language processing (almost) from scratch publication-title: Journal of Machine Learning Research – ident: 10.3233/SW-180318_ref51 doi: 10.1145/3020165.3022129 – ident: 10.3233/SW-180318_ref46 doi: 10.18653/v1/D15-1174 – ident: 10.3233/SW-180318_ref45 doi: 10.18653/v1/W15-4007 – volume: 68 start-page: 855 issue: 4 year: 2017 ident: 10.3233/SW-180318_ref6 article-title: Behavior-based personalization in web search publication-title: Journal of the Association for Information Science and Technology doi: 10.1002/asi.23735 – ident: 10.3233/SW-180318_ref12 – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 10.3233/SW-180318_ref35 article-title: A review of relational machine learning for knowledge graphs publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2483592 – ident: 10.3233/SW-180318_ref65 doi: 10.18653/v1/N16-1105 – ident: 10.3233/SW-180318_ref21 doi: 10.1109/ICDE.2008.4497504 – ident: 10.3233/SW-180318_ref64 doi: 10.1007/978-3-319-30671-1_13 – ident: 10.3233/SW-180318_ref32 doi: 10.18653/v1/N18-2053 – ident: 10.3233/SW-180318_ref53 – ident: 10.3233/SW-180318_ref34 doi: 10.18653/v1/N16-1054 – ident: 10.3233/SW-180318_ref29 doi: 10.18653/v1/D15-1191 – ident: 10.3233/SW-180318_ref22 doi: 10.3115/v1/D14-1181 – ident: 10.3233/SW-180318_ref57 – ident: 10.3233/SW-180318_ref16 doi: 10.18653/v1/D15-1038 – ident: 10.3233/SW-180318_ref26 doi: 10.18653/v1/D15-1082 – ident: 10.3233/SW-180318_ref30 doi: 10.1145/1835449.1835485 – ident: 10.3233/SW-180318_ref55 doi: 10.1145/2566486.2568032 – ident: 10.3233/SW-180318_ref15 doi: 10.1145/3109859.3109920 – ident: 10.3233/SW-180318_ref63 – ident: 10.3233/SW-180318_ref58 doi: 10.18653/v1/P16-1219 – ident: 10.3233/SW-180318_ref44 doi: 10.1145/1498759.1498786 – ident: 10.3233/SW-180318_ref38 doi: 10.1145/2556195.2556250 – ident: 10.3233/SW-180318_ref8 doi: 10.1145/2911451.2911491 – ident: 10.3233/SW-180318_ref60 doi: 10.1145/3038912.3052558 |
SSID | ssj0000516385 |
Score | 2.3649848 |
Snippet | In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 947 |
SubjectTerms | Artificial neural networks Convolution Customization Feature maps Knowledge base Knowledge management Mathematical analysis Matrix algebra Matrix methods Neural networks Queries Search engines |
Title | A convolutional neural network-based model for knowledge base completion and its application to search personalization |
URI | https://www.proquest.com/docview/2291996249 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2210-4968 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000516385 issn: 1570-0844 databaseCode: ADMLS dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xGMhCCCFVgcZ27OSxglUT6gaomdq3yHHcbRK03UiQ2D_Bv8z5I19ThYCXNPI5ceX75e58Pt8h9Iolgqy04PCJr0jAciUCKWy5F1CGkRKhshlvjk_40Sn7uIyWg8GvTtRSVeZv1fXOcyX_w1VoA76aU7L_wNnmpdAA98BfuAKH4fpXPJ7YoHE_BMy1SU5pf2xod2A0VOFq3dhowsZ_NjIUF02uyzoe2ewgdLazjVHqXSLb2mC_btno7dm5_gasuVCjhc4bv_JZ9dMLM3kx-lJt1C5K2aOkFQjf9fnI9Wisa9P0-bzy2tU7J8x5qJ5zoht35AL72lglK22FTSzrPArathFYgwYscbV2GhE97kAx6sjbxKXrvKkHKDF-6ul8EYSxkVqtsqs3-E8-ZdPT2SxLD5fp6-1lYMqQme16X5PlFtojgnMyRHuTD8ezeeO2AxkGEiuyWXj9n3f5qsyQ75oB-1ZOX8lbyyW9h-76JQeeOPzcRwO9foDudBJRPkQ_JriHJOyQhHtIwhZJGJCEGyRhQ8EtkjAgCQOScAdJuNxghyR8A0mPUDo9TN8fBb4iR6BIQspAJBFlMlSrcSG4lDGLiohKSomkhY6jXIP1r2Ro8lrKJCY0GhdMqpjrZExZIehjNFxv1voJwozTVc55wUlOmeBjGVJ4TuoY3porJvfRm3oCM-Wz1ZuiKV8zWLWauc7mi8zN9T562XTduhQtuzod1FzI_Bf8PSMkMUH4hCVP_0x-hm636D5Aw_Kq0s_BGC3zFx4gvwEeIJJs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network-based+model+for+knowledge+base+completion+and+its+application+to+search+personalization&rft.jtitle=Semantic+Web&rft.au=Nguyen%2C+Dai+Quoc&rft.au=Nguyen%2C+Dat+Quoc&rft.au=Tu+Dinh+Nguyen&rft.au=Dinh+Phung&rft.date=2019-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1570-0844&rft.eissn=2210-4968&rft.volume=10&rft.issue=5&rft.spage=947&rft_id=info:doi/10.3233%2FSW-180318&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0844&client=summon |