Joint Multi-Task Offloading and Resource Allocation for Mobile Edge Computing Systems in Satellite IoT

For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 72; no. 6; pp. 7783 - 7795
Main Authors Chai, Furong, Zhang, Qi, Yao, Haipeng, Xin, Xiangjun, Gao, Ran, Guizani, Mohsen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2023.3238771

Cover

Abstract For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT.
AbstractList For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87[Formula Omitted] compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT.
For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT.
Author Xin, Xiangjun
Zhang, Qi
Gao, Ran
Guizani, Mohsen
Chai, Furong
Yao, Haipeng
Author_xml – sequence: 1
  givenname: Furong
  orcidid: 0000-0001-7017-1081
  surname: Chai
  fullname: Chai, Furong
  email: chaifurong1@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing, China
– sequence: 2
  givenname: Qi
  orcidid: 0000-0003-1884-5530
  surname: Zhang
  fullname: Zhang, Qi
  email: zhangqi@bupt.edu.cn
  organization: School of Electronic Engineering, BUPT, the State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
– sequence: 3
  givenname: Haipeng
  orcidid: 0000-0003-1391-7363
  surname: Yao
  fullname: Yao, Haipeng
  email: yaohaipeng@bupt.edu.cn
  organization: School of Information and Communication Engineering, BUPT, Beijing, China
– sequence: 4
  givenname: Xiangjun
  orcidid: 0000-0002-1690-056X
  surname: Xin
  fullname: Xin, Xiangjun
  email: xjxin@bupt.edu.cn
  organization: School of Electronic Engineering, BUPT, the State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
– sequence: 5
  givenname: Ran
  orcidid: 0000-0003-2666-1643
  surname: Gao
  fullname: Gao, Ran
  email: gaoran198412@163.com
  organization: School of Information and Electronics, Beijing Institution of Technology, Beijing, China
– sequence: 6
  givenname: Mohsen
  orcidid: 0000-0002-8972-8094
  surname: Guizani
  fullname: Guizani, Mohsen
  email: mguizani@ieee.org
  organization: Machine learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE
BookMark eNp9kDtPwzAURi0EEi2wMzBYYk7xM4lHVBUoAlWCwBo5zg0yuHaJnaH_npQyIAamqyt95z7OFB364AGhc0pmlBJ1Vb1WM0YYn3HGy6KgB2hCFVeZ4lIdogkhtMyUFPIYTWN8H1shFJ2g7j5Yn_Dj4JLNKh0_8KrrXNCt9W9Y-xY_QQxDbwBfOxeMTjZ43IUeP4bGOsCL9g3wPKw3Q9oRz9uYYB2x9fhZJ3DOJsDLUJ2io067CGc_9QS93Cyq-V32sLpdzq8fMsMUS1lRKtk2pGkbnhsgjeCFJgXlHaNtriWRIFhupNGGC2gLBnmR57nQxshOlq3hJ-hyP3fTh88BYqrfx-v9uLJmJSsJEUyRMZXvU6YPMfbQ1cam79dSr62rKal3TuvRab1zWv84HUHyB9z0dq377X_IxR6xAPArTpjgRPIvEACENQ
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110916
crossref_primary_10_1109_TMC_2024_3502643
crossref_primary_10_1007_s11432_024_4258_x
crossref_primary_10_1109_JIOT_2024_3379556
crossref_primary_10_1016_j_cja_2024_11_026
crossref_primary_10_1109_JIOT_2024_3373454
crossref_primary_10_1016_j_future_2024_107700
crossref_primary_10_1186_s13677_023_00538_z
crossref_primary_10_1109_JIOT_2024_3382682
crossref_primary_10_1109_MCOM_002_2300721
crossref_primary_10_3390_photonics10080879
crossref_primary_10_1109_TMC_2024_3349551
crossref_primary_10_3390_photonics10091017
crossref_primary_10_3390_e26100846
crossref_primary_10_1109_OJCOMS_2024_3423363
crossref_primary_10_1016_j_comnet_2024_110801
crossref_primary_10_1016_j_engappai_2024_108819
crossref_primary_10_1109_COMST_2024_3383093
crossref_primary_10_1109_JPHOT_2024_3410392
crossref_primary_10_1016_j_jksuci_2024_102196
crossref_primary_10_1364_AO_511453
crossref_primary_10_1016_j_heliyon_2024_e29916
crossref_primary_10_3390_aerospace10090804
crossref_primary_10_3390_electronics12194056
crossref_primary_10_1186_s13677_023_00461_3
crossref_primary_10_1109_TVT_2024_3397334
crossref_primary_10_3390_fi15080254
crossref_primary_10_1016_j_optcom_2024_130976
crossref_primary_10_1016_j_comnet_2024_110352
crossref_primary_10_1109_TAES_2024_3409269
crossref_primary_10_3390_electronics12204234
crossref_primary_10_1364_OE_495626
crossref_primary_10_3390_app131810027
crossref_primary_10_3390_photonics10091008
crossref_primary_10_1109_JIOT_2024_3432901
crossref_primary_10_1002_dac_5691
crossref_primary_10_1109_JIOT_2024_3357869
crossref_primary_10_1016_j_future_2024_107527
crossref_primary_10_1109_TMC_2024_3458185
crossref_primary_10_1364_AO_517521
crossref_primary_10_1109_TCOMM_2024_3361536
crossref_primary_10_1109_TNSM_2024_3426076
crossref_primary_10_1016_j_ins_2024_121790
crossref_primary_10_1007_s11082_023_05627_6
crossref_primary_10_1109_JIOT_2024_3424782
crossref_primary_10_1109_JIOT_2024_3417456
crossref_primary_10_1109_TMC_2024_3493388
crossref_primary_10_1007_s10462_024_10947_4
crossref_primary_10_1186_s13677_024_00607_x
crossref_primary_10_1109_TNSE_2024_3496902
crossref_primary_10_1109_TVT_2024_3364210
crossref_primary_10_1109_JSAC_2024_3460086
crossref_primary_10_1016_j_comcom_2024_05_011
crossref_primary_10_1007_s10586_024_04347_0
crossref_primary_10_1016_j_suscom_2023_100899
crossref_primary_10_1109_TMC_2024_3489619
crossref_primary_10_1109_TNSM_2024_3470777
crossref_primary_10_1016_j_comnet_2024_110718
crossref_primary_10_1007_s12083_025_01903_2
crossref_primary_10_1109_JIOT_2024_3382242
crossref_primary_10_1016_j_sigpro_2024_109755
crossref_primary_10_1109_TGCN_2023_3260199
crossref_primary_10_1109_TWC_2024_3496089
crossref_primary_10_1016_j_comcom_2024_05_008
crossref_primary_10_1109_ACCESS_2024_3367128
crossref_primary_10_1109_JSAC_2024_3365899
crossref_primary_10_1109_TNSE_2024_3521885
crossref_primary_10_32604_cmc_2024_057353
crossref_primary_10_1016_j_ijcce_2023_06_002
crossref_primary_10_1109_JSEN_2024_3494028
crossref_primary_10_1016_j_cosrev_2025_100734
crossref_primary_10_1109_TSC_2023_3332140
crossref_primary_10_1109_JIOT_2023_3283287
crossref_primary_10_1109_JIOT_2023_3329869
crossref_primary_10_1016_j_comnet_2024_110555
crossref_primary_10_1109_TCOMM_2024_3397841
crossref_primary_10_3390_drones7060383
crossref_primary_10_1016_j_chb_2024_108394
crossref_primary_10_1109_JIOT_2023_3327392
crossref_primary_10_4018_IJSWIS_345935
crossref_primary_10_1016_j_adhoc_2024_103500
crossref_primary_10_3390_electronics12061357
crossref_primary_10_1007_s12083_025_01915_y
crossref_primary_10_1007_s10489_024_05804_4
crossref_primary_10_1109_JSYST_2024_3432449
crossref_primary_10_3390_app13042625
crossref_primary_10_1109_TMC_2024_3440066
crossref_primary_10_1109_JIOT_2023_3338718
crossref_primary_10_3390_rs16183459
crossref_primary_10_3390_electronics12194075
crossref_primary_10_1109_JIOT_2024_3407105
crossref_primary_10_1016_j_iot_2024_101210
crossref_primary_10_4018_JCIT_371753
crossref_primary_10_1109_TGRS_2025_3528015
crossref_primary_10_1109_ACCESS_2024_3431922
crossref_primary_10_1109_ACCESS_2024_3357082
crossref_primary_10_1109_TVT_2024_3463548
Cites_doi 10.1109/TVT.2019.2959410
10.3390/s19040831
10.1109/JIOT.2021.3112617
10.1109/ACCESS.2017.2735988
10.1109/JIOT.2021.3068141
10.1109/TCC.2019.2930259
10.1109/TSC.2014.2381227
10.1109/TVT.2019.2935450
10.1109/TWC.2017.2789293
10.1109/TVT.2019.2915836
10.1109/JSYST.2013.2285611
10.1109/ACCESS.2021.3049883
10.1109/TMC.2020.3026319
10.1109/GLOCOM.2017.8255103
10.1109/TCC.2021.3110965
10.1038/nature14236
10.1109/ACCESS.2018.2886284
10.3390/electronics8111247
10.1109/TPDS.2021.3076687
10.1109/TMC.2020.2990630
10.1109/JIOT.2021.3052542
10.1109/TNSE.2022.3141728
10.1109/MCE.2016.2590118
10.1109/TWC.2020.3029143
10.1145/954339.954342
10.1145/1999995.2000000
10.1109/TVT.2018.2876804
10.1109/MCOM.2019.1800971
10.1109/MNET.2018.1800052
10.1109/TPDS.2013.57
10.1109/TCC.2016.2560808
10.1109/MNET.2018.1800172
10.1109/CC.2016.7833463
10.1109/JSYST.2020.3017710
10.1109/71.993206
10.1109/ACCESS.2019.2963068
10.1109/SERVICES.2019.00049
10.18653/v1/D15-1166
10.1109/JIOT.2020.2972041
10.1016/j.future.2014.10.013
10.1016/j.future.2016.09.015
10.1109/TPDS.2020.3014896
10.1109/JSAC.2019.2906789
10.1007/s00779-012-0600-8
10.1109/JIOT.2022.3151134
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3238771
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 7795
ExternalDocumentID 10_1109_TVT_2023_3238771
10024305
Genre orig-research
GrantInformation_xml – fundername: Funds for Creative Research Groups of China
  grantid: 62021005
– fundername: National Natural Science Foundation of China
  grantid: 61835002; 61727817
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-7895db0bdb36ce0b437a0713f21d6a505e426c5cac34ed72e676664acc5f58dc3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 08:35:43 EDT 2025
Wed Oct 01 02:27:10 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7895db0bdb36ce0b437a0713f21d6a505e426c5cac34ed72e676664acc5f58dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8972-8094
0000-0002-1690-056X
0000-0001-7017-1081
0000-0003-1884-5530
0000-0003-1391-7363
0000-0003-2666-1643
PQID 2828004290
PQPubID 85454
PageCount 13
ParticipantIDs ieee_primary_10024305
crossref_citationtrail_10_1109_TVT_2023_3238771
crossref_primary_10_1109_TVT_2023_3238771
proquest_journals_2828004290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
zhu (ref6) 0; 9
ref52
wei (ref17) 2019; 8
mnih (ref42) 2015; 518
ref10
schulman (ref45) 2017
ref19
ref51
ref50
wang (ref16) 2019; 19
ref48
ref47
ref41
ruan (ref18) 2022; 42
ref49
ref8
ref7
ref9
ref4
ref3
ref5
vinyals (ref46) 0
bahdanau (ref40) 0
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
schulman (ref44) 0
ref28
ref27
li (ref11) 0; 21
ref29
sutton (ref43) 2018
References_xml – ident: ref52
  doi: 10.1109/TVT.2019.2959410
– ident: ref13
  doi: 10.3390/s19040831
– ident: ref12
  doi: 10.1109/JIOT.2021.3112617
– ident: ref2
  doi: 10.1109/ACCESS.2017.2735988
– ident: ref20
  doi: 10.1109/JIOT.2021.3068141
– year: 2018
  ident: ref43
  publication-title: Reinforcement Learning An Introduction
– ident: ref7
  doi: 10.1109/TCC.2019.2930259
– ident: ref53
  doi: 10.1109/TSC.2014.2381227
– year: 0
  ident: ref40
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc 3rd Int Conf Learn Representations (ICLR)
– ident: ref27
  doi: 10.1109/TVT.2019.2935450
– ident: ref37
  doi: 10.1109/TWC.2017.2789293
– ident: ref50
  doi: 10.1109/TVT.2019.2915836
– ident: ref26
  doi: 10.1109/JSYST.2013.2285611
– volume: 19
  year: 2019
  ident: ref16
  article-title: Satellite edge computing for the Internet of Things in aerospace
  publication-title: SENSORS
– year: 0
  ident: ref44
  article-title: High-dimensional continuous control using generalized advantage estimation
  publication-title: Proc Int Conf Learn Representations
– ident: ref30
  doi: 10.1109/ACCESS.2021.3049883
– volume: 21
  start-page: 1580
  year: 0
  ident: ref11
  article-title: Auction design for edge computation ofloading in SDN-based ultra dense networks
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2020.3026319
– year: 2017
  ident: ref45
  article-title: Proximal policy optimization algorithms
– ident: ref3
  doi: 10.1109/GLOCOM.2017.8255103
– ident: ref5
  doi: 10.1109/TCC.2021.3110965
– volume: 518
  start-page: 529
  year: 2015
  ident: ref42
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref48
  doi: 10.1109/ACCESS.2018.2886284
– start-page: 2692
  year: 0
  ident: ref46
  article-title: Pointer networks
  publication-title: Proc Neural Inf Process Syst
– volume: 8
  year: 2019
  ident: ref17
  article-title: Satellite IoT edge intelligent computing: A research on architecture
  publication-title: Electronics
  doi: 10.3390/electronics8111247
– ident: ref33
  doi: 10.1109/TPDS.2021.3076687
– ident: ref28
  doi: 10.1109/TMC.2020.2990630
– ident: ref19
  doi: 10.1109/JIOT.2021.3052542
– ident: ref14
  doi: 10.1109/TNSE.2022.3141728
– ident: ref9
  doi: 10.1109/MCE.2016.2590118
– ident: ref39
  doi: 10.1109/TWC.2020.3029143
– ident: ref23
  doi: 10.1145/954339.954342
– ident: ref21
  doi: 10.1109/TWC.2020.3029143
– ident: ref38
  doi: 10.1145/1999995.2000000
– ident: ref29
  doi: 10.1109/TVT.2018.2876804
– ident: ref35
  doi: 10.1109/MCOM.2019.1800971
– ident: ref4
  doi: 10.1109/MNET.2018.1800052
– ident: ref51
  doi: 10.1109/TPDS.2013.57
– ident: ref47
  doi: 10.1109/TCC.2016.2560808
– ident: ref15
  doi: 10.1109/MNET.2018.1800172
– ident: ref8
  doi: 10.1109/CC.2016.7833463
– ident: ref31
  doi: 10.1109/JSYST.2020.3017710
– ident: ref36
  doi: 10.1109/71.993206
– ident: ref1
  doi: 10.1109/ACCESS.2019.2963068
– ident: ref49
  doi: 10.1109/SERVICES.2019.00049
– volume: 42
  start-page: 1
  year: 2022
  ident: ref18
  article-title: Advances and prospects of the configuration design and control research of the LEO mega-constellations
  publication-title: Chin Space Sci Technol
– ident: ref41
  doi: 10.18653/v1/D15-1166
– ident: ref32
  doi: 10.1109/JIOT.2020.2972041
– ident: ref24
  doi: 10.1016/j.future.2014.10.013
– ident: ref10
  doi: 10.1016/j.future.2016.09.015
– ident: ref34
  doi: 10.1109/TPDS.2020.3014896
– ident: ref22
  doi: 10.1109/JSAC.2019.2906789
– ident: ref25
  doi: 10.1007/s00779-012-0600-8
– volume: 9
  start-page: 15674
  year: 0
  ident: ref6
  article-title: Multi-agent reinforcement learning aided service function chain deployment for Internet of Things
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2022.3151134
SSID ssj0014491
Score 2.7055068
Snippet For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7783
SubjectTerms Algorithms
attention mechanism
Computation offloading
Computer architecture
Costs
Edge computing
Graph theory
Internet of Things
Mobile computing
mobile edge computing (MEC)
Multi-task offloading
Multitasking
Optimization
proximal policy optimization (PPO)
Resource allocation
Resource management
Resource scheduling
Satellite communications
Satellite Internet of Things (IoT)
Satellites
Task analysis
Task scheduling
Unmanned aerial vehicles
Title Joint Multi-Task Offloading and Resource Allocation for Mobile Edge Computing Systems in Satellite IoT
URI https://ieeexplore.ieee.org/document/10024305
https://www.proquest.com/docview/2828004290
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMLQ1InTuJ4rFCrUqllIEXdIn8FVa0SRNOFX4_tJFUBgdgy2JGlZ9-9s-_eAXCX-ZkgmFMHIaYDlDjTdlCzBAdxTyoqeEStOv9kGo1mwXgezutidVsLo5SyyWfKNZ_2LV8WYmOuynqe1c8ziqX7hNCqWGv7ZBAEdXs8T59gzQuaN0lEe8lL4po24S7WDooQ74sPsk1Vflhi616Gx2DaLKzKKlm6m5K74uObZuO_V34CjmqiCfvVzjgFeyo_A4c78oPnIBsXi7yEtgbXSdh6CZ-ybFXYrHrIcgmbu33YXxmfZzCEmuTCScG1MYED-apg1RbCzKjFz-Eih8_MCn2WCj4WSRvMhoPkYeTUfRcc4VO_dEhMQ8kRlxxHQiEeYMJMMJv5noyYpkxKu3URCiZwoCTxVUR0EBQwIcIsjKXAF6CVF7m6BJD7ESU8FkxJHFAUcYUlxUbEX_OwgLMO6DVIpKIWJTe9MVapDU4QTTV2qcEurbHrgPvtjLdKkOOPsW0Dxc64CoUO6DZop_WRXacm9rTuGV39Mu0aHJi_V4liXdAq3zfqRlOSkt_arfgJbyDb-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDMDAZxGFAh5YGJI6cRLXY4WoSmnLQEDdIn8FVa0SRNOFX4_tJFUBgdgy2IqlZ9-9s-_eAXCd-qkgmFMHIaYDlE6q7aBmCQ7inlRU8Ihadf7ROOo_B4NJOKmK1W0tjFLKJp8p13zat3yZi6W5Kmt7Vj_PKJZuhTqsIGW51urRIAiqBnmePsOaGdSvkoi245fYNY3CXaxdFCHeFy9k26r8sMXWwfT2wbheWplXMnOXBXfFxzfVxn-v_QDsVVQTdsu9cQg2VHYEdtcECI9BOsinWQFtFa4Ts8UMPqbpPLd59ZBlEta3-7A7N17PoAg1zYWjnGtzAu_kq4JlYwgzo5I_h9MMPjEr9VkoeJ_HDfDcu4tv-07VecERPvULh3RoKDnikuNIKMQDTJgJZ1PfkxHTpElpxy5CwQQOlCS-iogOgwImRJiGHSnwCdjM8kydAsj9iBLeEUxJHFAUcYUlxUbGXzOxgLMmaNdIJKKSJTfdMeaJDU8QTTR2icEuqbBrgpvVjLdSkuOPsQ0Dxdq4EoUmaNVoJ9WhXSQm-rQOGp39Mu0KbPfj0TAZ3o8fzsGO-VOZNtYCm8X7Ul1oglLwS7stPwEnO99J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Multi-Task+Offloading+and+Resource+Allocation+for+Mobile+Edge+Computing+Systems+in+Satellite+IoT&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chai%2C+Furong&rft.au=Zhang%2C+Qi&rft.au=Yao%2C+Haipeng&rft.au=Xin%2C+Xiangjun&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=72&rft.issue=6&rft.spage=7783&rft.epage=7795&rft_id=info:doi/10.1109%2FTVT.2023.3238771&rft.externalDocID=10024305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon