Joint Multi-Task Offloading and Resource Allocation for Mobile Edge Computing Systems in Satellite IoT
For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 72; no. 6; pp. 7783 - 7795 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2023.3238771 |
Cover
Abstract | For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT. |
---|---|
AbstractList | For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87[Formula Omitted] compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT. For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be collected and jointly offloaded. It is crucial to allocate the computing and communication resources reasonably due to the scarcity of satellite communication and computing resources. To address this issue, we propose a joint multi-task offloading and resource allocation scheme in satellite IoT to improve the offloading efficiency. We first construct a novel resource allocation and task scheduling system in which tasks are collected and decided by multiple unmanned aerial vehicles (UAV) based aerial base stations, the edge computing services are provided by satellites. Furthermore, we investigate the multi-task joint computation offloading problem in the framework. Specifically, we model tasks with dependencies as directed acyclic graphs (DAG), then we propose an attention mechanism and proximal policy optimization (A-PPO) collaborative algorithm to learn the best offloading strategy. The simulation results show that the A-PPO algorithm can converge in 25 steps. Furthermore, the A-PPO algorithm reduces cost by at least 8.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to several baseline algorithms. In summary, this paper provides a new insight for the cost optimization of multi-task MEC systems in satellite IoT. |
Author | Xin, Xiangjun Zhang, Qi Gao, Ran Guizani, Mohsen Chai, Furong Yao, Haipeng |
Author_xml | – sequence: 1 givenname: Furong orcidid: 0000-0001-7017-1081 surname: Chai fullname: Chai, Furong email: chaifurong1@bupt.edu.cn organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing, China – sequence: 2 givenname: Qi orcidid: 0000-0003-1884-5530 surname: Zhang fullname: Zhang, Qi email: zhangqi@bupt.edu.cn organization: School of Electronic Engineering, BUPT, the State Key Laboratory of Information Photonics and Optical Communications, Beijing, China – sequence: 3 givenname: Haipeng orcidid: 0000-0003-1391-7363 surname: Yao fullname: Yao, Haipeng email: yaohaipeng@bupt.edu.cn organization: School of Information and Communication Engineering, BUPT, Beijing, China – sequence: 4 givenname: Xiangjun orcidid: 0000-0002-1690-056X surname: Xin fullname: Xin, Xiangjun email: xjxin@bupt.edu.cn organization: School of Electronic Engineering, BUPT, the State Key Laboratory of Information Photonics and Optical Communications, Beijing, China – sequence: 5 givenname: Ran orcidid: 0000-0003-2666-1643 surname: Gao fullname: Gao, Ran email: gaoran198412@163.com organization: School of Information and Electronics, Beijing Institution of Technology, Beijing, China – sequence: 6 givenname: Mohsen orcidid: 0000-0002-8972-8094 surname: Guizani fullname: Guizani, Mohsen email: mguizani@ieee.org organization: Machine learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE |
BookMark | eNp9kDtPwzAURi0EEi2wMzBYYk7xM4lHVBUoAlWCwBo5zg0yuHaJnaH_npQyIAamqyt95z7OFB364AGhc0pmlBJ1Vb1WM0YYn3HGy6KgB2hCFVeZ4lIdogkhtMyUFPIYTWN8H1shFJ2g7j5Yn_Dj4JLNKh0_8KrrXNCt9W9Y-xY_QQxDbwBfOxeMTjZ43IUeP4bGOsCL9g3wPKw3Q9oRz9uYYB2x9fhZJ3DOJsDLUJ2io067CGc_9QS93Cyq-V32sLpdzq8fMsMUS1lRKtk2pGkbnhsgjeCFJgXlHaNtriWRIFhupNGGC2gLBnmR57nQxshOlq3hJ-hyP3fTh88BYqrfx-v9uLJmJSsJEUyRMZXvU6YPMfbQ1cam79dSr62rKal3TuvRab1zWv84HUHyB9z0dq377X_IxR6xAPArTpjgRPIvEACENQ |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110916 crossref_primary_10_1109_TMC_2024_3502643 crossref_primary_10_1007_s11432_024_4258_x crossref_primary_10_1109_JIOT_2024_3379556 crossref_primary_10_1016_j_cja_2024_11_026 crossref_primary_10_1109_JIOT_2024_3373454 crossref_primary_10_1016_j_future_2024_107700 crossref_primary_10_1186_s13677_023_00538_z crossref_primary_10_1109_JIOT_2024_3382682 crossref_primary_10_1109_MCOM_002_2300721 crossref_primary_10_3390_photonics10080879 crossref_primary_10_1109_TMC_2024_3349551 crossref_primary_10_3390_photonics10091017 crossref_primary_10_3390_e26100846 crossref_primary_10_1109_OJCOMS_2024_3423363 crossref_primary_10_1016_j_comnet_2024_110801 crossref_primary_10_1016_j_engappai_2024_108819 crossref_primary_10_1109_COMST_2024_3383093 crossref_primary_10_1109_JPHOT_2024_3410392 crossref_primary_10_1016_j_jksuci_2024_102196 crossref_primary_10_1364_AO_511453 crossref_primary_10_1016_j_heliyon_2024_e29916 crossref_primary_10_3390_aerospace10090804 crossref_primary_10_3390_electronics12194056 crossref_primary_10_1186_s13677_023_00461_3 crossref_primary_10_1109_TVT_2024_3397334 crossref_primary_10_3390_fi15080254 crossref_primary_10_1016_j_optcom_2024_130976 crossref_primary_10_1016_j_comnet_2024_110352 crossref_primary_10_1109_TAES_2024_3409269 crossref_primary_10_3390_electronics12204234 crossref_primary_10_1364_OE_495626 crossref_primary_10_3390_app131810027 crossref_primary_10_3390_photonics10091008 crossref_primary_10_1109_JIOT_2024_3432901 crossref_primary_10_1002_dac_5691 crossref_primary_10_1109_JIOT_2024_3357869 crossref_primary_10_1016_j_future_2024_107527 crossref_primary_10_1109_TMC_2024_3458185 crossref_primary_10_1364_AO_517521 crossref_primary_10_1109_TCOMM_2024_3361536 crossref_primary_10_1109_TNSM_2024_3426076 crossref_primary_10_1016_j_ins_2024_121790 crossref_primary_10_1007_s11082_023_05627_6 crossref_primary_10_1109_JIOT_2024_3424782 crossref_primary_10_1109_JIOT_2024_3417456 crossref_primary_10_1109_TMC_2024_3493388 crossref_primary_10_1007_s10462_024_10947_4 crossref_primary_10_1186_s13677_024_00607_x crossref_primary_10_1109_TNSE_2024_3496902 crossref_primary_10_1109_TVT_2024_3364210 crossref_primary_10_1109_JSAC_2024_3460086 crossref_primary_10_1016_j_comcom_2024_05_011 crossref_primary_10_1007_s10586_024_04347_0 crossref_primary_10_1016_j_suscom_2023_100899 crossref_primary_10_1109_TMC_2024_3489619 crossref_primary_10_1109_TNSM_2024_3470777 crossref_primary_10_1016_j_comnet_2024_110718 crossref_primary_10_1007_s12083_025_01903_2 crossref_primary_10_1109_JIOT_2024_3382242 crossref_primary_10_1016_j_sigpro_2024_109755 crossref_primary_10_1109_TGCN_2023_3260199 crossref_primary_10_1109_TWC_2024_3496089 crossref_primary_10_1016_j_comcom_2024_05_008 crossref_primary_10_1109_ACCESS_2024_3367128 crossref_primary_10_1109_JSAC_2024_3365899 crossref_primary_10_1109_TNSE_2024_3521885 crossref_primary_10_32604_cmc_2024_057353 crossref_primary_10_1016_j_ijcce_2023_06_002 crossref_primary_10_1109_JSEN_2024_3494028 crossref_primary_10_1016_j_cosrev_2025_100734 crossref_primary_10_1109_TSC_2023_3332140 crossref_primary_10_1109_JIOT_2023_3283287 crossref_primary_10_1109_JIOT_2023_3329869 crossref_primary_10_1016_j_comnet_2024_110555 crossref_primary_10_1109_TCOMM_2024_3397841 crossref_primary_10_3390_drones7060383 crossref_primary_10_1016_j_chb_2024_108394 crossref_primary_10_1109_JIOT_2023_3327392 crossref_primary_10_4018_IJSWIS_345935 crossref_primary_10_1016_j_adhoc_2024_103500 crossref_primary_10_3390_electronics12061357 crossref_primary_10_1007_s12083_025_01915_y crossref_primary_10_1007_s10489_024_05804_4 crossref_primary_10_1109_JSYST_2024_3432449 crossref_primary_10_3390_app13042625 crossref_primary_10_1109_TMC_2024_3440066 crossref_primary_10_1109_JIOT_2023_3338718 crossref_primary_10_3390_rs16183459 crossref_primary_10_3390_electronics12194075 crossref_primary_10_1109_JIOT_2024_3407105 crossref_primary_10_1016_j_iot_2024_101210 crossref_primary_10_4018_JCIT_371753 crossref_primary_10_1109_TGRS_2025_3528015 crossref_primary_10_1109_ACCESS_2024_3431922 crossref_primary_10_1109_ACCESS_2024_3357082 crossref_primary_10_1109_TVT_2024_3463548 |
Cites_doi | 10.1109/TVT.2019.2959410 10.3390/s19040831 10.1109/JIOT.2021.3112617 10.1109/ACCESS.2017.2735988 10.1109/JIOT.2021.3068141 10.1109/TCC.2019.2930259 10.1109/TSC.2014.2381227 10.1109/TVT.2019.2935450 10.1109/TWC.2017.2789293 10.1109/TVT.2019.2915836 10.1109/JSYST.2013.2285611 10.1109/ACCESS.2021.3049883 10.1109/TMC.2020.3026319 10.1109/GLOCOM.2017.8255103 10.1109/TCC.2021.3110965 10.1038/nature14236 10.1109/ACCESS.2018.2886284 10.3390/electronics8111247 10.1109/TPDS.2021.3076687 10.1109/TMC.2020.2990630 10.1109/JIOT.2021.3052542 10.1109/TNSE.2022.3141728 10.1109/MCE.2016.2590118 10.1109/TWC.2020.3029143 10.1145/954339.954342 10.1145/1999995.2000000 10.1109/TVT.2018.2876804 10.1109/MCOM.2019.1800971 10.1109/MNET.2018.1800052 10.1109/TPDS.2013.57 10.1109/TCC.2016.2560808 10.1109/MNET.2018.1800172 10.1109/CC.2016.7833463 10.1109/JSYST.2020.3017710 10.1109/71.993206 10.1109/ACCESS.2019.2963068 10.1109/SERVICES.2019.00049 10.18653/v1/D15-1166 10.1109/JIOT.2020.2972041 10.1016/j.future.2014.10.013 10.1016/j.future.2016.09.015 10.1109/TPDS.2020.3014896 10.1109/JSAC.2019.2906789 10.1007/s00779-012-0600-8 10.1109/JIOT.2022.3151134 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2023.3238771 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 7795 |
ExternalDocumentID | 10_1109_TVT_2023_3238771 10024305 |
Genre | orig-research |
GrantInformation_xml | – fundername: Funds for Creative Research Groups of China grantid: 62021005 – fundername: National Natural Science Foundation of China grantid: 61835002; 61727817 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c292t-7895db0bdb36ce0b437a0713f21d6a505e426c5cac34ed72e676664acc5f58dc3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 08:35:43 EDT 2025 Wed Oct 01 02:27:10 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Aug 27 02:50:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-7895db0bdb36ce0b437a0713f21d6a505e426c5cac34ed72e676664acc5f58dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8972-8094 0000-0002-1690-056X 0000-0001-7017-1081 0000-0003-1884-5530 0000-0003-1391-7363 0000-0003-2666-1643 |
PQID | 2828004290 |
PQPubID | 85454 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10024305 crossref_citationtrail_10_1109_TVT_2023_3238771 crossref_primary_10_1109_TVT_2023_3238771 proquest_journals_2828004290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 zhu (ref6) 0; 9 ref52 wei (ref17) 2019; 8 mnih (ref42) 2015; 518 ref10 schulman (ref45) 2017 ref19 ref51 ref50 wang (ref16) 2019; 19 ref48 ref47 ref41 ruan (ref18) 2022; 42 ref49 ref8 ref7 ref9 ref4 ref3 ref5 vinyals (ref46) 0 bahdanau (ref40) 0 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 schulman (ref44) 0 ref28 ref27 li (ref11) 0; 21 ref29 sutton (ref43) 2018 |
References_xml | – ident: ref52 doi: 10.1109/TVT.2019.2959410 – ident: ref13 doi: 10.3390/s19040831 – ident: ref12 doi: 10.1109/JIOT.2021.3112617 – ident: ref2 doi: 10.1109/ACCESS.2017.2735988 – ident: ref20 doi: 10.1109/JIOT.2021.3068141 – year: 2018 ident: ref43 publication-title: Reinforcement Learning An Introduction – ident: ref7 doi: 10.1109/TCC.2019.2930259 – ident: ref53 doi: 10.1109/TSC.2014.2381227 – year: 0 ident: ref40 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc 3rd Int Conf Learn Representations (ICLR) – ident: ref27 doi: 10.1109/TVT.2019.2935450 – ident: ref37 doi: 10.1109/TWC.2017.2789293 – ident: ref50 doi: 10.1109/TVT.2019.2915836 – ident: ref26 doi: 10.1109/JSYST.2013.2285611 – volume: 19 year: 2019 ident: ref16 article-title: Satellite edge computing for the Internet of Things in aerospace publication-title: SENSORS – year: 0 ident: ref44 article-title: High-dimensional continuous control using generalized advantage estimation publication-title: Proc Int Conf Learn Representations – ident: ref30 doi: 10.1109/ACCESS.2021.3049883 – volume: 21 start-page: 1580 year: 0 ident: ref11 article-title: Auction design for edge computation ofloading in SDN-based ultra dense networks publication-title: IEEE Trans Mobile Comput doi: 10.1109/TMC.2020.3026319 – year: 2017 ident: ref45 article-title: Proximal policy optimization algorithms – ident: ref3 doi: 10.1109/GLOCOM.2017.8255103 – ident: ref5 doi: 10.1109/TCC.2021.3110965 – volume: 518 start-page: 529 year: 2015 ident: ref42 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref48 doi: 10.1109/ACCESS.2018.2886284 – start-page: 2692 year: 0 ident: ref46 article-title: Pointer networks publication-title: Proc Neural Inf Process Syst – volume: 8 year: 2019 ident: ref17 article-title: Satellite IoT edge intelligent computing: A research on architecture publication-title: Electronics doi: 10.3390/electronics8111247 – ident: ref33 doi: 10.1109/TPDS.2021.3076687 – ident: ref28 doi: 10.1109/TMC.2020.2990630 – ident: ref19 doi: 10.1109/JIOT.2021.3052542 – ident: ref14 doi: 10.1109/TNSE.2022.3141728 – ident: ref9 doi: 10.1109/MCE.2016.2590118 – ident: ref39 doi: 10.1109/TWC.2020.3029143 – ident: ref23 doi: 10.1145/954339.954342 – ident: ref21 doi: 10.1109/TWC.2020.3029143 – ident: ref38 doi: 10.1145/1999995.2000000 – ident: ref29 doi: 10.1109/TVT.2018.2876804 – ident: ref35 doi: 10.1109/MCOM.2019.1800971 – ident: ref4 doi: 10.1109/MNET.2018.1800052 – ident: ref51 doi: 10.1109/TPDS.2013.57 – ident: ref47 doi: 10.1109/TCC.2016.2560808 – ident: ref15 doi: 10.1109/MNET.2018.1800172 – ident: ref8 doi: 10.1109/CC.2016.7833463 – ident: ref31 doi: 10.1109/JSYST.2020.3017710 – ident: ref36 doi: 10.1109/71.993206 – ident: ref1 doi: 10.1109/ACCESS.2019.2963068 – ident: ref49 doi: 10.1109/SERVICES.2019.00049 – volume: 42 start-page: 1 year: 2022 ident: ref18 article-title: Advances and prospects of the configuration design and control research of the LEO mega-constellations publication-title: Chin Space Sci Technol – ident: ref41 doi: 10.18653/v1/D15-1166 – ident: ref32 doi: 10.1109/JIOT.2020.2972041 – ident: ref24 doi: 10.1016/j.future.2014.10.013 – ident: ref10 doi: 10.1016/j.future.2016.09.015 – ident: ref34 doi: 10.1109/TPDS.2020.3014896 – ident: ref22 doi: 10.1109/JSAC.2019.2906789 – ident: ref25 doi: 10.1007/s00779-012-0600-8 – volume: 9 start-page: 15674 year: 0 ident: ref6 article-title: Multi-agent reinforcement learning aided service function chain deployment for Internet of Things publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2022.3151134 |
SSID | ssj0014491 |
Score | 2.7055068 |
Snippet | For multi-task mobile edge computing (MEC) systems in satellite Internet of Things (IoT), there are dependencies between different tasks, which need to be... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7783 |
SubjectTerms | Algorithms attention mechanism Computation offloading Computer architecture Costs Edge computing Graph theory Internet of Things Mobile computing mobile edge computing (MEC) Multi-task offloading Multitasking Optimization proximal policy optimization (PPO) Resource allocation Resource management Resource scheduling Satellite communications Satellite Internet of Things (IoT) Satellites Task analysis Task scheduling Unmanned aerial vehicles |
Title | Joint Multi-Task Offloading and Resource Allocation for Mobile Edge Computing Systems in Satellite IoT |
URI | https://ieeexplore.ieee.org/document/10024305 https://www.proquest.com/docview/2828004290 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMLQ1InTuJ4rFCrUqllIEXdIn8FVa0SRNOFX4_tJFUBgdgy2JGlZ9-9s-_eAXCX-ZkgmFMHIaYDlDjTdlCzBAdxTyoqeEStOv9kGo1mwXgezutidVsLo5SyyWfKNZ_2LV8WYmOuynqe1c8ziqX7hNCqWGv7ZBAEdXs8T59gzQuaN0lEe8lL4po24S7WDooQ74sPsk1Vflhi616Gx2DaLKzKKlm6m5K74uObZuO_V34CjmqiCfvVzjgFeyo_A4c78oPnIBsXi7yEtgbXSdh6CZ-ybFXYrHrIcgmbu33YXxmfZzCEmuTCScG1MYED-apg1RbCzKjFz-Eih8_MCn2WCj4WSRvMhoPkYeTUfRcc4VO_dEhMQ8kRlxxHQiEeYMJMMJv5noyYpkxKu3URCiZwoCTxVUR0EBQwIcIsjKXAF6CVF7m6BJD7ESU8FkxJHFAUcYUlxUbEX_OwgLMO6DVIpKIWJTe9MVapDU4QTTV2qcEurbHrgPvtjLdKkOOPsW0Dxc64CoUO6DZop_WRXacm9rTuGV39Mu0aHJi_V4liXdAq3zfqRlOSkt_arfgJbyDb-A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDMDAZxGFAh5YGJI6cRLXY4WoSmnLQEDdIn8FVa0SRNOFX4_tJFUBgdgy2IqlZ9-9s-_eAXCd-qkgmFMHIaYDlE6q7aBmCQ7inlRU8Ihadf7ROOo_B4NJOKmK1W0tjFLKJp8p13zat3yZi6W5Kmt7Vj_PKJZuhTqsIGW51urRIAiqBnmePsOaGdSvkoi245fYNY3CXaxdFCHeFy9k26r8sMXWwfT2wbheWplXMnOXBXfFxzfVxn-v_QDsVVQTdsu9cQg2VHYEdtcECI9BOsinWQFtFa4Ts8UMPqbpPLd59ZBlEta3-7A7N17PoAg1zYWjnGtzAu_kq4JlYwgzo5I_h9MMPjEr9VkoeJ_HDfDcu4tv-07VecERPvULh3RoKDnikuNIKMQDTJgJZ1PfkxHTpElpxy5CwQQOlCS-iogOgwImRJiGHSnwCdjM8kydAsj9iBLeEUxJHFAUcYUlxUbGXzOxgLMmaNdIJKKSJTfdMeaJDU8QTTR2icEuqbBrgpvVjLdSkuOPsQ0Dxdq4EoUmaNVoJ9WhXSQm-rQOGp39Mu0KbPfj0TAZ3o8fzsGO-VOZNtYCm8X7Ul1oglLwS7stPwEnO99J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Multi-Task+Offloading+and+Resource+Allocation+for+Mobile+Edge+Computing+Systems+in+Satellite+IoT&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chai%2C+Furong&rft.au=Zhang%2C+Qi&rft.au=Yao%2C+Haipeng&rft.au=Xin%2C+Xiangjun&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=72&rft.issue=6&rft.spage=7783&rft.epage=7795&rft_id=info:doi/10.1109%2FTVT.2023.3238771&rft.externalDocID=10024305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |