Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm

In this paper, the artificial bee colony (ABC) algorithm is hybridized with the genetic algorithm (GA) for a model parameter identification problem. When dealing with real-world and large-scale problems, it becomes evident that concentrating on a sole metaheuristic algorithm is somewhat restrictive....

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 9; no. 8; p. 1418
Main Authors Roeva, Olympia, Zoteva, Dafina, Lyubenova, Velislava
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr9081418

Cover

Abstract In this paper, the artificial bee colony (ABC) algorithm is hybridized with the genetic algorithm (GA) for a model parameter identification problem. When dealing with real-world and large-scale problems, it becomes evident that concentrating on a sole metaheuristic algorithm is somewhat restrictive. A skilled combination between metaheuristics or other optimization techniques, a so-called hybrid metaheuristic, can provide more efficient behavior and greater flexibility. Hybrid metaheuristics combine the advantages of one algorithm with the strengths of another. ABC, based on the foraging behavior of honey bees, and GA, based on the mechanics of nature selection, are among the most efficient biologically inspired population-based algorithms. The performance of the proposed ABC-GA hybrid algorithm is examined, including classic benchmark test functions. To demonstrate the effectiveness of ABC-GA for a real-world problem, parameter identification of an Escherichia coli MC4110 fed-batch cultivation process model is considered. The computational results of the designed algorithm are compared to the results of different hybridized biologically inspired techniques (ant colony optimization (ACO) and firefly algorithm (FA))—hybrid algorithms as ACO-GA, GA-ACO and ACO-FA. The algorithms are applied to the same problems—a set of benchmark test functions and the real nonlinear optimization problem. Taking into account the overall searchability and computational efficiency, the results clearly show that the proposed ABC–GA algorithm outperforms the considered hybrid algorithms.
AbstractList In this paper, the artificial bee colony (ABC) algorithm is hybridized with the genetic algorithm (GA) for a model parameter identification problem. When dealing with real-world and large-scale problems, it becomes evident that concentrating on a sole metaheuristic algorithm is somewhat restrictive. A skilled combination between metaheuristics or other optimization techniques, a so-called hybrid metaheuristic, can provide more efficient behavior and greater flexibility. Hybrid metaheuristics combine the advantages of one algorithm with the strengths of another. ABC, based on the foraging behavior of honey bees, and GA, based on the mechanics of nature selection, are among the most efficient biologically inspired population-based algorithms. The performance of the proposed ABC-GA hybrid algorithm is examined, including classic benchmark test functions. To demonstrate the effectiveness of ABC-GA for a real-world problem, parameter identification of an Escherichia coli MC4110 fed-batch cultivation process model is considered. The computational results of the designed algorithm are compared to the results of different hybridized biologically inspired techniques (ant colony optimization (ACO) and firefly algorithm (FA))—hybrid algorithms as ACO-GA, GA-ACO and ACO-FA. The algorithms are applied to the same problems—a set of benchmark test functions and the real nonlinear optimization problem. Taking into account the overall searchability and computational efficiency, the results clearly show that the proposed ABC–GA algorithm outperforms the considered hybrid algorithms.
Author Lyubenova, Velislava
Zoteva, Dafina
Roeva, Olympia
Author_xml – sequence: 1
  givenname: Olympia
  orcidid: 0000-0003-3848-5181
  surname: Roeva
  fullname: Roeva, Olympia
– sequence: 2
  givenname: Dafina
  orcidid: 0000-0001-7339-4686
  surname: Zoteva
  fullname: Zoteva, Dafina
– sequence: 3
  givenname: Velislava
  surname: Lyubenova
  fullname: Lyubenova, Velislava
BookMark eNp9kF9LwzAUxYNMcM49-A0CPinUNemfJI-1zE2Y6IN7LmmabhlZU5NU6be3cyIi4n249z78zuFwzsGoMY0E4BKFt1HEwllrWUhRjOgJGGOMScAIIqMf_xmYOrcLh2Eookk6Bqu5E1tpldgqDoXRCuad9uqNe2Ua-GyNkM7BR1NJrVWzgWt32NldHiwyuOxLqyqY6Y2xym_3F-C05trJ6dedgPX9_CVfBqunxUOerQKBGfYBQUgyykqBBa1LWaGIlIJQFlexDIeUCaKIIIFligjHVVLxpBwkccmTIXUtowm4Ofp2Tcv7d6510Vq157YvUFgcqii-qxjgqyPcWvPaSeeLnelsM-QrcJImKU3ToYwJuD5SwhrnrKz_dZz9YoXyn4V5y5X-Q_EBc5p7SA
CitedBy_id crossref_primary_10_3390_math11061292
crossref_primary_10_3390_a16090413
crossref_primary_10_3390_math12233815
crossref_primary_10_1007_s42107_023_00915_8
crossref_primary_10_3390_app112210683
crossref_primary_10_3390_microorganisms10050929
crossref_primary_10_3233_JIFS_224393
crossref_primary_10_1016_j_fuel_2022_124088
crossref_primary_10_3390_pr10040742
Cites_doi 10.1007/s00366-019-00826-w
10.1038/sj.jim.7000014
10.3390/pr8091036
10.1007/978-3-642-30671-6
10.1002/cpz1.20
10.1007/978-3-319-07124-4
10.1007/s00449-004-0358-0
10.1080/0951192X.2020.1780318
10.1155/2018/1237823
10.1007/s13042-019-01047-9
10.1007/s42452-020-2073-0
10.1007/978-3-030-59392-6
10.1142/S0218213016500202
10.1007/s00449-002-0305-x
10.3390/app10061928
10.1007/s12065-020-00562-x
10.1504/IJMHEUR.2014.063143
10.1111/coin.12275
10.1016/j.btre.2020.e00441
10.1016/j.asoc.2019.105954
10.1007/s00521-016-2665-1
10.1142/S012906571000222X
10.1590/0104-6632.20140312s00002587
10.1109/HIS.2011.6122092
10.1109/SSCI.2018.8628863
10.3390/a14040120
10.1038/s41598-020-59091-3
10.3390/pr8080921
10.3390/pr8050519
10.1109/JAS.2017.7510340
10.1007/978-3-030-26458-1
10.1007/s11042-020-10139-6
10.1007/978-3-319-21133-6_7
10.1109/ICAEE47123.2019.9015118
10.1002/cpmb.83
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/pr9081418
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
Materials Research Database
Materials Science Database (Proquest)
Biological Sciences
ProQuest Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10.3390/pr9081418
10_3390_pr9081418
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c292t-711e989bc2c8fbed137bc7894d4e0717518171c2e617a2d5da5b11e4ba5138fe3
IEDL.DBID UNPAY
ISSN 2227-9717
IngestDate Sun Oct 26 04:08:22 EDT 2025
Sun Sep 07 05:31:21 EDT 2025
Thu Oct 16 04:41:16 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-711e989bc2c8fbed137bc7894d4e0717518171c2e617a2d5da5b11e4ba5138fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3848-5181
0000-0001-7339-4686
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-9717/9/8/1418/pdf?version=1629195263
PQID 2565686691
PQPubID 2032344
ParticipantIDs unpaywall_primary_10_3390_pr9081418
proquest_journals_2565686691
crossref_primary_10_3390_pr9081418
crossref_citationtrail_10_3390_pr9081418
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Storn (ref_33) 2010; 23
Nalluri (ref_14) 2020; 11
Itkonen (ref_37) 2020; 10
Roeva (ref_45) 2016; 610
ref_12
Tuttle (ref_34) 2021; 1
ref_11
ref_10
ref_32
Roeva (ref_47) 2016; 20
ref_30
ref_18
ref_16
Luo (ref_13) 2020; 33
Dhiman (ref_17) 2021; 37
Yang (ref_9) 2015; Volume 585
Lian (ref_26) 2016; 25
Roeva (ref_38) 2004; 1
Cardoso (ref_36) 2020; 26
ref_25
Roeva (ref_41) 2014; 3
ref_22
ref_44
ref_21
ref_20
ref_40
ref_1
Ezugwu (ref_5) 2020; 2
Duan (ref_24) 2010; 20
Katoch (ref_46) 2021; 80
Moura (ref_2) 2019; Volume 11804
Sun (ref_28) 2018; 2018
ref_3
Liu (ref_15) 2020; 87
Elbing (ref_35) 2019; 125
ref_29
Banharnsakun (ref_23) 2020; 36
ref_27
Zelic (ref_43) 2004; 26
ref_8
Gu (ref_19) 2017; 4
Levisauskas (ref_39) 2003; 25
Karaboga (ref_31) 2009; 214
Contiero (ref_42) 2000; 24
ref_4
ref_7
ref_6
References_xml – volume: 37
  start-page: 323
  year: 2021
  ident: ref_17
  article-title: ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00826-w
– volume: 24
  start-page: 421
  year: 2000
  ident: ref_42
  article-title: Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.7000014
– ident: ref_21
  doi: 10.3390/pr8091036
– ident: ref_8
  doi: 10.1007/978-3-642-30671-6
– ident: ref_32
– volume: 1
  start-page: e20
  year: 2021
  ident: ref_34
  article-title: Growth and maintenance of Escherichia coli laboratory strains
  publication-title: Curr. Protoc.
  doi: 10.1002/cpz1.20
– ident: ref_1
  doi: 10.1007/978-3-319-07124-4
– volume: 214
  start-page: 108
  year: 2009
  ident: ref_31
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 249
  year: 2004
  ident: ref_43
  article-title: Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-004-0358-0
– volume: 33
  start-page: 10
  year: 2020
  ident: ref_13
  article-title: A hybrid algorithm combining genetic algorithm and variable neighborhood search for process sequencing optimization of large-size problem
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2020.1780318
– ident: ref_20
  doi: 10.1155/2018/1237823
– volume: 1
  start-page: 30
  year: 2004
  ident: ref_38
  article-title: A genetic algorithms based approach for identification of Escherichia coli Fed-batch Fermentation
  publication-title: Int. J. Bioautom.
– volume: 11
  start-page: 1423
  year: 2020
  ident: ref_14
  article-title: Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem
  publication-title: Int. J. Mach. Learn. Cyber.
  doi: 10.1007/s13042-019-01047-9
– ident: ref_40
– volume: 2
  start-page: 273
  year: 2020
  ident: ref_5
  article-title: Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2073-0
– ident: ref_7
  doi: 10.1007/978-3-030-59392-6
– volume: 25
  start-page: 1650020
  year: 2016
  ident: ref_26
  article-title: Hybrid artificial bee colony algorithm with differential evolution and free search for numerical function optimization
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213016500202
– volume: 2018
  start-page: 2767546
  year: 2018
  ident: ref_28
  article-title: An artificial bee colony algorithm with random location updating
  publication-title: Hindawi Sci. Program.
– volume: 25
  start-page: 255
  year: 2003
  ident: ref_39
  article-title: Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-002-0305-x
– ident: ref_3
  doi: 10.3390/app10061928
– ident: ref_18
– ident: ref_6
  doi: 10.1007/s12065-020-00562-x
– volume: 3
  start-page: 133
  year: 2014
  ident: ref_41
  article-title: Parameter Identification of an E. coli cultivation process model using hybrid metaheuristics
  publication-title: Int. J. Metaheuristics
  doi: 10.1504/IJMHEUR.2014.063143
– volume: 36
  start-page: 351
  year: 2020
  ident: ref_23
  article-title: Artificial bee colony algorithm for content-based image retrieval
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12275
– volume: 26
  start-page: e00441
  year: 2020
  ident: ref_36
  article-title: Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3)
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2020.e00441
– volume: 23
  start-page: 689
  year: 2010
  ident: ref_33
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 87
  start-page: 105954
  year: 2020
  ident: ref_15
  article-title: Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105954
– ident: ref_25
  doi: 10.1007/s00521-016-2665-1
– volume: 20
  start-page: 39
  year: 2010
  ident: ref_24
  article-title: A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571000222X
– ident: ref_44
  doi: 10.1590/0104-6632.20140312s00002587
– ident: ref_29
  doi: 10.1109/HIS.2011.6122092
– ident: ref_10
  doi: 10.1109/SSCI.2018.8628863
– ident: ref_27
– ident: ref_30
  doi: 10.3390/a14040120
– volume: 10
  start-page: 2472
  year: 2020
  ident: ref_37
  article-title: Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59091-3
– ident: ref_11
  doi: 10.3390/pr8080921
– ident: ref_12
  doi: 10.3390/pr8050519
– volume: 4
  start-page: 107
  year: 2017
  ident: ref_19
  article-title: Artificial bee colony algorithm-based parameter estimation of fractional-order chaotic system with time delay
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510340
– ident: ref_4
  doi: 10.1007/978-3-030-26458-1
– volume: 80
  start-page: 8091
  year: 2021
  ident: ref_46
  article-title: A review on genetic algorithm: Past, present, and future
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: Volume 11804
  start-page: 167
  year: 2019
  ident: ref_2
  article-title: Nature inspired metaheuristics and their applications in agriculture: A short review
  publication-title: Progress in Artificial Intelligence
– volume: 610
  start-page: 107
  year: 2016
  ident: ref_45
  article-title: InterCriteria analysis of ACO and GA hybrid algorithms
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-319-21133-6_7
– ident: ref_22
– volume: Volume 585
  start-page: 71
  year: 2015
  ident: ref_9
  article-title: Hybrid metaheuristic algorithms: Past, present, and future
  publication-title: Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies in Computational Intelligence
– ident: ref_16
  doi: 10.1109/ICAEE47123.2019.9015118
– volume: 125
  start-page: e83
  year: 2019
  ident: ref_35
  article-title: Recipes and tools for culture of Escherichia coli
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/cpmb.83
– volume: 20
  start-page: 483
  year: 2016
  ident: ref_47
  article-title: Cuckoo search algorithm for model parameter identification
  publication-title: Int. J. Bioautom.
SSID ssj0000913856
Score 2.222971
Snippet In this paper, the artificial bee colony (ABC) algorithm is hybridized with the genetic algorithm (GA) for a model parameter identification problem. When...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1418
SubjectTerms Algorithms
Ant colony optimization
Batch culture
Benchmarks
Computer applications
Cultivation
E coli
Escherichia coli
Evolution & development
Food
Foraging behavior
Genetic algorithms
Heuristic methods
Mathematical models
Mutation
Optimization
Parameter identification
Population
Support vector machines
Swarm intelligence
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0gHNSDEdSIomnUAx42ut_bgzFAQGKUGCMJt02_VkkQkI8Y_r2dpQsc1Hvbw5tt57U78x7Alae4iG6FbYWaC1g6X0uLh6i6n7jy1pWKKYrdyM-doN31Hnt-LwedrBcGyyqzMzE9qOVI4Bv5jYPMIwoCat-Pvyx0jcK_q5mFBjPWCvIulRjbgoKDylh5KNSbnZfX1asLqmBGfrCUGHL1ff9mPKE6K3po-rGZmNZsc3s-HLPFNxsMNhJPax_2DGMktWWIi5BTwxLsbugIlqBoduiUVI2M9PUBPDWnGJA-FjMTHe4-QflMY2ZGTIMAQS-0VJabpMUDpFZvWA810l5gJxepDd41BrOPz0PotppvjbZlvBMs4VBnZoW2rWhEuXBElHAlbTfkIoyoJz2FVzgNkh3awlGawTBH-pL5XE_xOPM1QolyjyA_HA3VMRCqOY1HA5GgVHoQhFT4ijPqCjsJKPNlGaoZcLEwwuLobzGI9QUDMY5XGJfhYjV0vFTT-G1QJUM_NhtqGq_DX4bLVUT-XuTk_0VOYcfB4pS0kq8C-dlkrs40u5jxc_PJ_ADOP86F
  priority: 102
  providerName: ProQuest
Title Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm
URI https://www.proquest.com/docview/2565686691
https://www.mdpi.com/2227-9717/9/8/1418/pdf?version=1629195263
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2V5FA4lPKlpkBktRzgsCz2rr32CS0oIapKhCoiwWm1_liIGkKUbEBw4LdjJ06IUCtVPa40XlmaseeNNfMewF5spOJHCgeJxQKBzdc6kIlj3S8ifRRpkxvhppHP26zViX9c0Sv_4DbybZW2FO9OLmk3pxkIW3CEIuQhjjEPB7o4fvAvSZgRgQUlLFqCKqMWi1eg2mlfpNdOUW62dkonFNnaPhwMhc2AsRP4WExCb8jy47g_yJ8e815vIck0VyGbbW_aW_L7cFzKQ_X8jrnx__f_GT55_InSacCswQfTX4eVBVbCdVjz532E9j0p9cEG_GyMnHu7rjUa2eDpIkfG6aXRkB83QE5ZbULyjSatCCg9OQ3OUtR6cnNhKO3d3A-75e3dJnSajcvTVuCVGAJFBCmDBGMjuJCKKF5Io3GUSJVwEevYuIKQWpyQYEWMxUM50VTnVNolscwpjnhhoi2o9O_75gsgYRFSLJgqHPE6Y4lQ1MhcRAoXTORU12B_5ppMeZpyp5bRy2y54ryYzb1Yg29z08GUm-NPRjsz_2b-eI4y4mAsZ0zgGnyf-_zvP_n6T1bbsExcx8ukPXAHKuVwbHYtZCllHZZ486wO1ZNG--KX_Tp_adR9rL4CMcLoxA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOEAPVaGghqat1YcEh1Xixz58QFWgoaGEqEIgcVv8WkAKISWJUP5cf1s9G2_Ioe2Nuz2Hz7OeGe_M9wF8Fk6brGlolPpcIPLx2kY6Rdb9gtsmt045idPIp72kcyF-XMaXS_C7moXBtsrqTiwvantv8I28wTDzyJJE0q_DXxGqRuHf1UpCQwVpBbtfUoyFwY4TN330Jdxo__ibP-8vjB21zw87UVAZiAyTbByllDqZSW2YyQrtLOWpNmkmhRUOix1vjqbUMOdjvWI2tirWfovQKqY8Kxz3dpdhVXAhffG3etDu_Tybv_Ig62YWJzNKI85lszF8kD4KCxQZWQyET9nt2mQwVNNH1e8vBLqjV_AyZKikNXOpDVhyg014scBbuAkb4UYYkd1AW733GrrtETrALTZPE-9etwTpOoN4GgkDCQS110oacFI2K5DWwWH0vUU6U5wcI63-tcd8fHO3BRfPguI2rAzuB-4NEOlzKCETUyA1e5Kk0sROK8kNLRKpYluD3Qq43AQic9TT6Oe-oEGM8znGNfg4XzqcsXf8bVG9Qj8PH_Aof3K3Gnyan8i_jez838gHWOucn3bz7nHv5C2sM2yMKbsI67Ayfpi4dz6zGev3wX0IXD23x_4BJIgLUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ6gJj4OxmdEURsfiR42sN1nD8YgiqBIPGjibd0-Vk0QUTCGv-avs7N0gYN6497OYebbzrQ7830AB67iIiwJ2wp0LWDpfC0tHiDrfuLIkiNVrBhOI980_dq9e_XgPeTgO5uFwbbK7ExMD2r5JvCNvEix8gh9n9nFxLRF3J5XTzvvFipI4Z_WTE5jAJFr1f_S17fuSf1cx_qQ0urFXaVmGYUBS1BGe1Zg24qFjAsqwoQraTsBF0HIXOkqvOh4Ov8FtqBK5_mYSk_GHtdbXB57thMmytF2p2AmQBZ3nFKvXg7fd5BvM_T8AZmR47BSsfPBdP51UV5kPAWO6tq5z3Yn7n_FrdZYiqsuwaKpTUl5AKZlyKn2CiyMMRauwLI5C7rkyBBWH69C46KLoX_BtmmigfVCkKjTyKYRM4pAUHUtJQAnaZsCKZ9VrMsyqfVxZoyUW0_aw73n1zW4n4gP12G6_dZWG0CYrp5c5osESdl9P2DCUzxmjrATn8WezMNR5rhIGApzVNJoRfoqgz6Ohj7Ow95waWfA2_HbokLm_ch8ut1oBLQ87A8j8reRzf-N7MKsxmnUqDevt2CeYkdM2j5YgOnex6fa1iVNj--k2CHwOGmw_gDUjAjs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20HtSD32K1SlAPeli3yW6ym5OsRS2i4sGCnpbNx2qx1tJuFf31Jm1aiyiI92QJzGTnTXjzHsB-qIWMqxJ7kcECnqnXyhORVd3PA1UNlM40t9PIV9es3ggv7uide3DrOVqlacWbg5-0ndP0uGk4fO7HPg5x7HdUfvzqXpIwIxxzSlgwDTOMGixegpnG9U1ybx3lRnuHckKB6e39TpebChhag4_JIvSFLGf77U72_pa1WhNF5mwR0tHxhtySp6N-IY7kxzflxv-ffwkWHP5EyTBhlmFKt1dgfkKVcAWW3X3voQMnSn24CpenPRvepqVGI5M8TWTFOJ01GnLjBsg6qw1EvtGAioCSk5p3nqD6u50LQ0nr4aXbLB6f16Bxdnpbq3vOicGThJPCizDWPOZCEhnnQiscREJGMQ9VqG1DSA1OiLAk2uChjCiqMirMllBkFAdxroN1KLVf2noDEDcIKeRM5lZ4nbGIS6pFxgOJc8YzqspwMApNKp1MuXXLaKWmXbFRTMdRLMPueGlnqM3x06LKKL6pu569lFgYGzPGcRn2xjH__SObf1q1BXPEMl4G9MAKlIpuX28byFKIHZeXny7V5RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escherichia+coli+Cultivation+Process+Modelling+Using+ABC-GA+Hybrid+Algorithm&rft.jtitle=Processes&rft.au=Roeva%2C+Olympia&rft.au=Zoteva%2C+Dafina&rft.au=Lyubenova%2C+Velislava&rft.date=2021-08-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=9&rft.issue=8&rft.spage=1418&rft_id=info:doi/10.3390%2Fpr9081418&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr9081418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon