Transverse structure of the wave function of field emission electron beam determined by intrinsic transverse energy

The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis bu...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 124; no. 4
Main Author Tsujino, Soichiro
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.07.2018
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.5035284

Cover

Abstract The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis but its wave optical studies are rare. In this work, we therefore aim to elucidate the influence of the transverse momentum in solid on the transverse structure of the wave function of field emission electrons. From the calculation extending the standard field emission theory within the WKB approximation for model planar free-electron metal, we obtained a Gaussian-beam-type wave function that exhibits a minimum transverse width at the cathode surface as determined by the average transverse energy and propagates the first few nanometers with a limited transverse spread. At far field, the wave function spreads as the electron propagates away from the cathode surface. Comparison with classical results indicated that, in the present planar field emitter model, the neglect of the three-dimensional potential around the tip apexes of actual field emitters underestimates the transverse spread up to a factor of 2. However, when the cathode size is finite and the electrons in the solid are phase-coherent within the source area, the transverse spread is much smaller than that of the point-source wave function. Our result indicates that the intrinsic transverse emittance of a finite size fully coherent field emitter is much smaller than the value predicted by classical analysis.
AbstractList The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis but its wave optical studies are rare. In this work, we therefore aim to elucidate the influence of the transverse momentum in solid on the transverse structure of the wave function of field emission electrons. From the calculation extending the standard field emission theory within the WKB approximation for model planar free-electron metal, we obtained a Gaussian-beam-type wave function that exhibits a minimum transverse width at the cathode surface as determined by the average transverse energy and propagates the first few nanometers with a limited transverse spread. At far field, the wave function spreads as the electron propagates away from the cathode surface. Comparison with classical results indicated that, in the present planar field emitter model, the neglect of the three-dimensional potential around the tip apexes of actual field emitters underestimates the transverse spread up to a factor of 2. However, when the cathode size is finite and the electrons in the solid are phase-coherent within the source area, the transverse spread is much smaller than that of the point-source wave function. Our result indicates that the intrinsic transverse emittance of a finite size fully coherent field emitter is much smaller than the value predicted by classical analysis.
Author Tsujino, Soichiro
Author_xml – sequence: 1
  givenname: Soichiro
  surname: Tsujino
  fullname: Tsujino, Soichiro
  email: soichiro.tsujino@psi.ch
  organization: Laboratory for Micro- and Nanotechnology, Photon Science Division, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland
BookMark eNp9kEtLAzEUhYNUsK0u_AcBVwpj82g6yVKKLyi4qeshk7nRlJlMTTKV_ntnaEUQcXUvl--cwz0TNPKtB4QuKbmlZMFn9FYQLpicn6AxJVJluRBkhMaEMJpJlaszNIlxQwilkqsxiuugfdxBiIBjCp1JXQDcWpzeAX_qHWDbeZNc64ejdVBXGBoX43CBGkwK_VKCbnAFCULjPFS43GPnU3A-OoPTTwJ4CG_7c3RqdR3h4jin6PXhfr18ylYvj8_Lu1VmmGIpWwgOdC5LzVXJ5pxQSw1RRBPOWQWUU2qBCbmoLBW5sEIwUCArrXNOylIwPkVXB99taD86iKnYtF3wfWTBiOyL6dWqp64PlAltjAFssQ2u0WFfUFIMnRa0OHbas7NfrHFJD-30T7r6T8XNQRG_yX_svwCYpIjl
CODEN JAPIAU
CitedBy_id crossref_primary_10_1116_6_0001776
crossref_primary_10_1063_1_5045282
crossref_primary_10_1103_PhysRevApplied_15_064031
Cites_doi 10.1524/zpch.2008.6008
10.1116/1.2756550
10.1063/1.3097239
10.1016/j.ultramic.2010.09.002
10.1088/1367-2630/12/3/035012
10.1016/j.ultramic.2014.02.003
10.1103/PhysRevLett.92.246103
10.1098/rspa.2014.0811
10.1038/srep00915
10.1093/jmicro/dfx014
10.1038/nature09366
10.1103/PhysRev.102.1464
10.1063/1.4848076
10.1146/annurev-physchem-040412-110117
10.1016/j.susc.2008.05.038
10.1016/j.ultramic.2016.12.005
10.1103/PhysRevLett.69.2527
10.1016/j.mee.2012.02.014
10.1063/1.352371
10.1016/j.nima.2016.08.032
10.1126/science.1198804
10.1088/0957-4484/24/10/105201
10.1038/nphoton.2010.176
10.1016/j.mee.2008.10.022
10.1038/nmat2406
10.1103/PhysRevB.81.115429
10.1016/S0065-227X(98)80003-8
10.1038/nphoton.2012.141
10.1098/rspa.2007.0030
10.1103/PhysRevLett.63.1499
10.1007/BF01330867
10.1103/PhysRevSTAB.12.074201
10.1143/JJAP.39.L271
10.1147/rd.305.0460
10.1063/1.1722347
10.1016/0039-6028(91)90437-W
10.1116/1.1409390
10.1063/1.4990562
10.1063/1.5030889
10.1103/PhysRevLett.56.792
10.1103/PhysRevB.86.035402
10.1103/PhysRevA.97.013413
10.1103/PhysRevLett.88.038301
10.1038/nature10196
10.1063/1.1709260
10.1116/1.4913397
10.1103/PhysRevLett.96.077401
10.1103/PhysRevLett.114.227601
10.1103/PhysRevLett.98.043907
10.1126/science.154.3750.729
10.1063/1.112496
10.1116/1.4915252
10.1098/rspa.2016.0475
10.1038/nature10878
10.1016/j.ultramic.2016.11.008
10.1109/JLT.2016.2584624
10.1038/ncomms13976
10.1016/S1076-5670(10)62003-4
10.1016/j.ultramic.2017.02.001
10.1116/1.1573664
10.1116/1.3071849
10.1103/PhysRevLett.70.2503
10.7567/APEX.6.114301
10.1103/PhysRevLett.65.1204
10.1063/1.4931976
10.1088/0957-4484/23/9/095706
ContentType Journal Article
Copyright Author(s)
2018 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5035284
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_5035284
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-653e148ba39b24301f1c090a0332de1311fe2586df1575f552e9e8daa730bb523
ISSN 0021-8979
IngestDate Sun Jun 29 15:08:32 EDT 2025
Wed Oct 01 02:43:35 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Jun 21 00:14:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 0021-8979/2018/124(4)/044304/12/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-653e148ba39b24301f1c090a0332de1311fe2586df1575f552e9e8daa730bb523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2087552589
PQPubID 2050677
PageCount 12
ParticipantIDs scitation_primary_10_1063_1_5035284
crossref_primary_10_1063_1_5035284
proquest_journals_2087552589
crossref_citationtrail_10_1063_1_5035284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180728
2018-07-28
PublicationDateYYYYMMDD 2018-07-28
PublicationDate_xml – month: 07
  year: 2018
  text: 20180728
  day: 28
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2018
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Patterson, Abela, Braun, Flechsig, Ganter, Kim, Kirk, Oppelt, Pedrozzi, Reiche, Rivkin, Schmidt, Schmitt, Strocov, Tsujino, Wrulich (c31) 2010
Fujiyoshi (c3) 1998
Kyritsakis, Xanthakis (c81) 2015
Tonomura, Osakabe, Matsuda, Kawasaki, Endo, Yano, Yamada (c4) 1986
Henrik, Solli, Gulde, Ropers (c25) 2012
Edgcombe (c47) 2010
Ruska (c13) 1933
Pozzi (c28) 1987
Binh, Purcell, Garcia, Doglioni (c76) 1992
Cho, Ichimura, Shimizu, Oshima (c17) 2004
Yanagisawa, Hafner, Doná, Klöckner, Leuenberger, Greber, Osterwalder, Hengsberger (c39) 2010
Verbeeck, Tian, Schattschneider (c9) 2010
Fink, Stocker, Schmid (c5) 1990
Latychevskaia (c58) 2017
He, Cutler, Miskovsky, Feuchtwang, Sullivan, Chung (c79) 1991
Choi, Longo, Huang, Randall, Wallace, Cho (c87) 2013
Oh, Mustonen, Feurer, Tsujino (c42) 2015
Lang, Yacoby, Imry (c88) 1989
Lee, Choi, Song, Kang, Oh, Kim (c43) 2016
Feng, Nasiatka, Wan, Karkare, Smedley, Padmore (c70) 2015
Krüger, Schenk, Hommelhoff (c24) 2011
Ehberger, Hammer, Eisele, Krüger, Noe, Högele, Hommelhoff (c18) 2015
Mustonen, Beaud, Kirk, Feurer, Tsujino (c40) 2012
Everhard (c14) 1967
Smith, Silva (c80) 2009
Zanin, De Pietro, Peter, Kostanyan, Cabrera, Vindigni, Bähler, Pescia, Ramsperger (c62) 2016
Ropers, Solli, Schulz, Lienau, Elsaesser (c38) 2007
Forbes (c72) 2012
Patterson, Akinwande (c78) 2013
Miller (c34) 2014
Saito, Hata, Murata (c73) 2000
McMorran, Agrawal, Anderson, Herzing, Lezec, McClelland, Unguris (c10) 2011
Biswas, Ramachandran (c82) 2017
Rezeq (c86) 2013
Schötz, Mitra, Fuest, Neuhaus, Okell, Förster, Paschen, Ciappina, Yanagisawa, Wnuk, Hommelhoff, Kling (c27) 2018
Crewe (c1) 1966
Midgley, Dunin-Borkowski (c8) 2009
Feist, Bach, da Silva, Danz, Möller, Priebe, Domröse, Gatzmann, Rost, Schauss, Strauch, Bormann, Sivis, Schäfer, Ropers (c69) 2017
Oshima, Mastuda, Kona, Mogami, Komaki, Murata, Yamashita, Kuzumaki, Horiike (c74) 2002
Helfenstein, Mustonen, Feurer, Tsujino (c41) 2013
Emma, Akre, Arthur, Bionta, Bostedt, Bozek, Brachmann, Bucksbaum, Coffee, Decker, Ding, Dowell, Edstrom, Fisher, Frisch, Gilevich, Hastings, Hays, Hering, Huang, Iverson, Loos, Messerschmidt, Miahnahri, Moeller, Nuhn, Pile, Ratner, Rzepiela, Schultz, Smith, Stefan, Tompkins, Turner, Welch, White, Wu, Yocky, Galayda (c32) 2010
Hommelhoff, Sortais, Aghajani-Talesh, Kasevich (c37) 2006
Murphy, Good (c49) 1956
Kirk, Ramsperger, Pescia (c61) 2009
Yamashita, Leyden, Adaniya, Cheung, Hirai, Qi, Shintake (c7) 2017
Schütz, Rembold, Pooch, Meier, Schneeweiss, Rauschenbeutel, Günther, Chang, Hwang, Stibor (c19) 2014
Tsujino, Das Kanungo, Monshipouri, Lee, Miller (c45) 2016
Sáenz, García (c60) 1994
Lee, Kanungo, Guzenko, Helfenstein, Miller, Tsujino (c35) 2015
Murakami, Wakaya, Takai (c77) 2007
Jensen (c50) 2003
Lee, Tsujino, Miller (c36) 2018
Forbes, Deane (c48) 2007
Ishikawa, Aoyagi, Asaka, Asano, Azumi, Bizen, Ego, Fukami, Fukui, Furukawa, Goto, Hanaki, Hara, Hasegawa, Hatsui, Higashiya, Hirono, Hosoda, Ishii, Inagaki, Inubushi, Itoga, Joti, Kago, Kameshima, Kimura, Kirihara, Kiyomichi, Kobayashi, Kondo, Kudo, Maesaka, Maréchal, Masuda, Matsubara, Matsumoto, Matsushita, Matsui, Nagasono, Nariyama, Ohashi, Ohata, Ohshima, Ono, Otake, S, Sakurai, Sato, Sawada, Seike, Shirasawa, Sugimoto, Suzuki, Takahashi, Takebe, Takeshita, Tamasaku, Tanaka, Tanaka, Tanaka, Togashi, Togawa, Tokuhisa, Tomizawa, Tono, Wu, Yabashi, Yamaga, Yamashita, Yanagida, Zhang, Shintake, Kitamura, Kumagai (c33) 2012
Rokuta, Kuo, Itagaki, Nomura, Ishikawa, Cho, Hwang, Tsong, Oshima (c84) 2008
Rezeq, Joachim, Chandrasekhara (c85) 2009
Eisele, Voelkel, Grunze, Golzhauser (c6) 2008
Ernst, Unger, Fink, Grunze, Müller, Völkl, Hofmann, Wöll (c89) 1993
Dowell, Schmerge (c51) 2009
Shiloh, Arie (c11) 2017
Qian, Scheinfein, Spence (c15) 1993
Fink (c75) 1986
Edgcombe (c46) 2010
Maxon, Musumeci, Cultrera, Karkare, Padmore (c71) 2017
Wachter, Lemell, Burgdörfer, Schenk, Krüger, Hommelhoff (c26) 2012
Rose (c83) 1956
van Veen, Hagen, Barth, Kruit (c16) 2001
(2023062519040940900_c13) 1933; 83
(2023062519040940900_c72) 2012; 23
(2023062519040940900_c63) 2012
(2023062519040940900_c60) 1994; 65
(2023062519040940900_c27) 2018; 97
(2023062519040940900_c36) 2018; 113
(2023062519040940900_c66) 1994
(2023062519040940900_c59) 1993
(2023062519040940900_c50) 2003; 21
(2023062519040940900_c4) 1986; 56
(2023062519040940900_c40) 2012; 2
(2023062519040940900_c29) 1995
(2023062519040940900_c74) 2002; 88
(2023062519040940900_c88) 1989; 63
(2023062519040940900_c15) 1993; 73
(2023062519040940900_c75) 1986; 30
(2023062519040940900_c80) 2009; 94
(2023062519040940900_c7) 2017; 66
(2023062519040940900_c16) 2001; 19
2023062519040940900_c67
(2023062519040940900_c17) 2004; 92
(2023062519040940900_c39) 2010; 81
(2023062519040940900_c44) 2014
(2023062519040940900_c49) 1956; 102
(2023062519040940900_c30) 1994
(2023062519040940900_c18) 2015; 114
(2023062519040940900_c8) 2009; 8
(2023062519040940900_c56) 1960
(2023062519040940900_c62) 2016; 472
(2023062519040940900_c55) 1977
(2023062519040940900_c65) 2005
(2023062519040940900_c52) 2018
(2023062519040940900_c87) 2013; 24
(2023062519040940900_c11) 2017; 177
(2023062519040940900_c82) 2017; 24
(2023062519040940900_c61) 2009; 27
(2023062519040940900_c41) 2013; 6
(2023062519040940900_c48) 2007; 463
(2023062519040940900_c9) 2010; 467
(2023062519040940900_c24) 2011; 475
(2023062519040940900_c76) 1992; 69
(2023062519040940900_c78) 2013; 114
(2023062519040940900_c85) 2009; 86
(2023062519040940900_c70) 2015; 107
(2023062519040940900_c25) 2012; 483
(2023062519040940900_c47) 2010; 162
(2023062519040940900_c73) 2000; 39
(2023062519040940900_c31) 2010; 12
(2023062519040940900_c58) 2017; 175
(2023062519040940900_c28) 1987; 77
(2023062519040940900_c43) 2016; 34
(2023062519040940900_c45) 2016; 7
(2023062519040940900_c10) 2011; 331
(2023062519040940900_c89) 1993; 70
(2023062519040940900_c81) 2015; 471
(2023062519040940900_c5) 1990; 65
(2023062519040940900_c83) 1956; 27
(2023062519040940900_c68) 2018
(2023062519040940900_c26) 2012; 86
(2023062519040940900_c69) 2017; 176
(2023062519040940900_c35) 2015; 33
(2023062519040940900_c38) 2007; 98
(2023062519040940900_c37) 2006; 96
(2023062519040940900_c19) 2014; 141
(2023062519040940900_c32) 2010; 4
(2023062519040940900_c77) 2007; 25
Utke (2023062519040940900_c21) 2012
(2023062519040940900_c84) 2008; 602
Marton (2023062519040940900_c53) 1973
Fluegge (2023062519040940900_c23) 1956
(2023062519040940900_c51) 2009; 12
(2023062519040940900_c6) 2008; 222
(2023062519040940900_c34) 2014; 65
(2023062519040940900_c64) 1989
(2023062519040940900_c1) 1966; 154
(2023062519040940900_c20) 2009
(2023062519040940900_c54) 1968
(2023062519040940900_c46) 2010; 110
(2023062519040940900_c42) 2015; 33
(2023062519040940900_c12) 1980
(2023062519040940900_c79) 1991; 246
(2023062519040940900_c22) 2018
(2023062519040940900_c33) 2012; 6
(2023062519040940900_c71) 2017; 865
(2023062519040940900_c3) 1998; 35
(2023062519040940900_c2) 2017
(2023062519040940900_c14) 1967; 38
2023062519040940900_c57
(2023062519040940900_c86) 2013; 102
References_xml – start-page: 13976
  year: 2016
  ident: c45
  publication-title: Nat. Commun.
– start-page: 152
  year: 2009
  ident: c61
  publication-title: J. Vac. Sci. Technol. B
– start-page: 134101
  year: 2015
  ident: c70
  article-title: Thermal limit to the intrinsic emittance from metal photocathodes
  publication-title: Appl. Phys. Lett.
– start-page: 78
  year: 2011
  ident: c24
  publication-title: Nature
– start-page: 2038
  year: 2001
  ident: c16
  publication-title: J. Vac. Sci. Technol. B
– start-page: 1528
  year: 2003
  ident: c50
  publication-title: J. Vac. Sci. Technol. B
– start-page: 215
  year: 1956
  ident: c83
  publication-title: J. Appl. Phys.
– start-page: 261
  year: 2017
  ident: c7
  publication-title: Microscopy
– start-page: 641
  year: 2010
  ident: c32
  publication-title: Nat. Photonics
– start-page: 1310
  year: 2007
  ident: c77
  publication-title: J. Vac. Sci. Technol.
– start-page: 915
  year: 2012
  ident: c40
  publication-title: Sci. Rep.
– start-page: 25
  year: 1998
  ident: c3
  publication-title: Adv. Biophys.
– start-page: 20160475
  year: 2016
  ident: c62
  publication-title: Proc. R. Soc. A
– start-page: 1499
  year: 1989
  ident: c88
  publication-title: Phys. Rev. Lett.
– start-page: 460
  year: 1986
  ident: c75
  publication-title: IBM J. Res. Develop.
– start-page: 013413
  year: 2018
  ident: c27
  publication-title: Phys. Rev. A
– start-page: 99
  year: 2017
  ident: c71
  article-title: Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance
  publication-title: Nucl. Instrum. Methods Phys. A
– start-page: 073107
  year: 2017
  ident: c82
  publication-title: Phys. Plasmas
– start-page: 035402
  year: 2012
  ident: c26
  publication-title: Phys. Rev. B
– start-page: 115429
  year: 2010
  ident: c39
  publication-title: Phys. Rev. B
– start-page: 234303
  year: 2013
  ident: c78
  publication-title: J. Appl. Phys.
– start-page: 227601
  year: 2015
  ident: c18
  publication-title: Phys. Rev. Lett.
– start-page: 043907
  year: 2007
  ident: c38
  publication-title: Phys. Rev. Lett.
– start-page: 121
  year: 2017
  ident: c58
  publication-title: Ultramicroscopy
– start-page: 038301
  year: 2002
  ident: c74
  publication-title: Phys. Rev. Lett.
– start-page: 074201
  year: 2009
  ident: c51
  article-title: Quantum efficiency and thermal emittance of metal photocathodes
  publication-title: Phys. Rev. Spec. Top.—Accel. Beams
– start-page: 540
  year: 2012
  ident: c33
  publication-title: Nat. Photonics
– start-page: 348
  year: 1991
  ident: c79
  publication-title: Surf. Sci.
– start-page: 9
  year: 2014
  ident: c19
  publication-title: Ultramicroscopy
– start-page: 63
  year: 2017
  ident: c69
  article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam
  publication-title: Ultramicroscopy
– start-page: 77
  year: 2010
  ident: c47
  publication-title: Adv. Imaging Electron Phys.
– start-page: 69
  year: 1987
  ident: c28
  publication-title: Optik
– start-page: 2508
  year: 2008
  ident: c84
  publication-title: Surf. Sci.
– start-page: 301
  year: 2010
  ident: c9
  publication-title: Nature
– start-page: 4023
  year: 2016
  ident: c43
  publication-title: J. Lightwave Technol.
– start-page: 2907
  year: 2007
  ident: c48
  publication-title: Proc. R. Soc. A
– start-page: 729
  year: 1966
  ident: c1
  publication-title: Science
– start-page: 3022
  year: 1994
  ident: c60
  publication-title: Appl. Phys. Lett.
– start-page: 7041
  year: 1993
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 114301
  year: 2013
  ident: c41
  publication-title: Appl. Phys. Express.
– start-page: 1454
  year: 2010
  ident: c46
  publication-title: Ultramicroscopy
– start-page: 779
  year: 2008
  ident: c6
  publication-title: Z. Phys. Chem.
– start-page: 4944
  year: 1967
  ident: c14
  publication-title: J. Appl. Phys.
– start-page: 1464
  year: 1956
  ident: c49
  publication-title: Phys. Rev.
– start-page: L271
  year: 2000
  ident: c73
  publication-title: Jpn. J. Appl. Phys., Part 2
– start-page: 013505
  year: 2018
  ident: c36
  publication-title: Appl. Phys. Lett.
– start-page: 077401
  year: 2006
  ident: c37
  publication-title: Phys. Rev. Left.
– start-page: 996
  year: 2009
  ident: c85
  publication-title: Microelectron. Eng.
– start-page: 105201
  year: 2013
  ident: c87
  publication-title: Nanotechnology
– start-page: 095706
  year: 2012
  ident: c72
  publication-title: Nanotechnology
– start-page: 192
  year: 2011
  ident: c10
  publication-title: Science
– start-page: 246103
  year: 2004
  ident: c17
  publication-title: Phys. Rev. Lett.
– start-page: 2527
  year: 1992
  ident: c76
  publication-title: Phys. Rev. Lett.
– start-page: 2
  year: 2013
  ident: c86
  publication-title: Microelectron. Eng.
– start-page: 684
  year: 1933
  ident: c13
  publication-title: Z. Phys.
– start-page: 792
  year: 1986
  ident: c4
  publication-title: Phys. Rev. Lett.
– start-page: 190
  year: 2012
  ident: c25
  publication-title: Nature
– start-page: 2503
  year: 1993
  ident: c89
  publication-title: Phys. Rev. Lett.
– start-page: 1204
  year: 1990
  ident: c5
  publication-title: Phys. Rev. Lett.
– start-page: 30
  year: 2017
  ident: c11
  publication-title: Ultramicroscopy
– start-page: 133104
  year: 2009
  ident: c80
  publication-title: Appl. Phys. Lett.
– start-page: 03C112
  year: 2015
  ident: c42
  publication-title: J. Vac. Sci. Technol. B
– start-page: 035012
  year: 2010
  ident: c31
  publication-title: New J. Phys.
– start-page: 03C111
  year: 2015
  ident: c35
  publication-title: J. Vac. Sci. Technol. B
– start-page: 583
  year: 2014
  ident: c34
  publication-title: Ann. Rev. Chem.
– start-page: 271
  year: 2009
  ident: c8
  publication-title: Nat. Mater.
– start-page: 20140811
  year: 2015
  ident: c81
  publication-title: Proc. R. Soc. A
– volume: 222
  start-page: 779
  year: 2008
  ident: 2023062519040940900_c6
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.2008.6008
– volume: 25
  start-page: 1310
  year: 2007
  ident: 2023062519040940900_c77
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.2756550
– volume: 94
  start-page: 133104
  year: 2009
  ident: 2023062519040940900_c80
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3097239
– volume: 110
  start-page: 1454
  year: 2010
  ident: 2023062519040940900_c46
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.09.002
– volume: 12
  start-page: 035012
  year: 2010
  ident: 2023062519040940900_c31
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/3/035012
– start-page: 200
  volume-title: Iwanami Mathematical Formula III
  year: 1960
  ident: 2023062519040940900_c56
– start-page: 116
  volume-title: Quantum Electronics
  year: 1989
  ident: 2023062519040940900_c64
– volume-title: Applied Geometrical Optics
  year: 2018
  ident: 2023062519040940900_c52
  article-title: Principles of electron optics, Vol. II
– volume: 141
  start-page: 9
  year: 2014
  ident: 2023062519040940900_c19
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2014.02.003
– volume: 92
  start-page: 246103
  year: 2004
  ident: 2023062519040940900_c17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246103
– volume-title: Wave Optics
  year: 1994
  ident: 2023062519040940900_c30
  article-title: Principles of electron optics, Vol. III
– volume-title: Wave Optics
  year: 1994
  ident: 2023062519040940900_c66
  article-title: Principle of electron optics
– volume: 471
  start-page: 20140811
  year: 2015
  ident: 2023062519040940900_c81
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2014.0811
– volume: 2
  start-page: 915
  year: 2012
  ident: 2023062519040940900_c40
  publication-title: Sci. Rep.
  doi: 10.1038/srep00915
– volume: 66
  start-page: 261
  year: 2017
  ident: 2023062519040940900_c7
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfx014
– volume: 467
  start-page: 301
  year: 2010
  ident: 2023062519040940900_c9
  publication-title: Nature
  doi: 10.1038/nature09366
– volume: 102
  start-page: 1464
  year: 1956
  ident: 2023062519040940900_c49
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.102.1464
– volume: 114
  start-page: 234303
  year: 2013
  ident: 2023062519040940900_c78
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4848076
– volume: 65
  start-page: 583
  year: 2014
  ident: 2023062519040940900_c34
  publication-title: Ann. Rev. Chem.
  doi: 10.1146/annurev-physchem-040412-110117
– volume: 602
  start-page: 2508
  year: 2008
  ident: 2023062519040940900_c84
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2008.05.038
– volume-title: Introduction to Fouier Optics
  year: 2005
  ident: 2023062519040940900_c65
– volume: 176
  start-page: 63
  year: 2017
  ident: 2023062519040940900_c69
  article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.12.005
– volume: 69
  start-page: 2527
  year: 1992
  ident: 2023062519040940900_c76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2527
– volume: 102
  start-page: 2
  year: 2013
  ident: 2023062519040940900_c86
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2012.02.014
– volume: 73
  start-page: 7041
  year: 1993
  ident: 2023062519040940900_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.352371
– volume: 865
  start-page: 99
  year: 2017
  ident: 2023062519040940900_c71
  article-title: Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance
  publication-title: Nucl. Instrum. Methods Phys. A
  doi: 10.1016/j.nima.2016.08.032
– volume: 331
  start-page: 192
  year: 2011
  ident: 2023062519040940900_c10
  publication-title: Science
  doi: 10.1126/science.1198804
– volume: 24
  start-page: 105201
  year: 2013
  ident: 2023062519040940900_c87
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/10/105201
– volume: 4
  start-page: 641
  year: 2010
  ident: 2023062519040940900_c32
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.176
– start-page: 200
  volume-title: Advances in Electronics and Electron Physics
  year: 1973
  ident: 2023062519040940900_c53
  article-title: Recent advances in field electron microscopy of metals
– volume: 86
  start-page: 996
  year: 2009
  ident: 2023062519040940900_c85
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.10.022
– volume: 8
  start-page: 271
  year: 2009
  ident: 2023062519040940900_c8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2406
– volume: 81
  start-page: 115429
  year: 2010
  ident: 2023062519040940900_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.115429
– volume: 35
  start-page: 25
  year: 1998
  ident: 2023062519040940900_c3
  publication-title: Adv. Biophys.
  doi: 10.1016/S0065-227X(98)80003-8
– volume: 6
  start-page: 540
  year: 2012
  ident: 2023062519040940900_c33
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.141
– volume: 463
  start-page: 2907
  year: 2007
  ident: 2023062519040940900_c48
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2007.0030
– volume: 63
  start-page: 1499
  year: 1989
  ident: 2023062519040940900_c88
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.1499
– volume: 83
  start-page: 684
  year: 1933
  ident: 2023062519040940900_c13
  publication-title: Z. Phys.
  doi: 10.1007/BF01330867
– start-page: 508
  volume-title: Principles of Optics
  year: 1980
  ident: 2023062519040940900_c12
– start-page: 270
  volume-title: Quantum Mechanics
  year: 1968
  ident: 2023062519040940900_c54
– volume-title: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications
  year: 2012
  ident: 2023062519040940900_c21
  article-title: The theory of bright field electron and field ion emission sources
– volume: 12
  start-page: 074201
  year: 2009
  ident: 2023062519040940900_c51
  article-title: Quantum efficiency and thermal emittance of metal photocathodes
  publication-title: Phys. Rev. Spec. Top.—Accel. Beams
  doi: 10.1103/PhysRevSTAB.12.074201
– volume: 39
  start-page: L271
  year: 2000
  ident: 2023062519040940900_c73
  publication-title: Jpn. J. Appl. Phys., Part 2
  doi: 10.1143/JJAP.39.L271
– volume: 30
  start-page: 460
  year: 1986
  ident: 2023062519040940900_c75
  publication-title: IBM J. Res. Develop.
  doi: 10.1147/rd.305.0460
– volume: 27
  start-page: 215
  year: 1956
  ident: 2023062519040940900_c83
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1722347
– start-page: 176
  volume-title: Handbuch Der Physik
  year: 1956
  ident: 2023062519040940900_c23
  article-title: Field Emission
– volume: 246
  start-page: 348
  year: 1991
  ident: 2023062519040940900_c79
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(91)90437-W
– volume: 19
  start-page: 2038
  year: 2001
  ident: 2023062519040940900_c16
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1409390
– volume: 24
  start-page: 073107
  year: 2017
  ident: 2023062519040940900_c82
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4990562
– volume: 113
  start-page: 013505
  year: 2018
  ident: 2023062519040940900_c36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5030889
– volume: 56
  start-page: 792
  year: 1986
  ident: 2023062519040940900_c4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.792
– volume: 86
  start-page: 035402
  year: 2012
  ident: 2023062519040940900_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.035402
– volume: 97
  start-page: 013413
  year: 2018
  ident: 2023062519040940900_c27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.013413
– start-page: 32
  volume-title: Field Emission and Field Ionization
  year: 1993
  ident: 2023062519040940900_c59
– volume-title: High-Resolution Electron Microscopy
  year: 2017
  ident: 2023062519040940900_c2
– volume: 88
  start-page: 038301
  year: 2002
  ident: 2023062519040940900_c74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.038301
– start-page: 272
  volume-title: Optical Coherence and Quantum Optics
  year: 1995
  ident: 2023062519040940900_c29
– volume: 475
  start-page: 78
  year: 2011
  ident: 2023062519040940900_c24
  publication-title: Nature
  doi: 10.1038/nature10196
– volume: 38
  start-page: 4944
  year: 1967
  ident: 2023062519040940900_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709260
– volume: 33
  start-page: 03C111
  year: 2015
  ident: 2023062519040940900_c35
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.4913397
– volume: 96
  start-page: 077401
  year: 2006
  ident: 2023062519040940900_c37
  publication-title: Phys. Rev. Left.
  doi: 10.1103/PhysRevLett.96.077401
– volume: 114
  start-page: 227601
  year: 2015
  ident: 2023062519040940900_c18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.227601
– volume: 98
  start-page: 043907
  year: 2007
  ident: 2023062519040940900_c38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.043907
– volume: 154
  start-page: 729
  year: 1966
  ident: 2023062519040940900_c1
  publication-title: Science
  doi: 10.1126/science.154.3750.729
– volume: 65
  start-page: 3022
  year: 1994
  ident: 2023062519040940900_c60
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112496
– volume: 33
  start-page: 03C112
  year: 2015
  ident: 2023062519040940900_c42
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.4915252
– volume-title: Theory and Design of Charged Particle Beams
  year: 2014
  ident: 2023062519040940900_c44
– volume: 472
  start-page: 20160475
  year: 2016
  ident: 2023062519040940900_c62
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2016.0475
– start-page: 80
  volume-title: Advances in Imaging and Electron Physics
  year: 2009
  ident: 2023062519040940900_c20
  article-title: A review of the cold field electron cathode
– volume: 483
  start-page: 190
  year: 2012
  ident: 2023062519040940900_c25
  publication-title: Nature
  doi: 10.1038/nature10878
– volume-title: Applied Geometrical Optics
  year: 2018
  ident: 2023062519040940900_c68
  article-title: Principles of electron optics, Vol. II
– start-page: 227
  volume-title: Advances in Imaging and Electron Physics
  year: 2012
  ident: 2023062519040940900_c63
  article-title: Fundamental aspects of near-field emission scanning electron microscopy
– ident: 2023062519040940900_c57
– ident: 2023062519040940900_c67
– volume: 175
  start-page: 121
  year: 2017
  ident: 2023062519040940900_c58
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.11.008
– volume: 34
  start-page: 4023
  year: 2016
  ident: 2023062519040940900_c43
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2584624
– volume: 7
  start-page: 13976
  year: 2016
  ident: 2023062519040940900_c45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13976
– volume: 162
  start-page: 77
  year: 2010
  ident: 2023062519040940900_c47
  publication-title: Adv. Imaging Electron Phys.
  doi: 10.1016/S1076-5670(10)62003-4
– volume: 177
  start-page: 30
  year: 2017
  ident: 2023062519040940900_c11
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.02.001
– volume: 21
  start-page: 1528
  year: 2003
  ident: 2023062519040940900_c50
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1573664
– volume: 27
  start-page: 152
  year: 2009
  ident: 2023062519040940900_c61
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3071849
– volume: 70
  start-page: 2503
  year: 1993
  ident: 2023062519040940900_c89
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.2503
– volume: 6
  start-page: 114301
  year: 2013
  ident: 2023062519040940900_c41
  publication-title: Appl. Phys. Express.
  doi: 10.7567/APEX.6.114301
– volume: 65
  start-page: 1204
  year: 1990
  ident: 2023062519040940900_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1204
– volume-title: Applied Geometrical Optics
  year: 2018
  ident: 2023062519040940900_c22
  article-title: Principles of electron optics, Vol. II
– start-page: 74
  volume-title: Quantum Mechanics
  year: 1977
  ident: 2023062519040940900_c55
– volume: 77
  start-page: 69
  year: 1987
  ident: 2023062519040940900_c28
  publication-title: Optik
– volume: 107
  start-page: 134101
  year: 2015
  ident: 2023062519040940900_c70
  article-title: Thermal limit to the intrinsic emittance from metal photocathodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4931976
– volume: 23
  start-page: 095706
  year: 2012
  ident: 2023062519040940900_c72
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/9/095706
SSID ssj0011839
Score 2.3061676
Snippet The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Apexes
Applied physics
Cathodes
Coherence
Electron beams
Electron optics
Electrons
Emittance
Emitters (electron)
Field emission
Gaussian beams (optics)
Mathematical analysis
Three dimensional models
Transverse momentum
Title Transverse structure of the wave function of field emission electron beam determined by intrinsic transverse energy
URI http://dx.doi.org/10.1063/1.5035284
https://www.proquest.com/docview/2087552589
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011839
  issn: 0021-8979
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3baxQxFIeDbhHrg2hVXK0S1AdhmHWTTObyWLxQxIrQLfRtmGQSnKKzpbtF9K_3nMllVtlC9WWYDSE75Muc-SU5OYeQV5kVbaGsSEXDZJpJyTHkrUmrVrfMsjbTgzfh0ef88CT7eCpPx3yOw-mStZrpX1vPlfwPVSgDrnhK9h_IxkahAO6BL1yBMFyvxxg_NOhXgWFiMQ4s7gb4Tf8fmFYIv1pBEg6-agmmd8MFsiTkv0mUab4nrfeKcXq069cXXQ_8MINE-AcznBK8Qsw2Xsy6hZKo0xery7NuSO6dHC87_bW7WG4uM7AS1y95uWk6OUvLymV-mRlnLedllRbSRY6N5tSdifbjJttqpkEX4YrBTGI0Vpci7q-o12fN-U2yw4s85xOyc_Du6NNx3BxCUec8d9wThYBRuXgTm_xTZoxzh9sgLJyPw4aMWNwjd32X0QMH8z65Yfo9cmcjKuQeufXFdeIDshoB0wiYLi0FwBQB0wAYCwfANACmATBFwHQETNVPGgHTETB1gB-Skw_vF28PU58lI9W84us0l8LAnFY1olI8A3ttmZ5X82YuBG8NRlOyhssyby0DaW7hbTSVKdumAduulOTiEZn0y948JpTBz0KblqlCZznM_JnVurBWacONMHpKXodOrUM3YiaTb_XgypCLmtW-_6fkRax67uKmbKu0H8jU_rVa1RxzLEh44mpKXkZaVzfy5Fq1npLdcVTvkwkwM89ATq7Vcz-8fgO4_nsB
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse+structure+of+the+wave+function+of+field+emission+electron+beam+determined+by+intrinsic+transverse+energy&rft.jtitle=Journal+of+applied+physics&rft.au=Tsujino%2C+Soichiro&rft.date=2018-07-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=124&rft.issue=4&rft_id=info:doi/10.1063%2F1.5035284&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon