Transverse structure of the wave function of field emission electron beam determined by intrinsic transverse energy
The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis bu...
Saved in:
Published in | Journal of applied physics Vol. 124; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.5035284 |
Cover
Abstract | The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis but its wave optical studies are rare. In this work, we therefore aim to elucidate the influence of the transverse momentum in solid on the transverse structure of the wave function of field emission electrons. From the calculation extending the standard field emission theory within the WKB approximation for model planar free-electron metal, we obtained a Gaussian-beam-type wave function that exhibits a minimum transverse width at the cathode surface as determined by the average transverse energy and propagates the first few nanometers with a limited transverse spread. At far field, the wave function spreads as the electron propagates away from the cathode surface. Comparison with classical results indicated that, in the present planar field emitter model, the neglect of the three-dimensional potential around the tip apexes of actual field emitters underestimates the transverse spread up to a factor of 2. However, when the cathode size is finite and the electrons in the solid are phase-coherent within the source area, the transverse spread is much smaller than that of the point-source wave function. Our result indicates that the intrinsic transverse emittance of a finite size fully coherent field emitter is much smaller than the value predicted by classical analysis. |
---|---|
AbstractList | The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the transverse spatial coherence of field emitters. In the past, the subject has been intensively studied by classical electron optics analysis but its wave optical studies are rare. In this work, we therefore aim to elucidate the influence of the transverse momentum in solid on the transverse structure of the wave function of field emission electrons. From the calculation extending the standard field emission theory within the WKB approximation for model planar free-electron metal, we obtained a Gaussian-beam-type wave function that exhibits a minimum transverse width at the cathode surface as determined by the average transverse energy and propagates the first few nanometers with a limited transverse spread. At far field, the wave function spreads as the electron propagates away from the cathode surface. Comparison with classical results indicated that, in the present planar field emitter model, the neglect of the three-dimensional potential around the tip apexes of actual field emitters underestimates the transverse spread up to a factor of 2. However, when the cathode size is finite and the electrons in the solid are phase-coherent within the source area, the transverse spread is much smaller than that of the point-source wave function. Our result indicates that the intrinsic transverse emittance of a finite size fully coherent field emitter is much smaller than the value predicted by classical analysis. |
Author | Tsujino, Soichiro |
Author_xml | – sequence: 1 givenname: Soichiro surname: Tsujino fullname: Tsujino, Soichiro email: soichiro.tsujino@psi.ch organization: Laboratory for Micro- and Nanotechnology, Photon Science Division, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland |
BookMark | eNp9kEtLAzEUhYNUsK0u_AcBVwpj82g6yVKKLyi4qeshk7nRlJlMTTKV_ntnaEUQcXUvl--cwz0TNPKtB4QuKbmlZMFn9FYQLpicn6AxJVJluRBkhMaEMJpJlaszNIlxQwilkqsxiuugfdxBiIBjCp1JXQDcWpzeAX_qHWDbeZNc64ejdVBXGBoX43CBGkwK_VKCbnAFCULjPFS43GPnU3A-OoPTTwJ4CG_7c3RqdR3h4jin6PXhfr18ylYvj8_Lu1VmmGIpWwgOdC5LzVXJ5pxQSw1RRBPOWQWUU2qBCbmoLBW5sEIwUCArrXNOylIwPkVXB99taD86iKnYtF3wfWTBiOyL6dWqp64PlAltjAFssQ2u0WFfUFIMnRa0OHbas7NfrHFJD-30T7r6T8XNQRG_yX_svwCYpIjl |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1116_6_0001776 crossref_primary_10_1063_1_5045282 crossref_primary_10_1103_PhysRevApplied_15_064031 |
Cites_doi | 10.1524/zpch.2008.6008 10.1116/1.2756550 10.1063/1.3097239 10.1016/j.ultramic.2010.09.002 10.1088/1367-2630/12/3/035012 10.1016/j.ultramic.2014.02.003 10.1103/PhysRevLett.92.246103 10.1098/rspa.2014.0811 10.1038/srep00915 10.1093/jmicro/dfx014 10.1038/nature09366 10.1103/PhysRev.102.1464 10.1063/1.4848076 10.1146/annurev-physchem-040412-110117 10.1016/j.susc.2008.05.038 10.1016/j.ultramic.2016.12.005 10.1103/PhysRevLett.69.2527 10.1016/j.mee.2012.02.014 10.1063/1.352371 10.1016/j.nima.2016.08.032 10.1126/science.1198804 10.1088/0957-4484/24/10/105201 10.1038/nphoton.2010.176 10.1016/j.mee.2008.10.022 10.1038/nmat2406 10.1103/PhysRevB.81.115429 10.1016/S0065-227X(98)80003-8 10.1038/nphoton.2012.141 10.1098/rspa.2007.0030 10.1103/PhysRevLett.63.1499 10.1007/BF01330867 10.1103/PhysRevSTAB.12.074201 10.1143/JJAP.39.L271 10.1147/rd.305.0460 10.1063/1.1722347 10.1016/0039-6028(91)90437-W 10.1116/1.1409390 10.1063/1.4990562 10.1063/1.5030889 10.1103/PhysRevLett.56.792 10.1103/PhysRevB.86.035402 10.1103/PhysRevA.97.013413 10.1103/PhysRevLett.88.038301 10.1038/nature10196 10.1063/1.1709260 10.1116/1.4913397 10.1103/PhysRevLett.96.077401 10.1103/PhysRevLett.114.227601 10.1103/PhysRevLett.98.043907 10.1126/science.154.3750.729 10.1063/1.112496 10.1116/1.4915252 10.1098/rspa.2016.0475 10.1038/nature10878 10.1016/j.ultramic.2016.11.008 10.1109/JLT.2016.2584624 10.1038/ncomms13976 10.1016/S1076-5670(10)62003-4 10.1016/j.ultramic.2017.02.001 10.1116/1.1573664 10.1116/1.3071849 10.1103/PhysRevLett.70.2503 10.7567/APEX.6.114301 10.1103/PhysRevLett.65.1204 10.1063/1.4931976 10.1088/0957-4484/23/9/095706 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5035284 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_5035284 jap |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-653e148ba39b24301f1c090a0332de1311fe2586df1575f552e9e8daa730bb523 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 15:08:32 EDT 2025 Wed Oct 01 02:43:35 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Jun 21 00:14:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 0021-8979/2018/124(4)/044304/12/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-653e148ba39b24301f1c090a0332de1311fe2586df1575f552e9e8daa730bb523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2087552589 |
PQPubID | 2050677 |
PageCount | 12 |
ParticipantIDs | scitation_primary_10_1063_1_5035284 crossref_primary_10_1063_1_5035284 proquest_journals_2087552589 crossref_citationtrail_10_1063_1_5035284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180728 2018-07-28 |
PublicationDateYYYYMMDD | 2018-07-28 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180728 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Patterson, Abela, Braun, Flechsig, Ganter, Kim, Kirk, Oppelt, Pedrozzi, Reiche, Rivkin, Schmidt, Schmitt, Strocov, Tsujino, Wrulich (c31) 2010 Fujiyoshi (c3) 1998 Kyritsakis, Xanthakis (c81) 2015 Tonomura, Osakabe, Matsuda, Kawasaki, Endo, Yano, Yamada (c4) 1986 Henrik, Solli, Gulde, Ropers (c25) 2012 Edgcombe (c47) 2010 Ruska (c13) 1933 Pozzi (c28) 1987 Binh, Purcell, Garcia, Doglioni (c76) 1992 Cho, Ichimura, Shimizu, Oshima (c17) 2004 Yanagisawa, Hafner, Doná, Klöckner, Leuenberger, Greber, Osterwalder, Hengsberger (c39) 2010 Verbeeck, Tian, Schattschneider (c9) 2010 Fink, Stocker, Schmid (c5) 1990 Latychevskaia (c58) 2017 He, Cutler, Miskovsky, Feuchtwang, Sullivan, Chung (c79) 1991 Choi, Longo, Huang, Randall, Wallace, Cho (c87) 2013 Oh, Mustonen, Feurer, Tsujino (c42) 2015 Lang, Yacoby, Imry (c88) 1989 Lee, Choi, Song, Kang, Oh, Kim (c43) 2016 Feng, Nasiatka, Wan, Karkare, Smedley, Padmore (c70) 2015 Krüger, Schenk, Hommelhoff (c24) 2011 Ehberger, Hammer, Eisele, Krüger, Noe, Högele, Hommelhoff (c18) 2015 Mustonen, Beaud, Kirk, Feurer, Tsujino (c40) 2012 Everhard (c14) 1967 Smith, Silva (c80) 2009 Zanin, De Pietro, Peter, Kostanyan, Cabrera, Vindigni, Bähler, Pescia, Ramsperger (c62) 2016 Ropers, Solli, Schulz, Lienau, Elsaesser (c38) 2007 Forbes (c72) 2012 Patterson, Akinwande (c78) 2013 Miller (c34) 2014 Saito, Hata, Murata (c73) 2000 McMorran, Agrawal, Anderson, Herzing, Lezec, McClelland, Unguris (c10) 2011 Biswas, Ramachandran (c82) 2017 Rezeq (c86) 2013 Schötz, Mitra, Fuest, Neuhaus, Okell, Förster, Paschen, Ciappina, Yanagisawa, Wnuk, Hommelhoff, Kling (c27) 2018 Crewe (c1) 1966 Midgley, Dunin-Borkowski (c8) 2009 Feist, Bach, da Silva, Danz, Möller, Priebe, Domröse, Gatzmann, Rost, Schauss, Strauch, Bormann, Sivis, Schäfer, Ropers (c69) 2017 Oshima, Mastuda, Kona, Mogami, Komaki, Murata, Yamashita, Kuzumaki, Horiike (c74) 2002 Helfenstein, Mustonen, Feurer, Tsujino (c41) 2013 Emma, Akre, Arthur, Bionta, Bostedt, Bozek, Brachmann, Bucksbaum, Coffee, Decker, Ding, Dowell, Edstrom, Fisher, Frisch, Gilevich, Hastings, Hays, Hering, Huang, Iverson, Loos, Messerschmidt, Miahnahri, Moeller, Nuhn, Pile, Ratner, Rzepiela, Schultz, Smith, Stefan, Tompkins, Turner, Welch, White, Wu, Yocky, Galayda (c32) 2010 Hommelhoff, Sortais, Aghajani-Talesh, Kasevich (c37) 2006 Murphy, Good (c49) 1956 Kirk, Ramsperger, Pescia (c61) 2009 Yamashita, Leyden, Adaniya, Cheung, Hirai, Qi, Shintake (c7) 2017 Schütz, Rembold, Pooch, Meier, Schneeweiss, Rauschenbeutel, Günther, Chang, Hwang, Stibor (c19) 2014 Tsujino, Das Kanungo, Monshipouri, Lee, Miller (c45) 2016 Sáenz, García (c60) 1994 Lee, Kanungo, Guzenko, Helfenstein, Miller, Tsujino (c35) 2015 Murakami, Wakaya, Takai (c77) 2007 Jensen (c50) 2003 Lee, Tsujino, Miller (c36) 2018 Forbes, Deane (c48) 2007 Ishikawa, Aoyagi, Asaka, Asano, Azumi, Bizen, Ego, Fukami, Fukui, Furukawa, Goto, Hanaki, Hara, Hasegawa, Hatsui, Higashiya, Hirono, Hosoda, Ishii, Inagaki, Inubushi, Itoga, Joti, Kago, Kameshima, Kimura, Kirihara, Kiyomichi, Kobayashi, Kondo, Kudo, Maesaka, Maréchal, Masuda, Matsubara, Matsumoto, Matsushita, Matsui, Nagasono, Nariyama, Ohashi, Ohata, Ohshima, Ono, Otake, S, Sakurai, Sato, Sawada, Seike, Shirasawa, Sugimoto, Suzuki, Takahashi, Takebe, Takeshita, Tamasaku, Tanaka, Tanaka, Tanaka, Togashi, Togawa, Tokuhisa, Tomizawa, Tono, Wu, Yabashi, Yamaga, Yamashita, Yanagida, Zhang, Shintake, Kitamura, Kumagai (c33) 2012 Rokuta, Kuo, Itagaki, Nomura, Ishikawa, Cho, Hwang, Tsong, Oshima (c84) 2008 Rezeq, Joachim, Chandrasekhara (c85) 2009 Eisele, Voelkel, Grunze, Golzhauser (c6) 2008 Ernst, Unger, Fink, Grunze, Müller, Völkl, Hofmann, Wöll (c89) 1993 Dowell, Schmerge (c51) 2009 Shiloh, Arie (c11) 2017 Qian, Scheinfein, Spence (c15) 1993 Fink (c75) 1986 Edgcombe (c46) 2010 Maxon, Musumeci, Cultrera, Karkare, Padmore (c71) 2017 Wachter, Lemell, Burgdörfer, Schenk, Krüger, Hommelhoff (c26) 2012 Rose (c83) 1956 van Veen, Hagen, Barth, Kruit (c16) 2001 (2023062519040940900_c13) 1933; 83 (2023062519040940900_c72) 2012; 23 (2023062519040940900_c63) 2012 (2023062519040940900_c60) 1994; 65 (2023062519040940900_c27) 2018; 97 (2023062519040940900_c36) 2018; 113 (2023062519040940900_c66) 1994 (2023062519040940900_c59) 1993 (2023062519040940900_c50) 2003; 21 (2023062519040940900_c4) 1986; 56 (2023062519040940900_c40) 2012; 2 (2023062519040940900_c29) 1995 (2023062519040940900_c74) 2002; 88 (2023062519040940900_c88) 1989; 63 (2023062519040940900_c15) 1993; 73 (2023062519040940900_c75) 1986; 30 (2023062519040940900_c80) 2009; 94 (2023062519040940900_c7) 2017; 66 (2023062519040940900_c16) 2001; 19 2023062519040940900_c67 (2023062519040940900_c17) 2004; 92 (2023062519040940900_c39) 2010; 81 (2023062519040940900_c44) 2014 (2023062519040940900_c49) 1956; 102 (2023062519040940900_c30) 1994 (2023062519040940900_c18) 2015; 114 (2023062519040940900_c8) 2009; 8 (2023062519040940900_c56) 1960 (2023062519040940900_c62) 2016; 472 (2023062519040940900_c55) 1977 (2023062519040940900_c65) 2005 (2023062519040940900_c52) 2018 (2023062519040940900_c87) 2013; 24 (2023062519040940900_c11) 2017; 177 (2023062519040940900_c82) 2017; 24 (2023062519040940900_c61) 2009; 27 (2023062519040940900_c41) 2013; 6 (2023062519040940900_c48) 2007; 463 (2023062519040940900_c9) 2010; 467 (2023062519040940900_c24) 2011; 475 (2023062519040940900_c76) 1992; 69 (2023062519040940900_c78) 2013; 114 (2023062519040940900_c85) 2009; 86 (2023062519040940900_c70) 2015; 107 (2023062519040940900_c25) 2012; 483 (2023062519040940900_c47) 2010; 162 (2023062519040940900_c73) 2000; 39 (2023062519040940900_c31) 2010; 12 (2023062519040940900_c58) 2017; 175 (2023062519040940900_c28) 1987; 77 (2023062519040940900_c43) 2016; 34 (2023062519040940900_c45) 2016; 7 (2023062519040940900_c10) 2011; 331 (2023062519040940900_c89) 1993; 70 (2023062519040940900_c81) 2015; 471 (2023062519040940900_c5) 1990; 65 (2023062519040940900_c83) 1956; 27 (2023062519040940900_c68) 2018 (2023062519040940900_c26) 2012; 86 (2023062519040940900_c69) 2017; 176 (2023062519040940900_c35) 2015; 33 (2023062519040940900_c38) 2007; 98 (2023062519040940900_c37) 2006; 96 (2023062519040940900_c19) 2014; 141 (2023062519040940900_c32) 2010; 4 (2023062519040940900_c77) 2007; 25 Utke (2023062519040940900_c21) 2012 (2023062519040940900_c84) 2008; 602 Marton (2023062519040940900_c53) 1973 Fluegge (2023062519040940900_c23) 1956 (2023062519040940900_c51) 2009; 12 (2023062519040940900_c6) 2008; 222 (2023062519040940900_c34) 2014; 65 (2023062519040940900_c64) 1989 (2023062519040940900_c1) 1966; 154 (2023062519040940900_c20) 2009 (2023062519040940900_c54) 1968 (2023062519040940900_c46) 2010; 110 (2023062519040940900_c42) 2015; 33 (2023062519040940900_c12) 1980 (2023062519040940900_c79) 1991; 246 (2023062519040940900_c22) 2018 (2023062519040940900_c33) 2012; 6 (2023062519040940900_c71) 2017; 865 (2023062519040940900_c3) 1998; 35 (2023062519040940900_c2) 2017 (2023062519040940900_c14) 1967; 38 2023062519040940900_c57 (2023062519040940900_c86) 2013; 102 |
References_xml | – start-page: 13976 year: 2016 ident: c45 publication-title: Nat. Commun. – start-page: 152 year: 2009 ident: c61 publication-title: J. Vac. Sci. Technol. B – start-page: 134101 year: 2015 ident: c70 article-title: Thermal limit to the intrinsic emittance from metal photocathodes publication-title: Appl. Phys. Lett. – start-page: 78 year: 2011 ident: c24 publication-title: Nature – start-page: 2038 year: 2001 ident: c16 publication-title: J. Vac. Sci. Technol. B – start-page: 1528 year: 2003 ident: c50 publication-title: J. Vac. Sci. Technol. B – start-page: 215 year: 1956 ident: c83 publication-title: J. Appl. Phys. – start-page: 261 year: 2017 ident: c7 publication-title: Microscopy – start-page: 641 year: 2010 ident: c32 publication-title: Nat. Photonics – start-page: 1310 year: 2007 ident: c77 publication-title: J. Vac. Sci. Technol. – start-page: 915 year: 2012 ident: c40 publication-title: Sci. Rep. – start-page: 25 year: 1998 ident: c3 publication-title: Adv. Biophys. – start-page: 20160475 year: 2016 ident: c62 publication-title: Proc. R. Soc. A – start-page: 1499 year: 1989 ident: c88 publication-title: Phys. Rev. Lett. – start-page: 460 year: 1986 ident: c75 publication-title: IBM J. Res. Develop. – start-page: 013413 year: 2018 ident: c27 publication-title: Phys. Rev. A – start-page: 99 year: 2017 ident: c71 article-title: Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance publication-title: Nucl. Instrum. Methods Phys. A – start-page: 073107 year: 2017 ident: c82 publication-title: Phys. Plasmas – start-page: 035402 year: 2012 ident: c26 publication-title: Phys. Rev. B – start-page: 115429 year: 2010 ident: c39 publication-title: Phys. Rev. B – start-page: 234303 year: 2013 ident: c78 publication-title: J. Appl. Phys. – start-page: 227601 year: 2015 ident: c18 publication-title: Phys. Rev. Lett. – start-page: 043907 year: 2007 ident: c38 publication-title: Phys. Rev. Lett. – start-page: 121 year: 2017 ident: c58 publication-title: Ultramicroscopy – start-page: 038301 year: 2002 ident: c74 publication-title: Phys. Rev. Lett. – start-page: 074201 year: 2009 ident: c51 article-title: Quantum efficiency and thermal emittance of metal photocathodes publication-title: Phys. Rev. Spec. Top.—Accel. Beams – start-page: 540 year: 2012 ident: c33 publication-title: Nat. Photonics – start-page: 348 year: 1991 ident: c79 publication-title: Surf. Sci. – start-page: 9 year: 2014 ident: c19 publication-title: Ultramicroscopy – start-page: 63 year: 2017 ident: c69 article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam publication-title: Ultramicroscopy – start-page: 77 year: 2010 ident: c47 publication-title: Adv. Imaging Electron Phys. – start-page: 69 year: 1987 ident: c28 publication-title: Optik – start-page: 2508 year: 2008 ident: c84 publication-title: Surf. Sci. – start-page: 301 year: 2010 ident: c9 publication-title: Nature – start-page: 4023 year: 2016 ident: c43 publication-title: J. Lightwave Technol. – start-page: 2907 year: 2007 ident: c48 publication-title: Proc. R. Soc. A – start-page: 729 year: 1966 ident: c1 publication-title: Science – start-page: 3022 year: 1994 ident: c60 publication-title: Appl. Phys. Lett. – start-page: 7041 year: 1993 ident: c15 publication-title: J. Appl. Phys. – start-page: 114301 year: 2013 ident: c41 publication-title: Appl. Phys. Express. – start-page: 1454 year: 2010 ident: c46 publication-title: Ultramicroscopy – start-page: 779 year: 2008 ident: c6 publication-title: Z. Phys. Chem. – start-page: 4944 year: 1967 ident: c14 publication-title: J. Appl. Phys. – start-page: 1464 year: 1956 ident: c49 publication-title: Phys. Rev. – start-page: L271 year: 2000 ident: c73 publication-title: Jpn. J. Appl. Phys., Part 2 – start-page: 013505 year: 2018 ident: c36 publication-title: Appl. Phys. Lett. – start-page: 077401 year: 2006 ident: c37 publication-title: Phys. Rev. Left. – start-page: 996 year: 2009 ident: c85 publication-title: Microelectron. Eng. – start-page: 105201 year: 2013 ident: c87 publication-title: Nanotechnology – start-page: 095706 year: 2012 ident: c72 publication-title: Nanotechnology – start-page: 192 year: 2011 ident: c10 publication-title: Science – start-page: 246103 year: 2004 ident: c17 publication-title: Phys. Rev. Lett. – start-page: 2527 year: 1992 ident: c76 publication-title: Phys. Rev. Lett. – start-page: 2 year: 2013 ident: c86 publication-title: Microelectron. Eng. – start-page: 684 year: 1933 ident: c13 publication-title: Z. Phys. – start-page: 792 year: 1986 ident: c4 publication-title: Phys. Rev. Lett. – start-page: 190 year: 2012 ident: c25 publication-title: Nature – start-page: 2503 year: 1993 ident: c89 publication-title: Phys. Rev. Lett. – start-page: 1204 year: 1990 ident: c5 publication-title: Phys. Rev. Lett. – start-page: 30 year: 2017 ident: c11 publication-title: Ultramicroscopy – start-page: 133104 year: 2009 ident: c80 publication-title: Appl. Phys. Lett. – start-page: 03C112 year: 2015 ident: c42 publication-title: J. Vac. Sci. Technol. B – start-page: 035012 year: 2010 ident: c31 publication-title: New J. Phys. – start-page: 03C111 year: 2015 ident: c35 publication-title: J. Vac. Sci. Technol. B – start-page: 583 year: 2014 ident: c34 publication-title: Ann. Rev. Chem. – start-page: 271 year: 2009 ident: c8 publication-title: Nat. Mater. – start-page: 20140811 year: 2015 ident: c81 publication-title: Proc. R. Soc. A – volume: 222 start-page: 779 year: 2008 ident: 2023062519040940900_c6 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2008.6008 – volume: 25 start-page: 1310 year: 2007 ident: 2023062519040940900_c77 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.2756550 – volume: 94 start-page: 133104 year: 2009 ident: 2023062519040940900_c80 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3097239 – volume: 110 start-page: 1454 year: 2010 ident: 2023062519040940900_c46 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.09.002 – volume: 12 start-page: 035012 year: 2010 ident: 2023062519040940900_c31 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/3/035012 – start-page: 200 volume-title: Iwanami Mathematical Formula III year: 1960 ident: 2023062519040940900_c56 – start-page: 116 volume-title: Quantum Electronics year: 1989 ident: 2023062519040940900_c64 – volume-title: Applied Geometrical Optics year: 2018 ident: 2023062519040940900_c52 article-title: Principles of electron optics, Vol. II – volume: 141 start-page: 9 year: 2014 ident: 2023062519040940900_c19 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2014.02.003 – volume: 92 start-page: 246103 year: 2004 ident: 2023062519040940900_c17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246103 – volume-title: Wave Optics year: 1994 ident: 2023062519040940900_c30 article-title: Principles of electron optics, Vol. III – volume-title: Wave Optics year: 1994 ident: 2023062519040940900_c66 article-title: Principle of electron optics – volume: 471 start-page: 20140811 year: 2015 ident: 2023062519040940900_c81 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2014.0811 – volume: 2 start-page: 915 year: 2012 ident: 2023062519040940900_c40 publication-title: Sci. Rep. doi: 10.1038/srep00915 – volume: 66 start-page: 261 year: 2017 ident: 2023062519040940900_c7 publication-title: Microscopy doi: 10.1093/jmicro/dfx014 – volume: 467 start-page: 301 year: 2010 ident: 2023062519040940900_c9 publication-title: Nature doi: 10.1038/nature09366 – volume: 102 start-page: 1464 year: 1956 ident: 2023062519040940900_c49 publication-title: Phys. Rev. doi: 10.1103/PhysRev.102.1464 – volume: 114 start-page: 234303 year: 2013 ident: 2023062519040940900_c78 publication-title: J. Appl. Phys. doi: 10.1063/1.4848076 – volume: 65 start-page: 583 year: 2014 ident: 2023062519040940900_c34 publication-title: Ann. Rev. Chem. doi: 10.1146/annurev-physchem-040412-110117 – volume: 602 start-page: 2508 year: 2008 ident: 2023062519040940900_c84 publication-title: Surf. Sci. doi: 10.1016/j.susc.2008.05.038 – volume-title: Introduction to Fouier Optics year: 2005 ident: 2023062519040940900_c65 – volume: 176 start-page: 63 year: 2017 ident: 2023062519040940900_c69 article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.12.005 – volume: 69 start-page: 2527 year: 1992 ident: 2023062519040940900_c76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2527 – volume: 102 start-page: 2 year: 2013 ident: 2023062519040940900_c86 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2012.02.014 – volume: 73 start-page: 7041 year: 1993 ident: 2023062519040940900_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.352371 – volume: 865 start-page: 99 year: 2017 ident: 2023062519040940900_c71 article-title: Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance publication-title: Nucl. Instrum. Methods Phys. A doi: 10.1016/j.nima.2016.08.032 – volume: 331 start-page: 192 year: 2011 ident: 2023062519040940900_c10 publication-title: Science doi: 10.1126/science.1198804 – volume: 24 start-page: 105201 year: 2013 ident: 2023062519040940900_c87 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/10/105201 – volume: 4 start-page: 641 year: 2010 ident: 2023062519040940900_c32 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.176 – start-page: 200 volume-title: Advances in Electronics and Electron Physics year: 1973 ident: 2023062519040940900_c53 article-title: Recent advances in field electron microscopy of metals – volume: 86 start-page: 996 year: 2009 ident: 2023062519040940900_c85 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.10.022 – volume: 8 start-page: 271 year: 2009 ident: 2023062519040940900_c8 publication-title: Nat. Mater. doi: 10.1038/nmat2406 – volume: 81 start-page: 115429 year: 2010 ident: 2023062519040940900_c39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.115429 – volume: 35 start-page: 25 year: 1998 ident: 2023062519040940900_c3 publication-title: Adv. Biophys. doi: 10.1016/S0065-227X(98)80003-8 – volume: 6 start-page: 540 year: 2012 ident: 2023062519040940900_c33 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.141 – volume: 463 start-page: 2907 year: 2007 ident: 2023062519040940900_c48 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2007.0030 – volume: 63 start-page: 1499 year: 1989 ident: 2023062519040940900_c88 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.1499 – volume: 83 start-page: 684 year: 1933 ident: 2023062519040940900_c13 publication-title: Z. Phys. doi: 10.1007/BF01330867 – start-page: 508 volume-title: Principles of Optics year: 1980 ident: 2023062519040940900_c12 – start-page: 270 volume-title: Quantum Mechanics year: 1968 ident: 2023062519040940900_c54 – volume-title: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications year: 2012 ident: 2023062519040940900_c21 article-title: The theory of bright field electron and field ion emission sources – volume: 12 start-page: 074201 year: 2009 ident: 2023062519040940900_c51 article-title: Quantum efficiency and thermal emittance of metal photocathodes publication-title: Phys. Rev. Spec. Top.—Accel. Beams doi: 10.1103/PhysRevSTAB.12.074201 – volume: 39 start-page: L271 year: 2000 ident: 2023062519040940900_c73 publication-title: Jpn. J. Appl. Phys., Part 2 doi: 10.1143/JJAP.39.L271 – volume: 30 start-page: 460 year: 1986 ident: 2023062519040940900_c75 publication-title: IBM J. Res. Develop. doi: 10.1147/rd.305.0460 – volume: 27 start-page: 215 year: 1956 ident: 2023062519040940900_c83 publication-title: J. Appl. Phys. doi: 10.1063/1.1722347 – start-page: 176 volume-title: Handbuch Der Physik year: 1956 ident: 2023062519040940900_c23 article-title: Field Emission – volume: 246 start-page: 348 year: 1991 ident: 2023062519040940900_c79 publication-title: Surf. Sci. doi: 10.1016/0039-6028(91)90437-W – volume: 19 start-page: 2038 year: 2001 ident: 2023062519040940900_c16 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1409390 – volume: 24 start-page: 073107 year: 2017 ident: 2023062519040940900_c82 publication-title: Phys. Plasmas doi: 10.1063/1.4990562 – volume: 113 start-page: 013505 year: 2018 ident: 2023062519040940900_c36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5030889 – volume: 56 start-page: 792 year: 1986 ident: 2023062519040940900_c4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.792 – volume: 86 start-page: 035402 year: 2012 ident: 2023062519040940900_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035402 – volume: 97 start-page: 013413 year: 2018 ident: 2023062519040940900_c27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.013413 – start-page: 32 volume-title: Field Emission and Field Ionization year: 1993 ident: 2023062519040940900_c59 – volume-title: High-Resolution Electron Microscopy year: 2017 ident: 2023062519040940900_c2 – volume: 88 start-page: 038301 year: 2002 ident: 2023062519040940900_c74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.038301 – start-page: 272 volume-title: Optical Coherence and Quantum Optics year: 1995 ident: 2023062519040940900_c29 – volume: 475 start-page: 78 year: 2011 ident: 2023062519040940900_c24 publication-title: Nature doi: 10.1038/nature10196 – volume: 38 start-page: 4944 year: 1967 ident: 2023062519040940900_c14 publication-title: J. Appl. Phys. doi: 10.1063/1.1709260 – volume: 33 start-page: 03C111 year: 2015 ident: 2023062519040940900_c35 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4913397 – volume: 96 start-page: 077401 year: 2006 ident: 2023062519040940900_c37 publication-title: Phys. Rev. Left. doi: 10.1103/PhysRevLett.96.077401 – volume: 114 start-page: 227601 year: 2015 ident: 2023062519040940900_c18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.227601 – volume: 98 start-page: 043907 year: 2007 ident: 2023062519040940900_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.043907 – volume: 154 start-page: 729 year: 1966 ident: 2023062519040940900_c1 publication-title: Science doi: 10.1126/science.154.3750.729 – volume: 65 start-page: 3022 year: 1994 ident: 2023062519040940900_c60 publication-title: Appl. Phys. Lett. doi: 10.1063/1.112496 – volume: 33 start-page: 03C112 year: 2015 ident: 2023062519040940900_c42 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4915252 – volume-title: Theory and Design of Charged Particle Beams year: 2014 ident: 2023062519040940900_c44 – volume: 472 start-page: 20160475 year: 2016 ident: 2023062519040940900_c62 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2016.0475 – start-page: 80 volume-title: Advances in Imaging and Electron Physics year: 2009 ident: 2023062519040940900_c20 article-title: A review of the cold field electron cathode – volume: 483 start-page: 190 year: 2012 ident: 2023062519040940900_c25 publication-title: Nature doi: 10.1038/nature10878 – volume-title: Applied Geometrical Optics year: 2018 ident: 2023062519040940900_c68 article-title: Principles of electron optics, Vol. II – start-page: 227 volume-title: Advances in Imaging and Electron Physics year: 2012 ident: 2023062519040940900_c63 article-title: Fundamental aspects of near-field emission scanning electron microscopy – ident: 2023062519040940900_c57 – ident: 2023062519040940900_c67 – volume: 175 start-page: 121 year: 2017 ident: 2023062519040940900_c58 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.11.008 – volume: 34 start-page: 4023 year: 2016 ident: 2023062519040940900_c43 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2584624 – volume: 7 start-page: 13976 year: 2016 ident: 2023062519040940900_c45 publication-title: Nat. Commun. doi: 10.1038/ncomms13976 – volume: 162 start-page: 77 year: 2010 ident: 2023062519040940900_c47 publication-title: Adv. Imaging Electron Phys. doi: 10.1016/S1076-5670(10)62003-4 – volume: 177 start-page: 30 year: 2017 ident: 2023062519040940900_c11 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.02.001 – volume: 21 start-page: 1528 year: 2003 ident: 2023062519040940900_c50 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1573664 – volume: 27 start-page: 152 year: 2009 ident: 2023062519040940900_c61 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3071849 – volume: 70 start-page: 2503 year: 1993 ident: 2023062519040940900_c89 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.2503 – volume: 6 start-page: 114301 year: 2013 ident: 2023062519040940900_c41 publication-title: Appl. Phys. Express. doi: 10.7567/APEX.6.114301 – volume: 65 start-page: 1204 year: 1990 ident: 2023062519040940900_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1204 – volume-title: Applied Geometrical Optics year: 2018 ident: 2023062519040940900_c22 article-title: Principles of electron optics, Vol. II – start-page: 74 volume-title: Quantum Mechanics year: 1977 ident: 2023062519040940900_c55 – volume: 77 start-page: 69 year: 1987 ident: 2023062519040940900_c28 publication-title: Optik – volume: 107 start-page: 134101 year: 2015 ident: 2023062519040940900_c70 article-title: Thermal limit to the intrinsic emittance from metal photocathodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4931976 – volume: 23 start-page: 095706 year: 2012 ident: 2023062519040940900_c72 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/9/095706 |
SSID | ssj0011839 |
Score | 2.3061676 |
Snippet | The average transverse energy of field emission electrons at the cathode surface is one of the key factors that determines the virtual source size, hence the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Apexes Applied physics Cathodes Coherence Electron beams Electron optics Electrons Emittance Emitters (electron) Field emission Gaussian beams (optics) Mathematical analysis Three dimensional models Transverse momentum |
Title | Transverse structure of the wave function of field emission electron beam determined by intrinsic transverse energy |
URI | http://dx.doi.org/10.1063/1.5035284 https://www.proquest.com/docview/2087552589 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011839 issn: 0021-8979 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3baxQxFIeDbhHrg2hVXK0S1AdhmHWTTObyWLxQxIrQLfRtmGQSnKKzpbtF9K_3nMllVtlC9WWYDSE75Muc-SU5OYeQV5kVbaGsSEXDZJpJyTHkrUmrVrfMsjbTgzfh0ef88CT7eCpPx3yOw-mStZrpX1vPlfwPVSgDrnhK9h_IxkahAO6BL1yBMFyvxxg_NOhXgWFiMQ4s7gb4Tf8fmFYIv1pBEg6-agmmd8MFsiTkv0mUab4nrfeKcXq069cXXQ_8MINE-AcznBK8Qsw2Xsy6hZKo0xery7NuSO6dHC87_bW7WG4uM7AS1y95uWk6OUvLymV-mRlnLedllRbSRY6N5tSdifbjJttqpkEX4YrBTGI0Vpci7q-o12fN-U2yw4s85xOyc_Du6NNx3BxCUec8d9wThYBRuXgTm_xTZoxzh9sgLJyPw4aMWNwjd32X0QMH8z65Yfo9cmcjKuQeufXFdeIDshoB0wiYLi0FwBQB0wAYCwfANACmATBFwHQETNVPGgHTETB1gB-Skw_vF28PU58lI9W84us0l8LAnFY1olI8A3ttmZ5X82YuBG8NRlOyhssyby0DaW7hbTSVKdumAduulOTiEZn0y948JpTBz0KblqlCZznM_JnVurBWacONMHpKXodOrUM3YiaTb_XgypCLmtW-_6fkRax67uKmbKu0H8jU_rVa1RxzLEh44mpKXkZaVzfy5Fq1npLdcVTvkwkwM89ATq7Vcz-8fgO4_nsB |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse+structure+of+the+wave+function+of+field+emission+electron+beam+determined+by+intrinsic+transverse+energy&rft.jtitle=Journal+of+applied+physics&rft.au=Tsujino%2C+Soichiro&rft.date=2018-07-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=124&rft.issue=4&rft_id=info:doi/10.1063%2F1.5035284&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |