Towards Resource-Efficient Edge AI: From Federated Learning to Semi-Supervised Model Personalization

A central question in edge intelligence is "how can an edge device learn its local model with limited data and constrained computing capacity?" In this study, we explore the approach where a global model initialization is first obtained by running federated learning (FL) across multiple ed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on mobile computing Vol. 23; no. 5; pp. 6104 - 6115
Main Authors Zhang, Zhaofeng, Yue, Sheng, Zhang, Junshan
Format Magazine Article
LanguageEnglish
Published Los Alamitos IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1233
1558-0660
DOI10.1109/TMC.2023.3316189

Cover

Abstract A central question in edge intelligence is "how can an edge device learn its local model with limited data and constrained computing capacity?" In this study, we explore the approach where a global model initialization is first obtained by running federated learning (FL) across multiple edge devices, based on which a semi-supervised algorithm is devised for a single edge device to carry out quick adaptation with its local data. Specifically, to account for device heterogeneity and resource constraints, a global model is first trained via FL, where each device conducts multiple local updates only for its customized subnet. A subset of devices can be selected to upload updates for aggregation during each training round. Further, device scheduling is optimized to minimize the training loss of FL, subject to resource constraints, based on the carefully crafted reward function defined as the one-round progress of FL each device can provide. We examine the convergence behavior of FL for the general non-convex case. For semi-supervised model personalization, we use the FL-based model initialization as a teacher network to impute soft labels on unlabeled data, thereby addressing the insufficiency of labeled data. Experiments are conducted to evaluate the performance of the proposed algorithms.
AbstractList A central question in edge intelligence is “how can an edge device learn its local model with limited data and constrained computing capacity?” In this study, we explore the approach where a global model initialization is first obtained by running federated learning (FL) across multiple edge devices, based on which a semi-supervised algorithm is devised for a single edge device to carry out quick adaptation with its local data. Specifically, to account for device heterogeneity and resource constraints, a global model is first trained via FL, where each device conducts multiple local updates only for its customized subnet. A subset of devices can be selected to upload updates for aggregation during each training round. Further, device scheduling is optimized to minimize the training loss of FL, subject to resource constraints, based on the carefully crafted reward function defined as the one-round progress of FL each device can provide. We examine the convergence behavior of FL for the general non-convex case. For semi-supervised model personalization, we use the FL-based model initialization as a teacher network to impute soft labels on unlabeled data, thereby addressing the insufficiency of labeled data. Experiments are conducted to evaluate the performance of the proposed algorithms.
Author Zhang, Junshan
Zhang, Zhaofeng
Yue, Sheng
Author_xml – sequence: 1
  givenname: Zhaofeng
  orcidid: 0000-0002-4285-670X
  surname: Zhang
  fullname: Zhang, Zhaofeng
  email: zzhan199@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Sheng
  orcidid: 0009-0001-3416-8181
  surname: Yue
  fullname: Yue, Sheng
  email: shaun.yue@hotmail.com
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Junshan
  orcidid: 0000-0002-3840-1753
  surname: Zhang
  fullname: Zhang, Junshan
  email: jazh@ucdavis.edu
  organization: College of Engineering, University of California, Davis, CA, USA
BookMark eNp9kM1PAjEQxRuDiYDePXho4nmxH7S03ggBJYFoBM-bbjtLSmCL7aLRv95FOBgPnmaSeb-Zea-DWlWoAKFrSnqUEn23nI96jDDe45xKqvQZalMhVEakJK1Dz2VGGecXqJPSmpBGogdt5Jbhw0SX8AuksI8WsnFZeuuhqvHYrQAPp_d4EsMWT8BBNDU4PAMTK1-tcB3wArY-W-x3EN99ambz4GCDnyGmUJmN_zK1D9UlOi_NJsHVqXbR62S8HD1ms6eH6Wg4yyzTrM4kpVb1nbCCFsoNjCLCUuL6JSu0KQvNNaOFJhJEORCCG0sL2UxVOSCFEU7zLro97t3F8LaHVOfrxlPzR8o54VwyovqsUZGjysaQUoQy30W_NfEzpyQ_ZJk3WeaHLPNTlg0i_yDW1z_W6mj85j_w5gh6APh1h4k-U4p_A1Zxgyw
CODEN ITMCCJ
CitedBy_id crossref_primary_10_1186_s13677_024_00700_1
crossref_primary_10_1109_JSAC_2023_3345397
Cites_doi 10.1109/tnnls.2022.3166101
10.1109/CVPR.2019.01152
10.1109/INFOCOM41043.2020.9155440
10.1109/72.80236
10.1109/INFOCOM41043.2020.9155272
10.1109/ICDCS47774.2020.00016
10.1609/aaai.v36i8.20825
10.1007/978-3-319-46128-1_50
10.1016/0893-6080(96)83696-3
10.1109/CVPR.2009.5206848
10.1109/JSAC.2022.3143259
10.1609/aaai.v35i6.16638
10.1109/CVPR.2004.383
10.1109/ICDCS47774.2020.00032
10.1109/dac18074.2021.9586241
10.1145/3466772.3467038
10.1109/JIOT.2020.2986803
10.1109/72.248452
10.23919/JCIN.2020.9055108
10.1109/TCAD.2020.2995813
10.1109/RTCSA.1999.811269
10.1109/twc.2020.3031503
10.1109/TWC.2020.3015671
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMC.2023.3316189
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1558-0660
EndPage 6115
ExternalDocumentID 10_1109_TMC_2023_3316189
10254288
Genre orig-research
GrantInformation_xml – fundername: CPSF
  grantid: 2023M731956
– fundername: 62302260
– fundername: NSFC
– fundername: National Science Foundation
  grantid: CNS-2203239; CNS-2203412; RINGS-2148253; CCSS-2203238
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-611c84d5c51b8d7a805c10d4f2b9afb93921b906e5f7553ac1b6d4f8f70ba5d93
IEDL.DBID RIE
ISSN 1536-1233
IngestDate Mon Jun 30 07:11:22 EDT 2025
Wed Oct 01 01:54:05 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Aug 27 02:17:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-611c84d5c51b8d7a805c10d4f2b9afb93921b906e5f7553ac1b6d4f8f70ba5d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4285-670X
0000-0002-3840-1753
0009-0001-3416-8181
PQID 3033620842
PQPubID 75730
PageCount 12
ParticipantIDs crossref_primary_10_1109_TMC_2023_3316189
ieee_primary_10254288
proquest_journals_3033620842
crossref_citationtrail_10_1109_TMC_2023_3316189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE transactions on mobile computing
PublicationTitleAbbrev TMC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Polyak (ref19) 1963; 3
Tan (ref34) 2022; 35
ref15
Krizhevsky (ref30) 2009
ref14
ref10
Chen (ref13) 2020
Finn (ref7)
ref17
McMahan (ref6) 2017
ref18
Dun (ref38) 2021
Nutini (ref23) 2017
Wei (ref42) 2020
ref50
Wang (ref46)
Zhang (ref32) 2021; 34
ref48
ref47
Lai (ref31)
Yuan (ref37) 2019
Wang (ref4) 2023
ref49
ref8
ref9
ref3
LeCun (ref29) 1998
ref5
Fallah (ref21) 2020
ref40
Hinton (ref12) 2015
Shamsian (ref33)
ref35
Xie (ref45) 2019
ref2
ref1
ref39
Nutini (ref24)
Grandvalet (ref41)
Lee (ref16)
ref26
ref20
Rapp (ref11) 2020
ref22
ref28
ref27
Lee (ref44)
Horvath (ref36)
Zhang (ref25) 2019
Sohn (ref43) 2020
References_xml – year: 2015
  ident: ref12
  article-title: Distilling the knowledge in a neural network
– ident: ref9
  doi: 10.1109/tnnls.2022.3166101
– ident: ref14
  doi: 10.1109/CVPR.2019.01152
– year: 2017
  ident: ref23
  article-title: Lets make block coordinate descent go fast: Faster greedy rules, message-passing, active-set complexity, and superlinear convergence
– ident: ref2
  doi: 10.1109/INFOCOM41043.2020.9155440
– ident: ref49
  doi: 10.1109/72.80236
– year: 2019
  ident: ref45
  article-title: Unsupervised data augmentation for consistency training
– ident: ref17
  doi: 10.1109/INFOCOM41043.2020.9155272
– year: 2021
  ident: ref38
  article-title: ResIST: Layer-wise decomposition of resnets for distributed training
– ident: ref3
  doi: 10.1109/ICDCS47774.2020.00016
– start-page: 19
  volume-title: Proc. 15th USENIX Symp. Operating Syst. Des. Implementation
  ident: ref31
  article-title: Oort: Efficient federated learning via guided participant selection
– ident: ref8
  doi: 10.1609/aaai.v36i8.20825
– ident: ref26
  doi: 10.1007/978-3-319-46128-1_50
– start-page: 12876
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: FjORD: Fair and accurate federated learning under heterogeneous targets with ordered dropout
– start-page: 1273
  year: 2017
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artif. Intell. Statist.
– ident: ref48
  doi: 10.1016/0893-6080(96)83696-3
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– volume-title: Proc. Workshop Challenges Representation Learn.
  ident: ref44
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– start-page: 10738
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref46
  article-title: Self-tuning for data-efficient deep learning
– ident: ref35
  doi: 10.1109/CVPR.2009.5206848
– ident: ref27
  doi: 10.1109/JSAC.2022.3143259
– ident: ref5
  doi: 10.1609/aaai.v35i6.16638
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref16
  article-title: SNIP: Single-shot network pruning based on connection sensitivity
– ident: ref28
  doi: 10.1109/CVPR.2004.383
– start-page: 1632
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Coordinate descent converges faster with the gauss-southwell rule than random selection
– ident: ref22
  doi: 10.1109/ICDCS47774.2020.00032
– year: 1998
  ident: ref29
  article-title: MNIST handwritten digit database
– ident: ref10
  doi: 10.1109/dac18074.2021.9586241
– ident: ref20
  doi: 10.1145/3466772.3467038
– start-page: 9489
  volume-title: Proc. Int. Conf. on Mach. Learn.
  ident: ref33
  article-title: Personalized federated learning using hypernetworks
– ident: ref50
  doi: 10.1109/JIOT.2020.2986803
– ident: ref47
  doi: 10.1109/72.248452
– year: 2020
  ident: ref43
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
– ident: ref1
  doi: 10.23919/JCIN.2020.9055108
– year: 2009
  ident: ref30
  article-title: Learning multiple layers of features from tiny images
– volume: 3
  start-page: 643
  issue: 4
  year: 1963
  ident: ref19
  article-title: Gradient methods for minimizing functionals
  publication-title: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
– ident: ref15
  doi: 10.1109/TCAD.2020.2995813
– volume-title: Proc. NeurIPS
  ident: ref41
  article-title: Semi-supervised learning by entropy minimization
– year: 2023
  ident: ref4
  article-title: Warm-start actor-critic: From approximation error to sub-optimality gap
– year: 2020
  ident: ref13
  article-title: Big self-supervised models are strong semi-supervised learners
– year: 2019
  ident: ref25
  article-title: Why gradient clipping accelerates training: A theoretical justification for adaptivity
– ident: ref18
  doi: 10.1109/RTCSA.1999.811269
– ident: ref39
  doi: 10.1109/twc.2020.3031503
– volume: 35
  start-page: 19332
  year: 2022
  ident: ref34
  article-title: Federated learning from pre-trained models: A contrastive learning approach
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: ref42
  article-title: Theoretical analysis of self-training with deep networks on unlabeled data
– ident: ref40
  doi: 10.1109/TWC.2020.3015671
– volume: 34
  start-page: 10092
  year: 2021
  ident: ref32
  article-title: Parameterized knowledge transfer for personalized federated learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: ref37
  article-title: Distributed learning of deep neural networks using independent subnet training
– year: 2020
  ident: ref21
  article-title: Personalized federated learning: A meta-learning approach
– year: 2020
  ident: ref11
  article-title: Distributed learning on heterogeneous resource-constrained devices
SSID ssj0018997
Score 1.3720229
Snippet A central question in edge intelligence is "how can an edge device learn its local model with limited data and constrained computing capacity?" In this study,...
A central question in edge intelligence is “how can an edge device learn its local model with limited data and constrained computing capacity?” In this study,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6104
SubjectTerms Adaptation models
Algorithms
Computational modeling
Constraint modelling
Data models
Device heterogeneity
edge intelligence
Federated learning
Heterogeneity
Internet of Things
Machine learning
Performance evaluation
semi-supervised learning
Servers
Training
Title Towards Resource-Efficient Edge AI: From Federated Learning to Semi-Supervised Model Personalization
URI https://ieeexplore.ieee.org/document/10254288
https://www.proquest.com/docview/3033620842
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ0_zY-J0Sg5ePLRrm6ZNvMnYmMKGsA12K81Hh7gvtu7iX-9L2g4_ULwV0oTAL8l7L3nv90PoTkmVCi4kLF6fOEZ42xFhFDk89aWhw2JKmtrh4SgaTMPnGZ2Vxeq2FkZrbZPPtGs-7Vu-Wsu9uSqDHQ7hTMBYDdViFhXFWocnAwgc4oIc1QjLEFK9SXq8Mxl2XSMT7hJi-OH5FxtkRVV-nMTWvPQbaFRNrMgqeXP3uXDl-zfOxn_P_AQ1KuJo_FgsjVN0pFdnqFGpOOByU58jNbGZsztc3eQ7PUsrAQPinprDCE8PuL9dL3HfEE-Ab6pwyco6x_kaj_Xy1RnvN-bQ2UGbUVdb4JfKyS_KPJto2u9NugOn1F5wZMCDHCJKX7JQUUl9wVScMo9K31NhFgieZoKDW-UL7kWaZjGlJJW-iKCVZbEnUqo4uUD11XqlLxFmaUzAMSAqojLUTKUQ0wWmBDcmMtNEtVCnQiORJTG50cdYJDZA8XgC-CUGv6TEr4XuDz02BSnHH_82DRyf_iuQaKF2hXhSbttdAvYcDLrHwuDql27X6BhGD4uUxzaq59u9vgG3JBe3djl-ALel3Vg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED60zpBObl6IEzfl0CWDFEkkJbJbEdhwGtsIYBvwJogPBUUTO4jlJb8-R0oK0hQpugngQwSO5N3x7r4P4JvRplBSady8MQ0c8XagWJoGsoi1g8MSRrva4ck0HS3YzyVfNsXqvhbGWuuTz2zoPn0s36z11j2V4QlHdyYR4iPscMYYr8u1XoIG6DpkNTyqo5ahtI1KRvJiPrkMHVF4SKlDiJd_aCFPq_LXXewVzLAL03ZpdV7J73BbqVA_vUFt_O-1f4ZuCx1NftSbYw8-2NU-dFseB9Ic6wMwc587uyHtW34w8MASOCEZmFuc4eo7GT6u78nQQU-gdWpIg8t6S6o1mdn7X8Fs--CunQ22OX61O3LTmvl1oechLIaD-eUoaNgXAp3IpEKfMtaCGa55rITJChFxHUeGlYmSRakkGlaxklFqeZlxTgsdqxRbRZlFquBG0iPorNYrewxEFBlF04CalGtmhSnQq0tcEW5GdWmp6cFFK41cN9DkjiHjLvcuSiRzlF_u5Jc38uvB-cuIhxqW4x99D504XvWrJdGDfivxvDm4mxw1Oqr0SLDk5J1hX2F3NJ-M8_HV9PoUPuGfWJ0A2YdO9bi1X9BIqdSZ35rPeAXgpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Resource-Efficient+Edge+AI%3A+From+Federated+Learning+to+Semi-Supervised+Model+Personalization&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Zhang%2C+Zhaofeng&rft.au=Yue%2C+Sheng&rft.au=Zhang%2C+Junshan&rft.date=2024-05-01&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=23&rft.issue=5&rft.spage=6104&rft.epage=6115&rft_id=info:doi/10.1109%2FTMC.2023.3316189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMC_2023_3316189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon