Performance analysis of reinforcement learning algorithms on intelligent closed-loop control on fluid flow and convective heat transfer

This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by conside...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 35; no. 7
Main Author Aubry, Nadine
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.07.2023
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0158049

Cover

Abstract This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by considering the popularity, category, and advancement for guaranteeing the significance of the current study. The effectiveness and feasibility of all DRL algorithms are first demonstrated by studying a two-dimensional multi-heat-source cooling problem. Compared with the best manually optimized control, all DRL algorithms can find better control strategies that realize a further temperature reduction of 3–7 K. For problems with complex control objectives and environments, PPO (proximal policy optimization) shows an outstanding performance that accurately and dynamically constrains the oscillation of the solid temperature within 0.5 K around the target value, which is far beyond the capability of the manually optimized control. With the presented performance and the supplemented generalization test, the characteristic and specialty of the DRL algorithms are analyzed. The value-based methods have better training efficiency on simple cooling tasks with linear reward, while the policy-based methods show remarkable convergence on demanding tasks with nonlinear reward. Among the algorithms studied, the single-step PPO and prioritized experience replay deep Q-networks should be highlighted: the former has the advantage of considering multiple control targets and the latter obtains the best result in all generalization testing tasks. In addition, randomly resetting the environment is confirmed to be indispensable for the trained agent executing long-term control, which is strongly recommended to be included in follow-up studies.
AbstractList This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by considering the popularity, category, and advancement for guaranteeing the significance of the current study. The effectiveness and feasibility of all DRL algorithms are first demonstrated by studying a two-dimensional multi-heat-source cooling problem. Compared with the best manually optimized control, all DRL algorithms can find better control strategies that realize a further temperature reduction of 3–7 K. For problems with complex control objectives and environments, PPO (proximal policy optimization) shows an outstanding performance that accurately and dynamically constrains the oscillation of the solid temperature within 0.5 K around the target value, which is far beyond the capability of the manually optimized control. With the presented performance and the supplemented generalization test, the characteristic and specialty of the DRL algorithms are analyzed. The value-based methods have better training efficiency on simple cooling tasks with linear reward, while the policy-based methods show remarkable convergence on demanding tasks with nonlinear reward. Among the algorithms studied, the single-step PPO and prioritized experience replay deep Q-networks should be highlighted: the former has the advantage of considering multiple control targets and the latter obtains the best result in all generalization testing tasks. In addition, randomly resetting the environment is confirmed to be indispensable for the trained agent executing long-term control, which is strongly recommended to be included in follow-up studies.
Author Aubry, Nadine
Author_xml – sequence: 3
  givenname: Nadine
  surname: Aubry
  fullname: Aubry, Nadine
  organization: Department of Mechanical Engineering, Tufts University
BookMark eNp9kF9LwzAUxYNMcJs--A0CPinUpU2bJo8y_AcDfdDnkqa3W0aazCSb7BP4tW3ZfBHx5d4L53cPnDNBI-ssIHSZktuUMDorbklacJKLEzROCRdJyRgbDXdJEsZoeoYmIawJIVRkbIy-XsG3znfSKsDSSrMPOmDXYg_a9oKCDmzEBqS32i6xNEvndVx1PWSxthGM0csBUcYFaBLj3AYrZ6N3ZkBas9VNP91nb98Myg5U1DvAK5ARRy9taMGfo9NWmgAXxz1F7w_3b_OnZPHy-Dy_WyQqE1lMigIEI7UQCiRXJbAmFTUVTQuSNcAbxXtZFSWlkFMpGgZZDoTyOoOs5kDpFF0dfDfefWwhxGrttr7PHaqMU1HkgpO0p2YHSnkXgoe2UjrKqIdYUpsqJdXQdlVUx7b7j-tfHxuvO-n3f7I3Bzb8uP4DfwMpUJH2
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_5_0249539
crossref_primary_10_1063_5_0241809
crossref_primary_10_1063_5_0194264
crossref_primary_10_1063_5_0239718
Cites_doi 10.3390/electronics11152443
10.1016/j.expthermflusci.2022.110769
10.1063/5.0022222
10.1016/j.applthermaleng.2018.01.084
10.1016/j.cja.2021.07.027
10.1017/jfm.2015.686
10.1109/ACCESS.2019.2896880
10.1063/5.0152777
10.1063/1.5116415
10.1063/5.0134791
10.1016/j.jcp.2021.110317
10.1155/2023/8207527
10.1063/5.0100236
10.1007/s10462-022-10205-5
10.1017/jfm.2019.62
10.1016/j.icheatmasstransfer.2022.106592
10.1016/j.applthermaleng.2021.117604
10.1109/TKDE.2021.3130191
10.1016/j.tsep.2022.101569
10.3390/app122010554
10.1063/5.0128446
10.1063/5.0037371
10.3390/electronics10101216
10.1007/s10462-021-09997-9
10.1063/5.0143913
10.1016/j.applthermaleng.2022.119522
10.1177/0278364913495721
10.1016/j.ijheatmasstransfer.2022.123655
10.1016/j.applthermaleng.2022.119633
10.1063/5.0080922
10.1016/j.applthermaleng.2022.118552
10.1016/j.applthermaleng.2022.119917
10.1007/s00162-016-0392-y
10.1162/neco_a_00990
10.1145/3197517.3201334
10.1016/j.jcp.2020.110080
10.1016/j.ijheatmasstransfer.2022.123736
10.1007/s10846-017-0468-y
10.1063/5.0099699
10.1007/s42241-020-0026-0
10.1063/5.0006492
10.1073/pnas.1800923115
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0158049
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0158049
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201302
  funderid: 10.13039/501100004608
– fundername: The Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry and Information Technology. Grant No. CEPE2022016
– fundername: Supported by State Key Laboratory of Mechanics and Control for Aerospace Structures (Nanjing University of Aeronautics and Astronautics). Grant No. MCMS-E-0323Y01
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-55e960b99cea8c7e6d19b39dfea6de8dc8960c5733e43a9d6e24e038b2e2b8e33
ISSN 1070-6631
IngestDate Sun Jun 29 16:56:45 EDT 2025
Tue Jul 01 02:44:49 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Jun 21 00:10:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-55e960b99cea8c7e6d19b39dfea6de8dc8960c5733e43a9d6e24e038b2e2b8e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9746-0796
0000-0002-7412-7552
0000-0001-8949-1122
0000-0003-0400-6832
0000-0002-4281-6046
0000-0002-3875-8525
PQID 2839549801
PQPubID 2050667
PageCount 19
ParticipantIDs scitation_primary_10_1063_5_0158049
proquest_journals_2839549801
crossref_citationtrail_10_1063_5_0158049
crossref_primary_10_1063_5_0158049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-01
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Fang (c49) 2022
Zhao, Hung (c15) 2023
Yuan (c8) 2022
Wang, He, Hua, Chen, Wu, Zhou (c44) 2023
Ren, Hu, Tang (c33) 2020
Gui, Sun, Wen, Tao, Ye (c3) 2023
Wang, Mei, Aubry, Chen, Wu, Wu (c43) 2022
Singh, Kumar, Singh (c21) 2022
Rabault, Kuchta, Jensen, Réglade, Cerardi (c40) 2019
Ma, Tian, Pan, Ren, Manocha (c39) 2018
Ringstad, Banasiak, Ervik, Hafner (c16) 2021
Wang, Hua, Aubry, Chen, Wu, Cui (c48) 2022
Sikirica, Grbčić, Kranjčević (c13) 2023
Khosravi, Pabon, Koury, Machado (c14) 2018
Park, Ko, Huh, Kim (c4) 2021
Uc-Cetina, Navarro-Guerrero, Martin-Gonzalez, Weber, Wermter (c22) 2022
Kober, Bagnell, Peters (c19) 2013
Guéniat, Mathelin, Hussaini (c35) 2016
Gazzola, Tchieu, Alexeev, De Brauer, Koumoutsakos (c38) 2016
Hachem, Ghraieb, Viquerat, Larcher, Meliga (c45) 2021
Joshi, Gujarathi (c31) 2016
Tang, Rabault, Kuhnle, Wang, Wang (c41) 2020
Wang, Hua, Aubry, Zhou, Feng, Wu (c10) 2023
Aldaghi, Banejad, Kalani, Sardarabadi, Passandideh-Fard (c50) 2023
Zaitceva, Andrievsky (c6) 2022
Ren, Rabault, Tang (c42) 2021
Viquerat, Rabault, Kuhnle, Ghraieb, Larcher, Hachem (c55) 2021
Peng, Chen, Aubry, Chen, Wu (c7) 2020
Li (c25)
Nassif, Shahin, Attili, Azzeh, Shaalan (c2) 2019
Peng, Aubry, Hua, Chen, Wu, Chen (c11) 2023
Verma, Novati, Koumoutsakos (c37) 2018
Gao (c26) 2023
Rawat, Wang (c1) 2017
Li (c27) 2023
Peng, Wang, Chen, Chen, Wu, Aubry (c9) 2022
Polydoros, Nalpantidis (c20) 2017
He, Wang, Hua, Chen, Li, Wu (c28) 2023
Vignon, Rabault, Vinuesa (c30) 2023
Rabault, Kuhnle (c47) 2019
Li, Chang, Kong, Bao (c34) 2022
Chen, Wang, Yan, Hu, Noack (c29) 2023
Viquerat, Hachem, Meliga (c56) 2022
Hua, Yu, Zhao, Li, Wu, Wu (c12) 2023
(2023071911553019200_c38) 2016; 789
(2023071911553019200_c14) 2018; 133
(2023071911553019200_c1) 2017; 29
(2023071911553019200_c22) 2022; 56
(2023071911553019200_c46) 2020
(2023071911553019200_c15) 2023; 220
(2023071911553019200_c8) 2022; 12
(2023071911553019200_c16) 2021; 199
(2023071911553019200_c7) 2020; 32
(2023071911553019200_c18) 2016
(2023071911553019200_c19) 2013; 32
(2023071911553019200_c47) 2019; 31
(2023071911553019200_c31) 2016; 3
(2023071911553019200_c44) 2023; 202
2023071911553019200_c57
(2023071911553019200_c45) 2021; 436
2023071911553019200_c53
(2023071911553019200_c54) 2017
(2023071911553019200_c30) 2023; 35
(2023071911553019200_c11) 2023; 35
(2023071911553019200_c34) 2022; 35
(2023071911553019200_c51) 2016
(2023071911553019200_c41) 2020; 32
(2023071911553019200_c43) 2022; 34
(2023071911553019200_c20) 2017; 86
(2023071911553019200_c56) 2022; 34
(2023071911553019200_c9) 2022; 34
(2023071911553019200_c2) 2019; 7
(2023071911553019200_c10) 2023; 141
(2023071911553019200_c25); 2023
(2023071911553019200_c4) 2021; 10
(2023071911553019200_c27) 2023; 37
2023071911553019200_c24
(2023071911553019200_c17) 2018
(2023071911553019200_c48) 2022; 34
(2023071911553019200_c37) 2018; 115
(2023071911553019200_c26) 2023; 140
(2023071911553019200_c39) 2018; 37
(2023071911553019200_c12) 2023; 202
(2023071911553019200_c55) 2021; 428
(2023071911553019200_c40) 2019; 865
(2023071911553019200_c6) 2022; 11
(2023071911553019200_c23) 2013
(2023071911553019200_c28) 2023; 35
(2023071911553019200_c35) 2016; 30
(2023071911553019200_c50) 2023; 221
(2023071911553019200_c42) 2021; 33
2023071911553019200_c36
(2023071911553019200_c33) 2020; 32
(2023071911553019200_c21) 2022; 55
(2023071911553019200_c32) 2010
(2023071911553019200_c5) 2018
(2023071911553019200_c3) 2023; 35
(2023071911553019200_c29) 2023; 35
(2023071911553019200_c52) 2016
(2023071911553019200_c49) 2022; 212
(2023071911553019200_c13) 2023; 222
References_xml – start-page: 361
  year: 2018
  ident: c14
  article-title: Using machine learning algorithms to predict the pressure drop during evaporation of R407C
  publication-title: Appl. Therm. Eng.
– start-page: 117604
  year: 2021
  ident: c16
  article-title: Machine learning and CFD for mapping and optimization of CO ejectors
  publication-title: Appl. Therm. Eng.
– start-page: 2443
  year: 2022
  ident: c6
  article-title: Methods of intelligent control in mechatronics and robotic engineering: A survey
  publication-title: Electronics
– start-page: 053605
  year: 2020
  ident: c41
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
– start-page: 726
  year: 2016
  ident: c38
  article-title: Learning to school in the presence of hydrodynamic interactions
  publication-title: J. Fluid Mech.
– start-page: 123655
  year: 2023
  ident: c44
  article-title: Closed-loop forced heat convection control using deep reinforcement learning
  publication-title: Int. J. Heat Mass Transfer
– start-page: 055116
  year: 2023
  ident: c28
  article-title: Policy transfer of reinforcement learning-based flow control: From two-to three-dimensional environment
  publication-title: Phys. Fluids
– start-page: 087121
  year: 2022
  ident: c9
  article-title: Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network
  publication-title: Phys. Fluids
– start-page: 110080
  year: 2021
  ident: c55
  article-title: Direct shape optimization through deep reinforcement learning
  publication-title: J. Comput. Phys.
– start-page: 119633
  year: 2023
  ident: c15
  article-title: Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook
  publication-title: Appl. Therm. Eng.
– start-page: 119917
  year: 2023
  ident: c13
  article-title: Machine learning based surrogate models for microchannel heat sink optimization
  publication-title: Appl. Therm. Eng.
– start-page: 497
  year: 2016
  ident: c35
  article-title: A statistical learning strategy for closed-loop control of fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
– start-page: 153
  year: 2017
  ident: c20
  article-title: Survey of model-based reinforcement learning: Applications on robotics
  publication-title: J. Intell. Rob. Syst.
– start-page: 101569
  year: 2023
  ident: c27
  article-title: Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 119522
  year: 2023
  ident: c50
  article-title: An experimental study integrated with prediction using deep learning method for active/passive cooling of a modified heat sink
  publication-title: Appl. Therm. Eng.
– start-page: 1216
  year: 2021
  ident: c4
  article-title: Review on generative adversarial networks: Focusing on computer vision and its applications
  publication-title: Electronics
– start-page: 8207527
  ident: c25
  article-title: Numerical simulations for lithium-ion battery pack cooled by different minichannel cold plate arrangements
  publication-title: Int. J. Energy Res.
– start-page: 073609
  year: 2022
  ident: c48
  article-title: Accelerating and improving deep reinforcement learning-based active flow control: Transfer training of policy network
  publication-title: Phys. Fluids
– start-page: 031301
  year: 2023
  ident: c30
  article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
  publication-title: Phys. Fluids
– start-page: 123736
  year: 2023
  ident: c12
  article-title: Surrogate modeling of heat transfers of nanofluids in absorbent tubes with fins based on deep convolutional neural network
  publication-title: Int. J. Heat Mass Transfer
– start-page: 3313
  year: 2023
  ident: c3
  article-title: A review on generative adversarial networks: Algorithms, theory, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 110769
  year: 2023
  ident: c26
  article-title: Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 037121
  year: 2021
  ident: c42
  article-title: Applying deep reinforcement learning to active flow control in weakly turbulent conditions
  publication-title: Phys. Fluids
– start-page: 123602
  year: 2020
  ident: c7
  article-title: Time-variant prediction of flow over an airfoil using deep neural network
  publication-title: Phys. Fluids
– start-page: 023605
  year: 2023
  ident: c11
  article-title: Prediction of internal and external flow with sparse convolution neural network: A computationally effective reduced-order model
  publication-title: Phys. Fluids
– start-page: 110317
  year: 2021
  ident: c45
  article-title: Deep reinforcement learning for the control of conjugate heat transfer
  publication-title: J. Comput. Phys.
– start-page: 247
  year: 2020
  ident: c33
  article-title: Active flow control using machine learning: A brief review
  publication-title: J. Hydrodyn.
– start-page: 033606
  year: 2022
  ident: c43
  article-title: Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil
  publication-title: Phys. Fluids
– start-page: 1
  year: 2018
  ident: c39
  article-title: Fluid directed rigid body control using deep reinforcement learning
  publication-title: ACM Trans. Graphics
– start-page: 094105
  year: 2019
  ident: c47
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
– start-page: 118552
  year: 2022
  ident: c49
  article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system
  publication-title: Appl. Therm. Eng.
– start-page: 1543
  year: 2022
  ident: c22
  article-title: Survey on reinforcement learning for language processing
  publication-title: Artif. Intell. Rev.
– start-page: 19143
  year: 2019
  ident: c2
  article-title: Speech recognition using deep neural networks: A systematic review
  publication-title: IEEE Access
– start-page: 106592
  year: 2023
  ident: c10
  article-title: Fast optimization of multichip modules using deep learning coupled with Bayesian method
  publication-title: Int. Commun. Heat Mass Transfer
– start-page: 281
  year: 2019
  ident: c40
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
– start-page: 2352
  year: 2017
  ident: c1
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
– start-page: 1238
  year: 2013
  ident: c19
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Rob. Res.
– start-page: 111301
  year: 2022
  ident: c56
  article-title: A review on deep reinforcement learning for fluid mechanics: An update
  publication-title: Phys. Fluids
– start-page: 945
  year: 2022
  ident: c21
  article-title: Reinforcement learning in robotic applications: A comprehensive survey
  publication-title: Artif. Intell. Rev.
– start-page: 053610
  year: 2023
  ident: c29
  article-title: Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder
  publication-title: Phys. Fluids
– start-page: 1
  year: 2016
  ident: c31
  article-title: A review on active and passive flow control techniques
  publication-title: Int. J. Recent Technol. Mech. Electr. Eng.
– start-page: 10554
  year: 2022
  ident: c8
  article-title: Real-time prediction of transarterial drug delivery based on a deep convolutional neural network
  publication-title: Appl. Sci.
– start-page: 5849
  year: 2018
  ident: c37
  article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 14
  year: 2022
  ident: c34
  article-title: Recent progress of machine learning in flow modeling and active flow control
  publication-title: Chin. J. Aeronaut.
– volume: 11
  start-page: 2443
  year: 2022
  ident: 2023071911553019200_c6
  article-title: Methods of intelligent control in mechatronics and robotic engineering: A survey
  publication-title: Electronics
  doi: 10.3390/electronics11152443
– volume: 140
  start-page: 110769
  year: 2023
  ident: 2023071911553019200_c26
  article-title: Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2022.110769
– volume: 32
  start-page: 123602
  year: 2020
  ident: 2023071911553019200_c7
  article-title: Time-variant prediction of flow over an airfoil using deep neural network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0022222
– volume: 133
  start-page: 361
  year: 2018
  ident: 2023071911553019200_c14
  article-title: Using machine learning algorithms to predict the pressure drop during evaporation of R407C
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.084
– volume: 35
  start-page: 14
  year: 2022
  ident: 2023071911553019200_c34
  article-title: Recent progress of machine learning in flow modeling and active flow control
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2021.07.027
– volume: 789
  start-page: 726
  year: 2016
  ident: 2023071911553019200_c38
  article-title: Learning to school in the presence of hydrodynamic interactions
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.686
– start-page: 426
  year: 2016
  ident: 2023071911553019200_c18
  article-title: Deep reinforcement learning: An overview
– year: 2020
  ident: 2023071911553019200_c46
  article-title: Experimental study on application of distributed deep reinforcement learning to closed-loop flow separation control over an airfoil
– ident: 2023071911553019200_c57
– volume: 7
  start-page: 19143
  year: 2019
  ident: 2023071911553019200_c2
  article-title: Speech recognition using deep neural networks: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 35
  start-page: 053610
  year: 2023
  ident: 2023071911553019200_c29
  article-title: Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder
  publication-title: Phys. Fluids
  doi: 10.1063/5.0152777
– volume: 31
  start-page: 094105
  year: 2019
  ident: 2023071911553019200_c47
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5116415
– volume: 35
  start-page: 023605
  year: 2023
  ident: 2023071911553019200_c11
  article-title: Prediction of internal and external flow with sparse convolution neural network: A computationally effective reduced-order model
  publication-title: Phys. Fluids
  doi: 10.1063/5.0134791
– volume: 436
  start-page: 110317
  year: 2021
  ident: 2023071911553019200_c45
  article-title: Deep reinforcement learning for the control of conjugate heat transfer
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110317
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: 2023071911553019200_c17
– volume: 2023
  start-page: 8207527
  ident: 2023071911553019200_c25
  article-title: Numerical simulations for lithium-ion battery pack cooled by different minichannel cold plate arrangements
  publication-title: Int. J. Energy Res.
  doi: 10.1155/2023/8207527
– volume: 34
  start-page: 087121
  year: 2022
  ident: 2023071911553019200_c9
  article-title: Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0100236
– volume: 56
  start-page: 1543
  year: 2022
  ident: 2023071911553019200_c22
  article-title: Survey on reinforcement learning for language processing
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10205-5
– volume: 865
  start-page: 281
  year: 2019
  ident: 2023071911553019200_c40
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.62
– volume: 141
  start-page: 106592
  year: 2023
  ident: 2023071911553019200_c10
  article-title: Fast optimization of multichip modules using deep learning coupled with Bayesian method
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106592
– volume: 199
  start-page: 117604
  year: 2021
  ident: 2023071911553019200_c16
  article-title: Machine learning and CFD for mapping and optimization of CO2 ejectors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117604
– ident: 2023071911553019200_c53
– volume: 35
  start-page: 3313
  year: 2023
  ident: 2023071911553019200_c3
  article-title: A review on generative adversarial networks: Algorithms, theory, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3130191
– volume: 37
  start-page: 101569
  year: 2023
  ident: 2023071911553019200_c27
  article-title: Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2022.101569
– volume: 12
  start-page: 10554
  year: 2022
  ident: 2023071911553019200_c8
  article-title: Real-time prediction of transarterial drug delivery based on a deep convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app122010554
– start-page: 1995
  year: 2016
  ident: 2023071911553019200_c52
  article-title: Dueling network architectures for deep reinforcement learning
– volume: 34
  start-page: 111301
  year: 2022
  ident: 2023071911553019200_c56
  article-title: A review on deep reinforcement learning for fluid mechanics: An update
  publication-title: Phys. Fluids
  doi: 10.1063/5.0128446
– volume: 33
  start-page: 037121
  year: 2021
  ident: 2023071911553019200_c42
  article-title: Applying deep reinforcement learning to active flow control in weakly turbulent conditions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0037371
– volume: 10
  start-page: 1216
  year: 2021
  ident: 2023071911553019200_c4
  article-title: Review on generative adversarial networks: Focusing on computer vision and its applications
  publication-title: Electronics
  doi: 10.3390/electronics10101216
– volume: 55
  start-page: 945
  year: 2022
  ident: 2023071911553019200_c21
  article-title: Reinforcement learning in robotic applications: A comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09997-9
– ident: 2023071911553019200_c36
  article-title: Synchronised swimming of two fish
– year: 2016
  ident: 2023071911553019200_c51
  article-title: Deep reinforcement learning with double Q-learning
– volume: 35
  start-page: 031301
  year: 2023
  ident: 2023071911553019200_c30
  article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0143913
– volume: 221
  start-page: 119522
  year: 2023
  ident: 2023071911553019200_c50
  article-title: An experimental study integrated with prediction using deep learning method for active/passive cooling of a modified heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119522
– volume: 32
  start-page: 1238
  year: 2013
  ident: 2023071911553019200_c19
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364913495721
– volume: 202
  start-page: 123655
  year: 2023
  ident: 2023071911553019200_c44
  article-title: Closed-loop forced heat convection control using deep reinforcement learning
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2022.123655
– volume: 220
  start-page: 119633
  year: 2023
  ident: 2023071911553019200_c15
  article-title: Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119633
– year: 2010
  ident: 2023071911553019200_c32
  article-title: Active flow control: A review
– volume: 34
  start-page: 033606
  year: 2022
  ident: 2023071911553019200_c43
  article-title: Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil
  publication-title: Phys. Fluids
  doi: 10.1063/5.0080922
– volume: 212
  start-page: 118552
  year: 2022
  ident: 2023071911553019200_c49
  article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118552
– volume: 222
  start-page: 119917
  year: 2023
  ident: 2023071911553019200_c13
  article-title: Machine learning based surrogate models for microchannel heat sink optimization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119917
– volume: 30
  start-page: 497
  year: 2016
  ident: 2023071911553019200_c35
  article-title: A statistical learning strategy for closed-loop control of fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-016-0392-y
– volume: 29
  start-page: 2352
  year: 2017
  ident: 2023071911553019200_c1
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– year: 2013
  ident: 2023071911553019200_c23
  article-title: Playing Atari with deep reinforcement learning
– volume: 37
  start-page: 1
  year: 2018
  ident: 2023071911553019200_c39
  article-title: Fluid directed rigid body control using deep reinforcement learning
  publication-title: ACM Trans. Graphics
  doi: 10.1145/3197517.3201334
– ident: 2023071911553019200_c24
– volume: 428
  start-page: 110080
  year: 2021
  ident: 2023071911553019200_c55
  article-title: Direct shape optimization through deep reinforcement learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110080
– volume-title: Machine Learning in Control Systems: An Overview of the State of the Art
  year: 2018
  ident: 2023071911553019200_c5
– volume: 202
  start-page: 123736
  year: 2023
  ident: 2023071911553019200_c12
  article-title: Surrogate modeling of heat transfers of nanofluids in absorbent tubes with fins based on deep convolutional neural network
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2022.123736
– volume: 86
  start-page: 153
  year: 2017
  ident: 2023071911553019200_c20
  article-title: Survey of model-based reinforcement learning: Applications on robotics
  publication-title: J. Intell. Rob. Syst.
  doi: 10.1007/s10846-017-0468-y
– volume: 34
  start-page: 073609
  year: 2022
  ident: 2023071911553019200_c48
  article-title: Accelerating and improving deep reinforcement learning-based active flow control: Transfer training of policy network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0099699
– volume: 32
  start-page: 247
  year: 2020
  ident: 2023071911553019200_c33
  article-title: Active flow control using machine learning: A brief review
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0026-0
– volume: 32
  start-page: 053605
  year: 2020
  ident: 2023071911553019200_c41
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
  doi: 10.1063/5.0006492
– volume: 35
  start-page: 055116
  year: 2023
  ident: 2023071911553019200_c28
  article-title: Policy transfer of reinforcement learning-based flow control: From two-to three-dimensional environment
  publication-title: Phys. Fluids
  doi: 10.1063/5.0152777
– volume: 3
  start-page: 1
  year: 2016
  ident: 2023071911553019200_c31
  article-title: A review on active and passive flow control techniques
  publication-title: Int. J. Recent Technol. Mech. Electr. Eng.
– volume: 115
  start-page: 5849
  year: 2018
  ident: 2023071911553019200_c37
  article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800923115
– year: 2017
  ident: 2023071911553019200_c54
  article-title: Proximal policy optimization algorithms
SSID ssj0003926
Score 2.4449344
Snippet This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Closed loops
Convective heat transfer
Cooling
Deep learning
Feasibility studies
Feedback control
Fluid dynamics
Fluid flow
Heat
Machine learning
Optimization
Physics
Title Performance analysis of reinforcement learning algorithms on intelligent closed-loop control on fluid flow and convective heat transfer
URI http://dx.doi.org/10.1063/5.0158049
https://www.proquest.com/docview/2839549801
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABJ
  databaseName: American Institute of Physics
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: M71
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.scitation.org/
  providerName: American Institute of Physics
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE2IvXAZohYEsQAhp8mjt3Pw4waYJdQOJVupbFF86KoWktClI_AH-NsexnYtUEPASVYnjRD5fTr9jfz4HoZcQbQULTRVRlGckiMMxyWg8IhIin4SHsbClEy6vootZ8H4ezlutar27pBIn8sfOfSX_Y1U4B3Y1u2T_wbJNp3ACfoN94QgWhuNf2fhjT_XfZhdZ6zofqqyn_nxhiOvjLL8u18vq85d6iWDZJOOsjmVebrQieVmuGvG6kSDm26WCY_ndbX8rvln_aPhlZcpLAOl18l5HcGtFqazfor7bZoLiPOhOOWzF2rl25Zf13cQDZY1Itepo_bOir2pwT-l4VPApBGiNvVG7cwkncWTLrXg3bLOWOLjFO7070CkwicmzGiYjm-m0n0H76kN6PptM0unZfPpq9ZWY4mJmEd5VWrmJ9ig4_9EA7Z2-u5x8av6ygSRGVpxq39WnoIrYm-ZpfeLSRiO3gapY1USHmEzvoTsuosCnFh730Q1dHKC7LrrAzndvDtAtN2gP0M8ObrDHDS4XuIcb7HGDW9zgssAd3OAObrDDjWlSWx4b3ED3Cre4wQY32OPmIZqdn03fXhBXkINIymlFwlBDwCs4lzpLZKwjNeaCcbXQWaR0omQCl6XJsKkDlnEVaRroEUsE1VQkmrFHaFCUhT5EOGaCay2BHcUigLA1Ax4ropCpZKyzcSCG6LUf7dSPrymakqe1aiJiaZg6wwzR86bpyqZo2dXoyJssdV_wJgVqbVa5gaQN0YvGjL_v5PGfO3mC9tvv5AgNqvVWPwXKWolnDnC_ADMpnk4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+reinforcement+learning+algorithms+on+intelligent+closed-loop+control+on+fluid+flow+and+convective+heat+transfer&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Aubry%2C+Nadine&rft.date=2023-07-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=7&rft_id=info:doi/10.1063%2F5.0158049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon