Performance analysis of reinforcement learning algorithms on intelligent closed-loop control on fluid flow and convective heat transfer
This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by conside...
Saved in:
| Published in | Physics of fluids (1994) Vol. 35; no. 7 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-6631 1089-7666 |
| DOI | 10.1063/5.0158049 |
Cover
| Abstract | This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by considering the popularity, category, and advancement for guaranteeing the significance of the current study. The effectiveness and feasibility of all DRL algorithms are first demonstrated by studying a two-dimensional multi-heat-source cooling problem. Compared with the best manually optimized control, all DRL algorithms can find better control strategies that realize a further temperature reduction of 3–7 K. For problems with complex control objectives and environments, PPO (proximal policy optimization) shows an outstanding performance that accurately and dynamically constrains the oscillation of the solid temperature within 0.5 K around the target value, which is far beyond the capability of the manually optimized control. With the presented performance and the supplemented generalization test, the characteristic and specialty of the DRL algorithms are analyzed. The value-based methods have better training efficiency on simple cooling tasks with linear reward, while the policy-based methods show remarkable convergence on demanding tasks with nonlinear reward. Among the algorithms studied, the single-step PPO and prioritized experience replay deep Q-networks should be highlighted: the former has the advantage of considering multiple control targets and the latter obtains the best result in all generalization testing tasks. In addition, randomly resetting the environment is confirmed to be indispensable for the trained agent executing long-term control, which is strongly recommended to be included in follow-up studies. |
|---|---|
| AbstractList | This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer systems, providing credible guidance and evaluation on their characteristics and performance. The studied algorithms are selected by considering the popularity, category, and advancement for guaranteeing the significance of the current study. The effectiveness and feasibility of all DRL algorithms are first demonstrated by studying a two-dimensional multi-heat-source cooling problem. Compared with the best manually optimized control, all DRL algorithms can find better control strategies that realize a further temperature reduction of 3–7 K. For problems with complex control objectives and environments, PPO (proximal policy optimization) shows an outstanding performance that accurately and dynamically constrains the oscillation of the solid temperature within 0.5 K around the target value, which is far beyond the capability of the manually optimized control. With the presented performance and the supplemented generalization test, the characteristic and specialty of the DRL algorithms are analyzed. The value-based methods have better training efficiency on simple cooling tasks with linear reward, while the policy-based methods show remarkable convergence on demanding tasks with nonlinear reward. Among the algorithms studied, the single-step PPO and prioritized experience replay deep Q-networks should be highlighted: the former has the advantage of considering multiple control targets and the latter obtains the best result in all generalization testing tasks. In addition, randomly resetting the environment is confirmed to be indispensable for the trained agent executing long-term control, which is strongly recommended to be included in follow-up studies. |
| Author | Aubry, Nadine |
| Author_xml | – sequence: 3 givenname: Nadine surname: Aubry fullname: Aubry, Nadine organization: Department of Mechanical Engineering, Tufts University |
| BookMark | eNp9kF9LwzAUxYNMcJs--A0CPinUpU2bJo8y_AcDfdDnkqa3W0aazCSb7BP4tW3ZfBHx5d4L53cPnDNBI-ssIHSZktuUMDorbklacJKLEzROCRdJyRgbDXdJEsZoeoYmIawJIVRkbIy-XsG3znfSKsDSSrMPOmDXYg_a9oKCDmzEBqS32i6xNEvndVx1PWSxthGM0csBUcYFaBLj3AYrZ6N3ZkBas9VNP91nb98Myg5U1DvAK5ARRy9taMGfo9NWmgAXxz1F7w_3b_OnZPHy-Dy_WyQqE1lMigIEI7UQCiRXJbAmFTUVTQuSNcAbxXtZFSWlkFMpGgZZDoTyOoOs5kDpFF0dfDfefWwhxGrttr7PHaqMU1HkgpO0p2YHSnkXgoe2UjrKqIdYUpsqJdXQdlVUx7b7j-tfHxuvO-n3f7I3Bzb8uP4DfwMpUJH2 |
| CODEN | PHFLE6 |
| CitedBy_id | crossref_primary_10_1063_5_0249539 crossref_primary_10_1063_5_0241809 crossref_primary_10_1063_5_0194264 crossref_primary_10_1063_5_0239718 |
| Cites_doi | 10.3390/electronics11152443 10.1016/j.expthermflusci.2022.110769 10.1063/5.0022222 10.1016/j.applthermaleng.2018.01.084 10.1016/j.cja.2021.07.027 10.1017/jfm.2015.686 10.1109/ACCESS.2019.2896880 10.1063/5.0152777 10.1063/1.5116415 10.1063/5.0134791 10.1016/j.jcp.2021.110317 10.1155/2023/8207527 10.1063/5.0100236 10.1007/s10462-022-10205-5 10.1017/jfm.2019.62 10.1016/j.icheatmasstransfer.2022.106592 10.1016/j.applthermaleng.2021.117604 10.1109/TKDE.2021.3130191 10.1016/j.tsep.2022.101569 10.3390/app122010554 10.1063/5.0128446 10.1063/5.0037371 10.3390/electronics10101216 10.1007/s10462-021-09997-9 10.1063/5.0143913 10.1016/j.applthermaleng.2022.119522 10.1177/0278364913495721 10.1016/j.ijheatmasstransfer.2022.123655 10.1016/j.applthermaleng.2022.119633 10.1063/5.0080922 10.1016/j.applthermaleng.2022.118552 10.1016/j.applthermaleng.2022.119917 10.1007/s00162-016-0392-y 10.1162/neco_a_00990 10.1145/3197517.3201334 10.1016/j.jcp.2020.110080 10.1016/j.ijheatmasstransfer.2022.123736 10.1007/s10846-017-0468-y 10.1063/5.0099699 10.1007/s42241-020-0026-0 10.1063/5.0006492 10.1073/pnas.1800923115 |
| ContentType | Journal Article |
| Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
| DBID | AAYXX CITATION 8FD H8D L7M |
| DOI | 10.1063/5.0158049 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1089-7666 |
| ExternalDocumentID | 10_1063_5_0158049 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20201302 funderid: 10.13039/501100004608 – fundername: The Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry and Information Technology. Grant No. CEPE2022016 – fundername: Supported by State Key Laboratory of Mechanics and Control for Aerospace Structures (Nanjing University of Aeronautics and Astronautics). Grant No. MCMS-E-0323Y01 |
| GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
| ID | FETCH-LOGICAL-c292t-55e960b99cea8c7e6d19b39dfea6de8dc8960c5733e43a9d6e24e038b2e2b8e33 |
| ISSN | 1070-6631 |
| IngestDate | Sun Jun 29 16:56:45 EDT 2025 Tue Jul 01 02:44:49 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Jun 21 00:10:36 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Published under an exclusive license by AIP Publishing. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c292t-55e960b99cea8c7e6d19b39dfea6de8dc8960c5733e43a9d6e24e038b2e2b8e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9746-0796 0000-0002-7412-7552 0000-0001-8949-1122 0000-0003-0400-6832 0000-0002-4281-6046 0000-0002-3875-8525 |
| PQID | 2839549801 |
| PQPubID | 2050667 |
| PageCount | 19 |
| ParticipantIDs | scitation_primary_10_1063_5_0158049 proquest_journals_2839549801 crossref_citationtrail_10_1063_5_0158049 crossref_primary_10_1063_5_0158049 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230700 2023-07-01 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 20230700 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | Physics of fluids (1994) |
| PublicationYear | 2023 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Fang (c49) 2022 Zhao, Hung (c15) 2023 Yuan (c8) 2022 Wang, He, Hua, Chen, Wu, Zhou (c44) 2023 Ren, Hu, Tang (c33) 2020 Gui, Sun, Wen, Tao, Ye (c3) 2023 Wang, Mei, Aubry, Chen, Wu, Wu (c43) 2022 Singh, Kumar, Singh (c21) 2022 Rabault, Kuchta, Jensen, Réglade, Cerardi (c40) 2019 Ma, Tian, Pan, Ren, Manocha (c39) 2018 Ringstad, Banasiak, Ervik, Hafner (c16) 2021 Wang, Hua, Aubry, Chen, Wu, Cui (c48) 2022 Sikirica, Grbčić, Kranjčević (c13) 2023 Khosravi, Pabon, Koury, Machado (c14) 2018 Park, Ko, Huh, Kim (c4) 2021 Uc-Cetina, Navarro-Guerrero, Martin-Gonzalez, Weber, Wermter (c22) 2022 Kober, Bagnell, Peters (c19) 2013 Guéniat, Mathelin, Hussaini (c35) 2016 Gazzola, Tchieu, Alexeev, De Brauer, Koumoutsakos (c38) 2016 Hachem, Ghraieb, Viquerat, Larcher, Meliga (c45) 2021 Joshi, Gujarathi (c31) 2016 Tang, Rabault, Kuhnle, Wang, Wang (c41) 2020 Wang, Hua, Aubry, Zhou, Feng, Wu (c10) 2023 Aldaghi, Banejad, Kalani, Sardarabadi, Passandideh-Fard (c50) 2023 Zaitceva, Andrievsky (c6) 2022 Ren, Rabault, Tang (c42) 2021 Viquerat, Rabault, Kuhnle, Ghraieb, Larcher, Hachem (c55) 2021 Peng, Chen, Aubry, Chen, Wu (c7) 2020 Li (c25) Nassif, Shahin, Attili, Azzeh, Shaalan (c2) 2019 Peng, Aubry, Hua, Chen, Wu, Chen (c11) 2023 Verma, Novati, Koumoutsakos (c37) 2018 Gao (c26) 2023 Rawat, Wang (c1) 2017 Li (c27) 2023 Peng, Wang, Chen, Chen, Wu, Aubry (c9) 2022 Polydoros, Nalpantidis (c20) 2017 He, Wang, Hua, Chen, Li, Wu (c28) 2023 Vignon, Rabault, Vinuesa (c30) 2023 Rabault, Kuhnle (c47) 2019 Li, Chang, Kong, Bao (c34) 2022 Chen, Wang, Yan, Hu, Noack (c29) 2023 Viquerat, Hachem, Meliga (c56) 2022 Hua, Yu, Zhao, Li, Wu, Wu (c12) 2023 (2023071911553019200_c38) 2016; 789 (2023071911553019200_c14) 2018; 133 (2023071911553019200_c1) 2017; 29 (2023071911553019200_c22) 2022; 56 (2023071911553019200_c46) 2020 (2023071911553019200_c15) 2023; 220 (2023071911553019200_c8) 2022; 12 (2023071911553019200_c16) 2021; 199 (2023071911553019200_c7) 2020; 32 (2023071911553019200_c18) 2016 (2023071911553019200_c19) 2013; 32 (2023071911553019200_c47) 2019; 31 (2023071911553019200_c31) 2016; 3 (2023071911553019200_c44) 2023; 202 2023071911553019200_c57 (2023071911553019200_c45) 2021; 436 2023071911553019200_c53 (2023071911553019200_c54) 2017 (2023071911553019200_c30) 2023; 35 (2023071911553019200_c11) 2023; 35 (2023071911553019200_c34) 2022; 35 (2023071911553019200_c51) 2016 (2023071911553019200_c41) 2020; 32 (2023071911553019200_c43) 2022; 34 (2023071911553019200_c20) 2017; 86 (2023071911553019200_c56) 2022; 34 (2023071911553019200_c9) 2022; 34 (2023071911553019200_c2) 2019; 7 (2023071911553019200_c10) 2023; 141 (2023071911553019200_c25); 2023 (2023071911553019200_c4) 2021; 10 (2023071911553019200_c27) 2023; 37 2023071911553019200_c24 (2023071911553019200_c17) 2018 (2023071911553019200_c48) 2022; 34 (2023071911553019200_c37) 2018; 115 (2023071911553019200_c26) 2023; 140 (2023071911553019200_c39) 2018; 37 (2023071911553019200_c12) 2023; 202 (2023071911553019200_c55) 2021; 428 (2023071911553019200_c40) 2019; 865 (2023071911553019200_c6) 2022; 11 (2023071911553019200_c23) 2013 (2023071911553019200_c28) 2023; 35 (2023071911553019200_c35) 2016; 30 (2023071911553019200_c50) 2023; 221 (2023071911553019200_c42) 2021; 33 2023071911553019200_c36 (2023071911553019200_c33) 2020; 32 (2023071911553019200_c21) 2022; 55 (2023071911553019200_c32) 2010 (2023071911553019200_c5) 2018 (2023071911553019200_c3) 2023; 35 (2023071911553019200_c29) 2023; 35 (2023071911553019200_c52) 2016 (2023071911553019200_c49) 2022; 212 (2023071911553019200_c13) 2023; 222 |
| References_xml | – start-page: 361 year: 2018 ident: c14 article-title: Using machine learning algorithms to predict the pressure drop during evaporation of R407C publication-title: Appl. Therm. Eng. – start-page: 117604 year: 2021 ident: c16 article-title: Machine learning and CFD for mapping and optimization of CO ejectors publication-title: Appl. Therm. Eng. – start-page: 2443 year: 2022 ident: c6 article-title: Methods of intelligent control in mechatronics and robotic engineering: A survey publication-title: Electronics – start-page: 053605 year: 2020 ident: c41 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids – start-page: 726 year: 2016 ident: c38 article-title: Learning to school in the presence of hydrodynamic interactions publication-title: J. Fluid Mech. – start-page: 123655 year: 2023 ident: c44 article-title: Closed-loop forced heat convection control using deep reinforcement learning publication-title: Int. J. Heat Mass Transfer – start-page: 055116 year: 2023 ident: c28 article-title: Policy transfer of reinforcement learning-based flow control: From two-to three-dimensional environment publication-title: Phys. Fluids – start-page: 087121 year: 2022 ident: c9 article-title: Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network publication-title: Phys. Fluids – start-page: 110080 year: 2021 ident: c55 article-title: Direct shape optimization through deep reinforcement learning publication-title: J. Comput. Phys. – start-page: 119633 year: 2023 ident: c15 article-title: Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook publication-title: Appl. Therm. Eng. – start-page: 119917 year: 2023 ident: c13 article-title: Machine learning based surrogate models for microchannel heat sink optimization publication-title: Appl. Therm. Eng. – start-page: 497 year: 2016 ident: c35 article-title: A statistical learning strategy for closed-loop control of fluid flows publication-title: Theor. Comput. Fluid Dyn. – start-page: 153 year: 2017 ident: c20 article-title: Survey of model-based reinforcement learning: Applications on robotics publication-title: J. Intell. Rob. Syst. – start-page: 101569 year: 2023 ident: c27 article-title: Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions publication-title: Therm. Sci. Eng. Prog. – start-page: 119522 year: 2023 ident: c50 article-title: An experimental study integrated with prediction using deep learning method for active/passive cooling of a modified heat sink publication-title: Appl. Therm. Eng. – start-page: 1216 year: 2021 ident: c4 article-title: Review on generative adversarial networks: Focusing on computer vision and its applications publication-title: Electronics – start-page: 8207527 ident: c25 article-title: Numerical simulations for lithium-ion battery pack cooled by different minichannel cold plate arrangements publication-title: Int. J. Energy Res. – start-page: 073609 year: 2022 ident: c48 article-title: Accelerating and improving deep reinforcement learning-based active flow control: Transfer training of policy network publication-title: Phys. Fluids – start-page: 031301 year: 2023 ident: c30 article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions publication-title: Phys. Fluids – start-page: 123736 year: 2023 ident: c12 article-title: Surrogate modeling of heat transfers of nanofluids in absorbent tubes with fins based on deep convolutional neural network publication-title: Int. J. Heat Mass Transfer – start-page: 3313 year: 2023 ident: c3 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 110769 year: 2023 ident: c26 article-title: Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling publication-title: Exp. Therm. Fluid Sci. – start-page: 037121 year: 2021 ident: c42 article-title: Applying deep reinforcement learning to active flow control in weakly turbulent conditions publication-title: Phys. Fluids – start-page: 123602 year: 2020 ident: c7 article-title: Time-variant prediction of flow over an airfoil using deep neural network publication-title: Phys. Fluids – start-page: 023605 year: 2023 ident: c11 article-title: Prediction of internal and external flow with sparse convolution neural network: A computationally effective reduced-order model publication-title: Phys. Fluids – start-page: 110317 year: 2021 ident: c45 article-title: Deep reinforcement learning for the control of conjugate heat transfer publication-title: J. Comput. Phys. – start-page: 247 year: 2020 ident: c33 article-title: Active flow control using machine learning: A brief review publication-title: J. Hydrodyn. – start-page: 033606 year: 2022 ident: c43 article-title: Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil publication-title: Phys. Fluids – start-page: 1 year: 2018 ident: c39 article-title: Fluid directed rigid body control using deep reinforcement learning publication-title: ACM Trans. Graphics – start-page: 094105 year: 2019 ident: c47 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids – start-page: 118552 year: 2022 ident: c49 article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system publication-title: Appl. Therm. Eng. – start-page: 1543 year: 2022 ident: c22 article-title: Survey on reinforcement learning for language processing publication-title: Artif. Intell. Rev. – start-page: 19143 year: 2019 ident: c2 article-title: Speech recognition using deep neural networks: A systematic review publication-title: IEEE Access – start-page: 106592 year: 2023 ident: c10 article-title: Fast optimization of multichip modules using deep learning coupled with Bayesian method publication-title: Int. Commun. Heat Mass Transfer – start-page: 281 year: 2019 ident: c40 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. – start-page: 2352 year: 2017 ident: c1 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. – start-page: 1238 year: 2013 ident: c19 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Rob. Res. – start-page: 111301 year: 2022 ident: c56 article-title: A review on deep reinforcement learning for fluid mechanics: An update publication-title: Phys. Fluids – start-page: 945 year: 2022 ident: c21 article-title: Reinforcement learning in robotic applications: A comprehensive survey publication-title: Artif. Intell. Rev. – start-page: 053610 year: 2023 ident: c29 article-title: Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder publication-title: Phys. Fluids – start-page: 1 year: 2016 ident: c31 article-title: A review on active and passive flow control techniques publication-title: Int. J. Recent Technol. Mech. Electr. Eng. – start-page: 10554 year: 2022 ident: c8 article-title: Real-time prediction of transarterial drug delivery based on a deep convolutional neural network publication-title: Appl. Sci. – start-page: 5849 year: 2018 ident: c37 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 14 year: 2022 ident: c34 article-title: Recent progress of machine learning in flow modeling and active flow control publication-title: Chin. J. Aeronaut. – volume: 11 start-page: 2443 year: 2022 ident: 2023071911553019200_c6 article-title: Methods of intelligent control in mechatronics and robotic engineering: A survey publication-title: Electronics doi: 10.3390/electronics11152443 – volume: 140 start-page: 110769 year: 2023 ident: 2023071911553019200_c26 article-title: Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2022.110769 – volume: 32 start-page: 123602 year: 2020 ident: 2023071911553019200_c7 article-title: Time-variant prediction of flow over an airfoil using deep neural network publication-title: Phys. Fluids doi: 10.1063/5.0022222 – volume: 133 start-page: 361 year: 2018 ident: 2023071911553019200_c14 article-title: Using machine learning algorithms to predict the pressure drop during evaporation of R407C publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.084 – volume: 35 start-page: 14 year: 2022 ident: 2023071911553019200_c34 article-title: Recent progress of machine learning in flow modeling and active flow control publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.07.027 – volume: 789 start-page: 726 year: 2016 ident: 2023071911553019200_c38 article-title: Learning to school in the presence of hydrodynamic interactions publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.686 – start-page: 426 year: 2016 ident: 2023071911553019200_c18 article-title: Deep reinforcement learning: An overview – year: 2020 ident: 2023071911553019200_c46 article-title: Experimental study on application of distributed deep reinforcement learning to closed-loop flow separation control over an airfoil – ident: 2023071911553019200_c57 – volume: 7 start-page: 19143 year: 2019 ident: 2023071911553019200_c2 article-title: Speech recognition using deep neural networks: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896880 – volume: 35 start-page: 053610 year: 2023 ident: 2023071911553019200_c29 article-title: Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder publication-title: Phys. Fluids doi: 10.1063/5.0152777 – volume: 31 start-page: 094105 year: 2019 ident: 2023071911553019200_c47 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids doi: 10.1063/1.5116415 – volume: 35 start-page: 023605 year: 2023 ident: 2023071911553019200_c11 article-title: Prediction of internal and external flow with sparse convolution neural network: A computationally effective reduced-order model publication-title: Phys. Fluids doi: 10.1063/5.0134791 – volume: 436 start-page: 110317 year: 2021 ident: 2023071911553019200_c45 article-title: Deep reinforcement learning for the control of conjugate heat transfer publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110317 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: 2023071911553019200_c17 – volume: 2023 start-page: 8207527 ident: 2023071911553019200_c25 article-title: Numerical simulations for lithium-ion battery pack cooled by different minichannel cold plate arrangements publication-title: Int. J. Energy Res. doi: 10.1155/2023/8207527 – volume: 34 start-page: 087121 year: 2022 ident: 2023071911553019200_c9 article-title: Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network publication-title: Phys. Fluids doi: 10.1063/5.0100236 – volume: 56 start-page: 1543 year: 2022 ident: 2023071911553019200_c22 article-title: Survey on reinforcement learning for language processing publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10205-5 – volume: 865 start-page: 281 year: 2019 ident: 2023071911553019200_c40 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.62 – volume: 141 start-page: 106592 year: 2023 ident: 2023071911553019200_c10 article-title: Fast optimization of multichip modules using deep learning coupled with Bayesian method publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106592 – volume: 199 start-page: 117604 year: 2021 ident: 2023071911553019200_c16 article-title: Machine learning and CFD for mapping and optimization of CO2 ejectors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117604 – ident: 2023071911553019200_c53 – volume: 35 start-page: 3313 year: 2023 ident: 2023071911553019200_c3 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3130191 – volume: 37 start-page: 101569 year: 2023 ident: 2023071911553019200_c27 article-title: Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2022.101569 – volume: 12 start-page: 10554 year: 2022 ident: 2023071911553019200_c8 article-title: Real-time prediction of transarterial drug delivery based on a deep convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app122010554 – start-page: 1995 year: 2016 ident: 2023071911553019200_c52 article-title: Dueling network architectures for deep reinforcement learning – volume: 34 start-page: 111301 year: 2022 ident: 2023071911553019200_c56 article-title: A review on deep reinforcement learning for fluid mechanics: An update publication-title: Phys. Fluids doi: 10.1063/5.0128446 – volume: 33 start-page: 037121 year: 2021 ident: 2023071911553019200_c42 article-title: Applying deep reinforcement learning to active flow control in weakly turbulent conditions publication-title: Phys. Fluids doi: 10.1063/5.0037371 – volume: 10 start-page: 1216 year: 2021 ident: 2023071911553019200_c4 article-title: Review on generative adversarial networks: Focusing on computer vision and its applications publication-title: Electronics doi: 10.3390/electronics10101216 – volume: 55 start-page: 945 year: 2022 ident: 2023071911553019200_c21 article-title: Reinforcement learning in robotic applications: A comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09997-9 – ident: 2023071911553019200_c36 article-title: Synchronised swimming of two fish – year: 2016 ident: 2023071911553019200_c51 article-title: Deep reinforcement learning with double Q-learning – volume: 35 start-page: 031301 year: 2023 ident: 2023071911553019200_c30 article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions publication-title: Phys. Fluids doi: 10.1063/5.0143913 – volume: 221 start-page: 119522 year: 2023 ident: 2023071911553019200_c50 article-title: An experimental study integrated with prediction using deep learning method for active/passive cooling of a modified heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119522 – volume: 32 start-page: 1238 year: 2013 ident: 2023071911553019200_c19 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Rob. Res. doi: 10.1177/0278364913495721 – volume: 202 start-page: 123655 year: 2023 ident: 2023071911553019200_c44 article-title: Closed-loop forced heat convection control using deep reinforcement learning publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2022.123655 – volume: 220 start-page: 119633 year: 2023 ident: 2023071911553019200_c15 article-title: Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119633 – year: 2010 ident: 2023071911553019200_c32 article-title: Active flow control: A review – volume: 34 start-page: 033606 year: 2022 ident: 2023071911553019200_c43 article-title: Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil publication-title: Phys. Fluids doi: 10.1063/5.0080922 – volume: 212 start-page: 118552 year: 2022 ident: 2023071911553019200_c49 article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118552 – volume: 222 start-page: 119917 year: 2023 ident: 2023071911553019200_c13 article-title: Machine learning based surrogate models for microchannel heat sink optimization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119917 – volume: 30 start-page: 497 year: 2016 ident: 2023071911553019200_c35 article-title: A statistical learning strategy for closed-loop control of fluid flows publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-016-0392-y – volume: 29 start-page: 2352 year: 2017 ident: 2023071911553019200_c1 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – year: 2013 ident: 2023071911553019200_c23 article-title: Playing Atari with deep reinforcement learning – volume: 37 start-page: 1 year: 2018 ident: 2023071911553019200_c39 article-title: Fluid directed rigid body control using deep reinforcement learning publication-title: ACM Trans. Graphics doi: 10.1145/3197517.3201334 – ident: 2023071911553019200_c24 – volume: 428 start-page: 110080 year: 2021 ident: 2023071911553019200_c55 article-title: Direct shape optimization through deep reinforcement learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110080 – volume-title: Machine Learning in Control Systems: An Overview of the State of the Art year: 2018 ident: 2023071911553019200_c5 – volume: 202 start-page: 123736 year: 2023 ident: 2023071911553019200_c12 article-title: Surrogate modeling of heat transfers of nanofluids in absorbent tubes with fins based on deep convolutional neural network publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2022.123736 – volume: 86 start-page: 153 year: 2017 ident: 2023071911553019200_c20 article-title: Survey of model-based reinforcement learning: Applications on robotics publication-title: J. Intell. Rob. Syst. doi: 10.1007/s10846-017-0468-y – volume: 34 start-page: 073609 year: 2022 ident: 2023071911553019200_c48 article-title: Accelerating and improving deep reinforcement learning-based active flow control: Transfer training of policy network publication-title: Phys. Fluids doi: 10.1063/5.0099699 – volume: 32 start-page: 247 year: 2020 ident: 2023071911553019200_c33 article-title: Active flow control using machine learning: A brief review publication-title: J. Hydrodyn. doi: 10.1007/s42241-020-0026-0 – volume: 32 start-page: 053605 year: 2020 ident: 2023071911553019200_c41 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids doi: 10.1063/5.0006492 – volume: 35 start-page: 055116 year: 2023 ident: 2023071911553019200_c28 article-title: Policy transfer of reinforcement learning-based flow control: From two-to three-dimensional environment publication-title: Phys. Fluids doi: 10.1063/5.0152777 – volume: 3 start-page: 1 year: 2016 ident: 2023071911553019200_c31 article-title: A review on active and passive flow control techniques publication-title: Int. J. Recent Technol. Mech. Electr. Eng. – volume: 115 start-page: 5849 year: 2018 ident: 2023071911553019200_c37 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800923115 – year: 2017 ident: 2023071911553019200_c54 article-title: Proximal policy optimization algorithms |
| SSID | ssj0003926 |
| Score | 2.4449344 |
| Snippet | This paper investigates the performance of several most popular deep reinforcement learning (DRL) algorithms applied to fluid flow and convective heat transfer... |
| SourceID | proquest crossref scitation |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Closed loops Convective heat transfer Cooling Deep learning Feasibility studies Feedback control Fluid dynamics Fluid flow Heat Machine learning Optimization Physics |
| Title | Performance analysis of reinforcement learning algorithms on intelligent closed-loop control on fluid flow and convective heat transfer |
| URI | http://dx.doi.org/10.1063/5.0158049 https://www.proquest.com/docview/2839549801 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABJ databaseName: American Institute of Physics customDbUrl: eissn: 1089-7666 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: M71 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.scitation.org/ providerName: American Institute of Physics – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7666 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE2IvXAZohYEsQAhp8mjt3Pw4waYJdQOJVupbFF86KoWktClI_AH-NsexnYtUEPASVYnjRD5fTr9jfz4HoZcQbQULTRVRlGckiMMxyWg8IhIin4SHsbClEy6vootZ8H4ezlutar27pBIn8sfOfSX_Y1U4B3Y1u2T_wbJNp3ACfoN94QgWhuNf2fhjT_XfZhdZ6zofqqyn_nxhiOvjLL8u18vq85d6iWDZJOOsjmVebrQieVmuGvG6kSDm26WCY_ndbX8rvln_aPhlZcpLAOl18l5HcGtFqazfor7bZoLiPOhOOWzF2rl25Zf13cQDZY1Itepo_bOir2pwT-l4VPApBGiNvVG7cwkncWTLrXg3bLOWOLjFO7070CkwicmzGiYjm-m0n0H76kN6PptM0unZfPpq9ZWY4mJmEd5VWrmJ9ig4_9EA7Z2-u5x8av6ygSRGVpxq39WnoIrYm-ZpfeLSRiO3gapY1USHmEzvoTsuosCnFh730Q1dHKC7LrrAzndvDtAtN2gP0M8ObrDHDS4XuIcb7HGDW9zgssAd3OAObrDDjWlSWx4b3ED3Cre4wQY32OPmIZqdn03fXhBXkINIymlFwlBDwCs4lzpLZKwjNeaCcbXQWaR0omQCl6XJsKkDlnEVaRroEUsE1VQkmrFHaFCUhT5EOGaCay2BHcUigLA1Ax4ropCpZKyzcSCG6LUf7dSPrymakqe1aiJiaZg6wwzR86bpyqZo2dXoyJssdV_wJgVqbVa5gaQN0YvGjL_v5PGfO3mC9tvv5AgNqvVWPwXKWolnDnC_ADMpnk4 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+reinforcement+learning+algorithms+on+intelligent+closed-loop+control+on+fluid+flow+and+convective+heat+transfer&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Aubry%2C+Nadine&rft.date=2023-07-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=7&rft_id=info:doi/10.1063%2F5.0158049&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |