Identifying Early Stator Fault Severity in DFIGs based on Adaptive Feature Mode Decomposition and Multiscale Complex Component Current Trajectories

Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; p. 1
Main Authors Zhao, Shouwang, Chen, Yu, Liang, Feng, Zhang, Sichao, Shahbaz, Nadeem, Wang, Shuang, Zhao, Yong, Deng, Wei, Cheng, Yonghong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3443347

Cover

Abstract Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This paper proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filter out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. Additionally, the negative sequence current of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100 kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults.
AbstractList Early fault detection is critical for ensuring reliable operation in wind power generation systems employing doubly fed induction generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This article proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences, and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filtering out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern (SDP) of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. In addition, the NSC of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100-kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults.
Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This paper proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filter out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. Additionally, the negative sequence current of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100 kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults.
Author Cheng, Yonghong
Liang, Feng
Zhang, Sichao
Shahbaz, Nadeem
Zhao, Yong
Wang, Shuang
Zhao, Shouwang
Chen, Yu
Deng, Wei
Author_xml – sequence: 1
  givenname: Shouwang
  orcidid: 0000-0001-7126-4773
  surname: Zhao
  fullname: Zhao, Shouwang
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0001-9928-6130
  surname: Chen
  fullname: Chen, Yu
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Feng
  orcidid: 0000-0003-0126-6065
  surname: Liang
  fullname: Liang, Feng
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Sichao
  orcidid: 0000-0001-9648-7420
  surname: Zhang
  fullname: Zhang, Sichao
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Nadeem
  orcidid: 0000-0003-1654-7222
  surname: Shahbaz
  fullname: Shahbaz, Nadeem
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Shuang
  orcidid: 0000-0003-3391-7651
  surname: Wang
  fullname: Wang, Shuang
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 7
  givenname: Yong
  orcidid: 0000-0002-4896-1324
  surname: Zhao
  fullname: Zhao, Yong
  organization: Xi'an Thermal Power Research Institute CO., Ltd, Xi'an, Shaanxi, China
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-8693-5322
  surname: Deng
  fullname: Deng, Wei
  organization: Xi'an Thermal Power Research Institute CO., Ltd, Xi'an, Shaanxi, China
– sequence: 9
  givenname: Yonghong
  orcidid: 0000-0003-2528-6423
  surname: Cheng
  fullname: Cheng, Yonghong
  organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
BookMark eNp9UT1v2zAQJYoUqJN279CBQGe5pI6ixDFw4tRAjA5xZ-FEnQoaCuWSVFD_jvzh0nWGIkOmN9z7uLt3yS785Imxz1IspRTm226zXZaiVEtQCkDV79hCVlVdGK3LC7YQQjaFUZX-wC5j3Ashaq3qBXve9OSTG47O_-K3GMYjf0iYpsDXOI-JP9ATBZeO3Hl-s97cRd5hpJ5Pnl_3eEjuifiaMM2B-Hbqid-QnR4PU3TJZQ76nm-zj4sWR-KrPBrpzz_M6_vEV3MIJ9wF3JPNuY7iR_Z-wDHSpxe8Yj_Xt7vV9-L-x91mdX1f2NKUqVB9D52ARgPZpmtKA_UgEfpOgTVSGtCDrrADlPVAjdSICEbbCgap5FATXLGvZ99DmH7PFFO7n-bgc2QLwjRNI2sDmaXPLBumGAMNrXX5Q_m6FNCNrRTtqYA2F9CeCmhfCshC8Up4CO4Rw_EtyZezxBHRf3StlAANfwEaIpT5
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_snb_2025_137597
Cites_doi 10.1109/IAS.1995.530360
10.1109/TIM.2023.3264044
10.1186/s41601-022-00236-z
10.1049/elp2.12394
10.1016/j.measurement.2023.113680
10.1109/tim.2023.3323999
10.1109/TIA.2021.3078136
10.1109/JSEN.2023.3252816
10.1121/1.393918
10.1109/PHM-Hangzhou58797.2023.10482378
10.1088/1361-6501/ad076a
10.1109/TIE.2022.3156156
10.1109/TIM.2024.3353876
10.1109/JSEN.2023.3340408
10.1109/ICSMD53520.2021.9670783
10.1109/tim.2024.3363790
10.1016/j.measurement.2022.112016
10.1109/TIA.2022.3232308
10.1016/j.ymssp.2024.111213
10.1109/TIM.2023.3277964
10.1109/JSEN.2020.2999547
10.3390/e24050614
10.1109/tim.2024.3396854
10.1109/tim.2023.3285999
10.1016/j.measurement.2024.114191
10.1109/ICSMD60522.2023.10491041
10.1109/TIM.2022.3186061
10.1109/JSEN.2024.3392755
10.1049/iet-gtd.2020.0127
10.1109/ICSMD57530.2022.10058220
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3443347
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (IEEE/IET Electronic Library - IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2024_3443347
10644036
Genre orig-research
GrantInformation_xml – fundername: Key Research & Development Plan of Shaanxi Province, China
  grantid: 2023-YBGY-116; 2023-YBSF-304
– fundername: Headquarters Science and Technology Projects of China Huaneng Group
  grantid: HNKJ20-H72-02
– fundername: Technology Innovation Leading Program of Shaanxi
  grantid: 2022KXJ-68
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-4dd3b03863ec8b82937f1a3db43c911936f65ab3a17fe816aaa396c53f141f7e3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:06:52 EDT 2025
Wed Oct 01 03:47:01 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:03:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-4dd3b03863ec8b82937f1a3db43c911936f65ab3a17fe816aaa396c53f141f7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1654-7222
0000-0003-0126-6065
0000-0001-7126-4773
0000-0003-3391-7651
0000-0001-9648-7420
0000-0001-8693-5322
0000-0003-2528-6423
0000-0001-9928-6130
0000-0002-4896-1324
PQID 3098881793
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_3098881793
crossref_citationtrail_10_1109_TIM_2024_3443347
crossref_primary_10_1109_TIM_2024_3443347
ieee_primary_10644036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/IAS.1995.530360
– ident: ref17
  doi: 10.1109/TIM.2023.3264044
– ident: ref2
  doi: 10.1186/s41601-022-00236-z
– ident: ref18
  doi: 10.1049/elp2.12394
– ident: ref4
  doi: 10.1016/j.measurement.2023.113680
– ident: ref10
  doi: 10.1109/tim.2023.3323999
– ident: ref13
  doi: 10.1109/TIA.2021.3078136
– ident: ref30
  doi: 10.1109/JSEN.2023.3252816
– ident: ref26
  doi: 10.1121/1.393918
– ident: ref3
  doi: 10.1109/PHM-Hangzhou58797.2023.10482378
– ident: ref20
  doi: 10.1088/1361-6501/ad076a
– ident: ref9
  doi: 10.1109/TIE.2022.3156156
– ident: ref12
  doi: 10.1109/TIM.2024.3353876
– ident: ref23
  doi: 10.1109/JSEN.2023.3340408
– ident: ref7
  doi: 10.1109/ICSMD53520.2021.9670783
– ident: ref25
  doi: 10.1109/tim.2024.3363790
– ident: ref16
  doi: 10.1016/j.measurement.2022.112016
– ident: ref29
  doi: 10.1109/TIA.2022.3232308
– ident: ref15
  doi: 10.1016/j.ymssp.2024.111213
– ident: ref24
  doi: 10.1109/TIM.2023.3277964
– ident: ref19
  doi: 10.1109/JSEN.2020.2999547
– ident: ref22
  doi: 10.3390/e24050614
– ident: ref27
  doi: 10.1109/tim.2024.3396854
– ident: ref1
  doi: 10.1109/tim.2023.3285999
– ident: ref11
  doi: 10.1016/j.measurement.2024.114191
– ident: ref14
  doi: 10.1109/ICSMD60522.2023.10491041
– ident: ref8
  doi: 10.1109/TIM.2022.3186061
– ident: ref28
  doi: 10.1109/JSEN.2024.3392755
– ident: ref5
  doi: 10.1049/iet-gtd.2020.0127
– ident: ref21
  doi: 10.1109/ICSMD57530.2022.10058220
SSID ssj0007647
Score 2.4206047
Snippet Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although...
Early fault detection is critical for ensuring reliable operation in wind power generation systems employing doubly fed induction generators (DFIGs). Although...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive systems
Circuit faults
Complex signal trajectory
Decomposition
Doubly fed induction generators
Entropy
Fault detection
Fault diagnosis
Feature extraction
Frequency analysis
Generators
Harmonics
Induction generators
Interturn short circuit
Mode decomposition
Multiscale analysis
Pattern analysis
Quantitative assessment
Resonant frequencies
Short circuits
Signature analysis
Stators
Symmetrized dot pattern
Trajectory
Trajectory analysis
Wind power generation
Zero sequence current
Title Identifying Early Stator Fault Severity in DFIGs based on Adaptive Feature Mode Decomposition and Multiscale Complex Component Current Trajectories
URI https://ieeexplore.ieee.org/document/10644036
https://www.proquest.com/docview/3098881793
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RSkhw4FGK2LagOXDhkG0Sex37WNEuLVJ7oZV6i_yYSMAqW-0mEuJv8IcZO9lqBaLilBzi2NI3_mbGngfAe_YoRGlynQUGOGOWVJkNPs-08670XgdNMRv58kqd38jPt7PbMVk95cIQUQo-o2l8TXf5Yen7eFTGO5y1N1PuDuxUWg3JWve0Wyk5FMgseAezWbC5k8zN8fXFJXuCpZwKKYWInVS2dFBqqvIXEyf1Mn8OV5uFDVEl36d956b-5x81G_975S_g2Who4skgGS_hEbV78HSr_OAePE7hn379Cn4N-bop5wlTzWOMVuhyhXPbLzr8QizxbK_j1xZP5xef1hi1X8BliyfB3kXKxGhM9ivC2F0NTynGqo8BYWjbgCnTd80SQRg5aEE_0nPZ8sQ4VolC1pzf0jUC--_7cDM_u_54no3tGjJfmrLLZAjC5UIrQV47zXZE1RRWBCeFZ0o1QjVqZp2wRdWQLpS1VhjlZ6IpZNFUJF7DbsuzvgH0DUn2YyppHGvZMDMkPDF3N5V0pIOawPEGwNqPtcxjS41FnXya3NQMeR0hr0fIJ_DhfsTdUMfjgW_3I4Jb3w3gTeBoIyT1uNPXtciN1jrS3ME_hh3Ck_j34dzmCHa7VU9v2ZLp3Lskwb8B86vwMg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgEQIOPJZFFBaYAxcO6Sax49jHFUtpYdsLXWlvkR8TaaFKV20iIf4Gf5ixk64qEIhTcrBlSzP-Zsae-YaxtxRR8FynKvEk4IRQUibGuzRR1tncOeUVhmrk-UJOL8Sny-JyKFaPtTCIGJPPcBx-41u-X7suXJXRCSfrTZB7m90phBBFX651A7ylFD1FZkZnmByD3atkqk-WsznFgrkYcyE4D71U9qxQbKvyBxZHAzN5xBa7rfV5Jd_GXWvH7sdvrI3_vffH7OHgasJprxtP2C1sDtmDPQLCQ3Y3JoC67VP2s6_YjVVPEFmPIfih6w1MTLdq4QuSzpPHDlcNnE1mH7cQ7J-HdQOn3lwH0ITgTnYbhNBfDc4wZKsPKWFgGg-x1ndLOoEQUGiF3-N33dDCMPBEAdnOr_EhgSL4I3Yx-bB8P02Ghg2Jy3XeJsJ7blOuJEenrCJPoqwzw70V3BGoai5rWRjLTVbWqDJpjOFauoLXmcjqEvkzdtDQqs8ZuBoFRTKl0JbsrC80coeE3nUpLCovR-xkJ8DKDWzmoanGqopRTaorEnkVRF4NIh-xdzczrnsmj3-MPQoS3BvXC2_EjndKUg1nfVvxVCulAtC9-Mu0N-zedDk_r85ni88v2f2wUn-Lc8wO2k2Hr8ivae3rqM2_AKnV838
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Early+Stator+Fault+Severity+in+DFIGs+based+on+Adaptive+Feature+Mode+Decomposition+and+Multiscale+Complex+Component+Current+Trajectories&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhao%2C+Shouwang&rft.au=Chen%2C+Yu&rft.au=Liang%2C+Feng&rft.au=Zhang%2C+Sichao&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2024.3443347&rft.externalDocID=10644036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon