Identifying Early Stator Fault Severity in DFIGs based on Adaptive Feature Mode Decomposition and Multiscale Complex Component Current Trajectories
Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with...
        Saved in:
      
    
          | Published in | IEEE transactions on instrumentation and measurement Vol. 73; p. 1 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.01.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9456 1557-9662  | 
| DOI | 10.1109/TIM.2024.3443347 | 
Cover
| Abstract | Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This paper proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filter out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. Additionally, the negative sequence current of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100 kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults. | 
    
|---|---|
| AbstractList | Early fault detection is critical for ensuring reliable operation in wind power generation systems employing doubly fed induction generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This article proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences, and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filtering out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern (SDP) of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. In addition, the NSC of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100-kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults. Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although the widespread use of motor current signature analysis (MCSA) for noninvasive fault detection, early-stage faults in DFIGs often present with weak characteristic fault information, posing challenges for detection amidst noise and interference signals. This paper proposes a novel method to assess the severity of early stator interturn short circuits (ITSCs) in DFIGs by combining adaptive feature mode decomposition (AFMD) with multiscale analysis of complex component current trajectories. AFMD is applied to perform quadratic time-frequency decomposition of current signals, resulting in a series of modal components with diverse frequency contents. By selecting the low-frequency current modal components with the fundamental frequency and low-order harmonics, high-frequency interferences and noise are effectively filtered out. The extracted low-frequency current modal components undergo multiscale Park vector trajectory analysis, thereby enhancing the expression of weak fault characteristics associated with early ITSCs. Further analysis involves the extraction of negative sequence current (NSC) and zero-sequence current (ZSC) components from the low-frequency modal components. The residual ZSC signal is constructed by filter out the fundamental frequency and low-order harmonic components from the ZSC component of the low-frequency modal. Analysis of the symmetrized dot pattern of the residual ZSC signal captures the evolution process of early-stage ITSCs with a low number of turns. Additionally, the negative sequence current of the low-frequency modal components is qualitatively and quantitatively evaluated for early low-turn insulation short circuits of varying severity levels. Experimental validation on a 100 kW DFIG test platform demonstrates the efficacy of the proposed method in enhancing the detection and diagnosis of early-stage ITSC faults.  | 
    
| Author | Cheng, Yonghong Liang, Feng Zhang, Sichao Shahbaz, Nadeem Zhao, Yong Wang, Shuang Zhao, Shouwang Chen, Yu Deng, Wei  | 
    
| Author_xml | – sequence: 1 givenname: Shouwang orcidid: 0000-0001-7126-4773 surname: Zhao fullname: Zhao, Shouwang organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 2 givenname: Yu orcidid: 0000-0001-9928-6130 surname: Chen fullname: Chen, Yu organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 3 givenname: Feng orcidid: 0000-0003-0126-6065 surname: Liang fullname: Liang, Feng organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 4 givenname: Sichao orcidid: 0000-0001-9648-7420 surname: Zhang fullname: Zhang, Sichao organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 5 givenname: Nadeem orcidid: 0000-0003-1654-7222 surname: Shahbaz fullname: Shahbaz, Nadeem organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 6 givenname: Shuang orcidid: 0000-0003-3391-7651 surname: Wang fullname: Wang, Shuang organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 7 givenname: Yong orcidid: 0000-0002-4896-1324 surname: Zhao fullname: Zhao, Yong organization: Xi'an Thermal Power Research Institute CO., Ltd, Xi'an, Shaanxi, China – sequence: 8 givenname: Wei orcidid: 0000-0001-8693-5322 surname: Deng fullname: Deng, Wei organization: Xi'an Thermal Power Research Institute CO., Ltd, Xi'an, Shaanxi, China – sequence: 9 givenname: Yonghong orcidid: 0000-0003-2528-6423 surname: Cheng fullname: Cheng, Yonghong organization: School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China  | 
    
| BookMark | eNp9UT1v2zAQJYoUqJN279CBQGe5pI6ixDFw4tRAjA5xZ-FEnQoaCuWSVFD_jvzh0nWGIkOmN9z7uLt3yS785Imxz1IspRTm226zXZaiVEtQCkDV79hCVlVdGK3LC7YQQjaFUZX-wC5j3Ashaq3qBXve9OSTG47O_-K3GMYjf0iYpsDXOI-JP9ATBZeO3Hl-s97cRd5hpJ5Pnl_3eEjuifiaMM2B-Hbqid-QnR4PU3TJZQ76nm-zj4sWR-KrPBrpzz_M6_vEV3MIJ9wF3JPNuY7iR_Z-wDHSpxe8Yj_Xt7vV9-L-x91mdX1f2NKUqVB9D52ARgPZpmtKA_UgEfpOgTVSGtCDrrADlPVAjdSICEbbCgap5FATXLGvZ99DmH7PFFO7n-bgc2QLwjRNI2sDmaXPLBumGAMNrXX5Q_m6FNCNrRTtqYA2F9CeCmhfCshC8Up4CO4Rw_EtyZezxBHRf3StlAANfwEaIpT5 | 
    
| CODEN | IEIMAO | 
    
| CitedBy_id | crossref_primary_10_1016_j_snb_2025_137597 | 
    
| Cites_doi | 10.1109/IAS.1995.530360 10.1109/TIM.2023.3264044 10.1186/s41601-022-00236-z 10.1049/elp2.12394 10.1016/j.measurement.2023.113680 10.1109/tim.2023.3323999 10.1109/TIA.2021.3078136 10.1109/JSEN.2023.3252816 10.1121/1.393918 10.1109/PHM-Hangzhou58797.2023.10482378 10.1088/1361-6501/ad076a 10.1109/TIE.2022.3156156 10.1109/TIM.2024.3353876 10.1109/JSEN.2023.3340408 10.1109/ICSMD53520.2021.9670783 10.1109/tim.2024.3363790 10.1016/j.measurement.2022.112016 10.1109/TIA.2022.3232308 10.1016/j.ymssp.2024.111213 10.1109/TIM.2023.3277964 10.1109/JSEN.2020.2999547 10.3390/e24050614 10.1109/tim.2024.3396854 10.1109/tim.2023.3285999 10.1016/j.measurement.2024.114191 10.1109/ICSMD60522.2023.10491041 10.1109/TIM.2022.3186061 10.1109/JSEN.2024.3392755 10.1049/iet-gtd.2020.0127 10.1109/ICSMD57530.2022.10058220  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/TIM.2024.3443347 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (IEEE/IET Electronic Library - IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1557-9662 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | 10_1109_TIM_2024_3443347 10644036  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Key Research & Development Plan of Shaanxi Province, China grantid: 2023-YBGY-116; 2023-YBSF-304 – fundername: Headquarters Science and Technology Projects of China Huaneng Group grantid: HNKJ20-H72-02 – fundername: Technology Innovation Leading Program of Shaanxi grantid: 2022KXJ-68  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c292t-4dd3b03863ec8b82937f1a3db43c911936f65ab3a17fe816aaa396c53f141f7e3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9456 | 
    
| IngestDate | Mon Jun 30 10:06:52 EDT 2025 Wed Oct 01 03:47:01 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:03:46 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c292t-4dd3b03863ec8b82937f1a3db43c911936f65ab3a17fe816aaa396c53f141f7e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1654-7222 0000-0003-0126-6065 0000-0001-7126-4773 0000-0003-3391-7651 0000-0001-9648-7420 0000-0001-8693-5322 0000-0003-2528-6423 0000-0001-9928-6130 0000-0002-4896-1324  | 
    
| PQID | 3098881793 | 
    
| PQPubID | 85462 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_journals_3098881793 crossref_citationtrail_10_1109_TIM_2024_3443347 crossref_primary_10_1109_TIM_2024_3443347 ieee_primary_10644036  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on instrumentation and measurement | 
    
| PublicationTitleAbbrev | TIM | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref6 doi: 10.1109/IAS.1995.530360 – ident: ref17 doi: 10.1109/TIM.2023.3264044 – ident: ref2 doi: 10.1186/s41601-022-00236-z – ident: ref18 doi: 10.1049/elp2.12394 – ident: ref4 doi: 10.1016/j.measurement.2023.113680 – ident: ref10 doi: 10.1109/tim.2023.3323999 – ident: ref13 doi: 10.1109/TIA.2021.3078136 – ident: ref30 doi: 10.1109/JSEN.2023.3252816 – ident: ref26 doi: 10.1121/1.393918 – ident: ref3 doi: 10.1109/PHM-Hangzhou58797.2023.10482378 – ident: ref20 doi: 10.1088/1361-6501/ad076a – ident: ref9 doi: 10.1109/TIE.2022.3156156 – ident: ref12 doi: 10.1109/TIM.2024.3353876 – ident: ref23 doi: 10.1109/JSEN.2023.3340408 – ident: ref7 doi: 10.1109/ICSMD53520.2021.9670783 – ident: ref25 doi: 10.1109/tim.2024.3363790 – ident: ref16 doi: 10.1016/j.measurement.2022.112016 – ident: ref29 doi: 10.1109/TIA.2022.3232308 – ident: ref15 doi: 10.1016/j.ymssp.2024.111213 – ident: ref24 doi: 10.1109/TIM.2023.3277964 – ident: ref19 doi: 10.1109/JSEN.2020.2999547 – ident: ref22 doi: 10.3390/e24050614 – ident: ref27 doi: 10.1109/tim.2024.3396854 – ident: ref1 doi: 10.1109/tim.2023.3285999 – ident: ref11 doi: 10.1016/j.measurement.2024.114191 – ident: ref14 doi: 10.1109/ICSMD60522.2023.10491041 – ident: ref8 doi: 10.1109/TIM.2022.3186061 – ident: ref28 doi: 10.1109/JSEN.2024.3392755 – ident: ref5 doi: 10.1049/iet-gtd.2020.0127 – ident: ref21 doi: 10.1109/ICSMD57530.2022.10058220  | 
    
| SSID | ssj0007647 | 
    
| Score | 2.4206047 | 
    
| Snippet | Early fault detection is critical for ensuring reliable operation in wind power generation systems employing Doubly Fed Induction Generators (DFIGs). Although... Early fault detection is critical for ensuring reliable operation in wind power generation systems employing doubly fed induction generators (DFIGs). Although...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive systems Circuit faults Complex signal trajectory Decomposition Doubly fed induction generators Entropy Fault detection Fault diagnosis Feature extraction Frequency analysis Generators Harmonics Induction generators Interturn short circuit Mode decomposition Multiscale analysis Pattern analysis Quantitative assessment Resonant frequencies Short circuits Signature analysis Stators Symmetrized dot pattern Trajectory Trajectory analysis Wind power generation Zero sequence current  | 
    
| Title | Identifying Early Stator Fault Severity in DFIGs based on Adaptive Feature Mode Decomposition and Multiscale Complex Component Current Trajectories | 
    
| URI | https://ieeexplore.ieee.org/document/10644036 https://www.proquest.com/docview/3098881793  | 
    
| Volume | 73 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RSkhw4FGK2LagOXDhkG0Sex37WNEuLVJ7oZV6i_yYSMAqW-0mEuJv8IcZO9lqBaLilBzi2NI3_mbGngfAe_YoRGlynQUGOGOWVJkNPs-08670XgdNMRv58kqd38jPt7PbMVk95cIQUQo-o2l8TXf5Yen7eFTGO5y1N1PuDuxUWg3JWve0Wyk5FMgseAezWbC5k8zN8fXFJXuCpZwKKYWInVS2dFBqqvIXEyf1Mn8OV5uFDVEl36d956b-5x81G_975S_g2Who4skgGS_hEbV78HSr_OAePE7hn379Cn4N-bop5wlTzWOMVuhyhXPbLzr8QizxbK_j1xZP5xef1hi1X8BliyfB3kXKxGhM9ivC2F0NTynGqo8BYWjbgCnTd80SQRg5aEE_0nPZ8sQ4VolC1pzf0jUC--_7cDM_u_54no3tGjJfmrLLZAjC5UIrQV47zXZE1RRWBCeFZ0o1QjVqZp2wRdWQLpS1VhjlZ6IpZNFUJF7DbsuzvgH0DUn2YyppHGvZMDMkPDF3N5V0pIOawPEGwNqPtcxjS41FnXya3NQMeR0hr0fIJ_DhfsTdUMfjgW_3I4Jb3w3gTeBoIyT1uNPXtciN1jrS3ME_hh3Ck_j34dzmCHa7VU9v2ZLp3Lskwb8B86vwMg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgEQIOPJZFFBaYAxcO6Sax49jHFUtpYdsLXWlvkR8TaaFKV20iIf4Gf5ixk64qEIhTcrBlSzP-Zsae-YaxtxRR8FynKvEk4IRQUibGuzRR1tncOeUVhmrk-UJOL8Sny-JyKFaPtTCIGJPPcBx-41u-X7suXJXRCSfrTZB7m90phBBFX651A7ylFD1FZkZnmByD3atkqk-WsznFgrkYcyE4D71U9qxQbKvyBxZHAzN5xBa7rfV5Jd_GXWvH7sdvrI3_vffH7OHgasJprxtP2C1sDtmDPQLCQ3Y3JoC67VP2s6_YjVVPEFmPIfih6w1MTLdq4QuSzpPHDlcNnE1mH7cQ7J-HdQOn3lwH0ITgTnYbhNBfDc4wZKsPKWFgGg-x1ndLOoEQUGiF3-N33dDCMPBEAdnOr_EhgSL4I3Yx-bB8P02Ghg2Jy3XeJsJ7blOuJEenrCJPoqwzw70V3BGoai5rWRjLTVbWqDJpjOFauoLXmcjqEvkzdtDQqs8ZuBoFRTKl0JbsrC80coeE3nUpLCovR-xkJ8DKDWzmoanGqopRTaorEnkVRF4NIh-xdzczrnsmj3-MPQoS3BvXC2_EjndKUg1nfVvxVCulAtC9-Mu0N-zedDk_r85ni88v2f2wUn-Lc8wO2k2Hr8ivae3rqM2_AKnV838 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Early+Stator+Fault+Severity+in+DFIGs+based+on+Adaptive+Feature+Mode+Decomposition+and+Multiscale+Complex+Component+Current+Trajectories&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhao%2C+Shouwang&rft.au=Chen%2C+Yu&rft.au=Liang%2C+Feng&rft.au=Zhang%2C+Sichao&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2024.3443347&rft.externalDocID=10644036 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |