Effect of the methylenetetrahydrofolate reductase 677C→T mutation on the relations among folate intake and plasma folate and homocysteine concentrations in a general population sample

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity. The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma fola...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of clinical nutrition Vol. 77; no. 3; pp. 687 - 693
Main Authors de Bree, Angelika, Verschuren, WM Monique, Bjørke-Monsen, Anne-Lise, van der Put, Nathalie MJ, Heil, Sandra G, Trijbels, Frans JM, Blom, Henk J
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Clinical Nutrition 01.03.2003
American Society for Clinical Nutrition, Inc
Subjects
Online AccessGet full text
ISSN0002-9165
1938-3207
DOI10.1093/ajcn/77.3.687

Cover

Abstract Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity. The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration. The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y). At a low folate intake (166 micro g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microg/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations. At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.
AbstractList Background: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C to T polymorphism decreases the enzyme's activity. Objective: The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration. Design: The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y). Results: At a low folate intake (166 microgram/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microgram/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations. Conclusions: At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity.BACKGROUNDMethylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity.The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration.OBJECTIVEThe objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration.The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y).DESIGNThe design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y).At a low folate intake (166 micro g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microg/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations.RESULTSAt a low folate intake (166 micro g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microg/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations.At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.CONCLUSIONSAt any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity. The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration. The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y). At a low folate intake (166 micro g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microg/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations. At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.
Background: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677CT polymorphism decreases the enzyme's activity. Objective: The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration. Design: The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y). Results: At a low folate intake (166 g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 g/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 mol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations. Conclusions: At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects. [PUBLICATION ABSTRACT]
Author Trijbels, Frans JM
Bjørke-Monsen, Anne-Lise
van der Put, Nathalie MJ
de Bree, Angelika
Verschuren, WM Monique
Blom, Henk J
Heil, Sandra G
Author_xml – sequence: 1
  givenname: Angelika
  surname: de Bree
  fullname: de Bree, Angelika
– sequence: 2
  givenname: WM Monique
  surname: Verschuren
  fullname: Verschuren, WM Monique
– sequence: 3
  givenname: Anne-Lise
  surname: Bjørke-Monsen
  fullname: Bjørke-Monsen, Anne-Lise
– sequence: 4
  givenname: Nathalie MJ
  surname: van der Put
  fullname: van der Put, Nathalie MJ
– sequence: 5
  givenname: Sandra G
  surname: Heil
  fullname: Heil, Sandra G
– sequence: 6
  givenname: Frans JM
  surname: Trijbels
  fullname: Trijbels, Frans JM
– sequence: 7
  givenname: Henk J
  surname: Blom
  fullname: Blom, Henk J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14629364$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12600862$$D View this record in MEDLINE/PubMed
BookMark eNqFks1q3DAUhUVJaSbTLrstotDunOjHluxlGdIfCHSTrs21fJ3xVJZcSV7MC-QB-jZ9nT5JNZ0JgUApCISuvnt0xTkX5Mx5h4S85uySs0Zewc64K60v5aWq9TOy4o2sCymYPiMrxpgoGq6qc3IR444xLspavSDnXCjGaiVW5Nf1MKBJ1A80bZFOmLZ7iw4TpgDbfR_84C0kpAH7xSSISJXWm9_3P2_ptCRIo3c0r0NzQPv3HClM3t3RU-foEnxHCq6ns4U4wcPFobL1kzf7mHB0SI13Bl1--KgyOgr0Lg8TwNLZz8tRnkaYZosvyfMBbMRXp31Nvn28vt18Lm6-fvqy-XBTGNGIVJSdFlhjo5QojVKSKWGM5qrRogPeDb1kWGtRA8_ljlcd532N1YCdBmN4Jdfk_VF3Dv7HgjG10xgNWgsO_RJbLZmsZCn_C5YNrxohRQbfPgF3fgkuf6IVMvsnRZ5zTd6coKWbsG_nME4Q9u2DdRl4dwIgGrBDAGfG-MiVSjRSlZkrjpwJPsaAwyPC2kOE2kOEWq1b2eYIZV4-4c149DkbM9p_dP0Bm0nPMw
CODEN AJCNAC
CitedBy_id crossref_primary_10_1093_jn_133_12_4107
crossref_primary_10_1093_jn_136_10_2653
crossref_primary_10_1177_0333102412469739
crossref_primary_10_1515_jbcr_2015_0105
crossref_primary_10_1111_j_1469_8749_2011_04135_x
crossref_primary_10_1016_j_nut_2004_08_004
crossref_primary_10_1016_j_pediatrneurol_2007_09_001
crossref_primary_10_1016_j_nutres_2006_08_001
crossref_primary_10_1111_j_1740_8709_2010_00261_x
crossref_primary_10_1038_ejcn_2013_209
crossref_primary_10_3945_ajcn_111_030791
crossref_primary_10_1002_cncr_27621
crossref_primary_10_1017_S0007114507747827
crossref_primary_10_1007_s00774_008_0878_9
crossref_primary_10_1017_S1368980014002134
crossref_primary_10_1016_S1658_3612_06_70004_X
crossref_primary_10_2217_1745509X_2_6_983
crossref_primary_10_1080_15227950591008240
crossref_primary_10_1186_s13148_018_0468_1
crossref_primary_10_1002_ijc_31319
crossref_primary_10_1016_j_gene_2013_07_053
crossref_primary_10_1111_j_1464_5491_2006_01841_x
crossref_primary_10_1182_asheducation_2003_1_62
crossref_primary_10_1093_carcin_bgn177
crossref_primary_10_1007_s40620_014_0067_y
crossref_primary_10_1016_j_atherosclerosis_2004_10_026
crossref_primary_10_1002_bdra_20553
crossref_primary_10_1016_S0214_9168_04_78991_3
crossref_primary_10_1016_j_ecoenv_2019_109380
crossref_primary_10_3390_nu5072457
crossref_primary_10_1007_s10072_012_0955_7
crossref_primary_10_1080_01635581_2019_1577982
crossref_primary_10_1093_ije_dyl094
crossref_primary_10_1371_journal_pone_0117366
crossref_primary_10_1002_ana_20755
crossref_primary_10_1007_s00394_014_0659_2
crossref_primary_10_1080_01635581_2014_948213
crossref_primary_10_1016_j_amjms_2017_05_020
crossref_primary_10_1007_s00216_020_03125_2
crossref_primary_10_1007_s11596_018_1920_3
crossref_primary_10_1111_j_1468_2982_2009_01848_x
crossref_primary_10_1093_ajcn_82_1_26
crossref_primary_10_1038_tp_2016_19
crossref_primary_10_1016_S1262_3636_07_70127_1
crossref_primary_10_1089_neu_2011_1982
crossref_primary_10_1016_S1695_4033_04_78254_5
crossref_primary_10_53126_MEBXXIV309
crossref_primary_10_1089_dna_2011_1422
crossref_primary_10_1007_s13277_009_0004_1
crossref_primary_10_1093_ajcn_86_3_610
crossref_primary_10_1373_clinchem_2006_082149
crossref_primary_10_1373_clinchem_2005_066217
crossref_primary_10_1016_j_neurobiolaging_2005_03_002
crossref_primary_10_1016_j_pnpbp_2007_06_015
crossref_primary_10_1016_j_nut_2003_09_012
crossref_primary_10_1177_0897190008318132
crossref_primary_10_3945_ajcn_111_022384
crossref_primary_10_1016_S0140_6736_11_60872_6
crossref_primary_10_1111_j_1476_5381_2009_00492_x
crossref_primary_10_1157_13079763
crossref_primary_10_1016_j_clinbiochem_2007_05_017
crossref_primary_10_3945_jn_112_161828
crossref_primary_10_1038_jhg_2012_113
crossref_primary_10_1194_jlr_M400339_JLR200
crossref_primary_10_1097_HJR_0b013e32833a1cb5
crossref_primary_10_1007_s00774_009_0073_7
crossref_primary_10_1159_000490003
crossref_primary_10_1016_j_gene_2012_09_019
crossref_primary_10_1002_cbf_1610
crossref_primary_10_1016_j_tifs_2005_03_010
crossref_primary_10_1016_j_bbrc_2004_02_174
crossref_primary_10_1111_j_1468_2982_2007_01467_x
crossref_primary_10_2188_jea_JE2007417
crossref_primary_10_1586_ern_09_75
crossref_primary_10_1038_sj_ejcn_1602897
crossref_primary_10_2478_cpp_2021_0006
crossref_primary_10_1007_s10528_013_9606_9
crossref_primary_10_1038_sj_ejcn_1602606
crossref_primary_10_1016_j_jns_2013_10_008
crossref_primary_10_2903_j_efsa_2004_135
crossref_primary_10_1093_ajcn_81_5_1110
crossref_primary_10_1158_1055_9965_EPI_07_2937
crossref_primary_10_1089_dna_2012_1607
crossref_primary_10_1016_j_ejogrb_2015_09_022
crossref_primary_10_1079_NRR200478
crossref_primary_10_1093_gerona_62_2_196
crossref_primary_10_3390_nu5103920
crossref_primary_10_1007_s00415_004_0523_z
crossref_primary_10_1016_j_jddst_2015_06_012
crossref_primary_10_3892_mmr_2014_2521
crossref_primary_10_1111_j_1526_4610_2007_00932_x
crossref_primary_10_1002_ajmg_a_20648
crossref_primary_10_1016_j_theriogenology_2006_09_017
crossref_primary_10_1093_ajcn_88_1_232
crossref_primary_10_1097_00041433_200402000_00010
crossref_primary_10_1002_mnfr_201200108
crossref_primary_10_1016_j_clnu_2011_08_004
crossref_primary_10_1016_j_advms_2016_03_010
crossref_primary_10_3389_fped_2021_647038
crossref_primary_10_1016_j_nut_2011_07_008
crossref_primary_10_1097_JIM_0000000000000107
crossref_primary_10_1016_j_metabol_2006_12_012
crossref_primary_10_1007_s11010_011_1188_4
crossref_primary_10_1007_s11033_012_1641_9
crossref_primary_10_1002_brb3_70281
crossref_primary_10_3945_ajcn_113_061432
crossref_primary_10_1016_j_biopsych_2005_05_009
crossref_primary_10_3177_jnsv_60_231
Cites_doi 10.1161/01.CIR.94.12.3074
10.1161/01.CIR.99.18.2383
10.1093/ajcn/72.2.315
10.1093/ajcn/72.2.324
10.1161/01.CIR.98.23.2520
10.1161/01.CIR.96.8.2573
10.1111/j.1749-6632.1980.tb21329.x
10.1096/fasebj.2.1.3335280
10.1093/clinchem/39.2.263
10.1016/S0300-2977(99)00031-5
10.1093/ajcn/76.1.180
10.1093/jn/129.5.919
10.1016/S0026-0495(98)90315-8
10.1161/01.CIR.96.2.412
10.1093/ajcn/68.2.328
10.1161/01.ATV.20.8.1921
10.1136/jcp.44.7.592
10.1016/S0076-6879(97)81007-5
10.1093/ajcn/65.4.1220S
10.1093/clinchem/46.8.1065
10.1016/S0895-4356(00)00341-3
10.1093/clinchem/44.1.186a
10.1093/clinchem/38.7.1311
10.1093/clinchem/42.10.1689
10.1093/ije/26.suppl_1.S49
10.1016/0009-8981(92)90155-J
10.1177/000456329503200218
10.1093/ajcn/73.6.1027
10.1093/jn/128.8.1336
10.2188/jea.10.163
10.1007/s001090050073
10.1093/jn/129.2.560S
10.1093/ije/26.suppl_1.S37
10.1161/01.CIR.93.1.7
10.1161/01.ATV.17.6.1157
10.1093/jn/124.10.1934
10.1038/7594
10.1016/S0140-6736(95)91743-8
10.1093/qjmed/90.2.111
10.1038/ng0595-111
10.1093/ajcn/55.1.131
10.1161/01.CIR.94.10.2410
10.1016/0955-2863(90)90070-2
10.1006/bmmb.1994.1040
10.1093/qjmed/89.8.571
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright American Society for Clinical Nutrition, Inc. Mar 2003
Copyright_xml – notice: 2003 INIST-CNRS
– notice: Copyright American Society for Clinical Nutrition, Inc. Mar 2003
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7S9
L.6
7X8
DOI 10.1093/ajcn/77.3.687
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Physical Education Index
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
EISSN 1938-3207
EndPage 693
ExternalDocumentID 301754901
12600862
14629364
10_1093_ajcn_77_3_687
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
-ET
-~X
..I
.55
.GJ
0R~
1HT
23M
2FS
2WC
3O-
4.4
48X
53G
5GY
5RE
5VS
6J9
85S
8R4
8R5
AABZA
AACZT
AAGQS
AAHBH
AAIKC
AAJQQ
AALRI
AAMNW
AAPGJ
AAPQZ
AAUQX
AAUTI
AAVAP
AAWDT
AAWTL
AAXUO
AAYOK
AAYWO
AAYXX
ABBTP
ABDNZ
ABDPE
ABIME
ABJNI
ABLJU
ABOCM
ABPTD
ABWST
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACPVT
ACUFI
ACUTJ
ACVFH
ADBBV
ADCNI
ADGZP
ADHUB
ADMTO
ADRTK
ADUKH
ADVEK
ADVLN
AEGXH
AENEX
AETBJ
AEUPX
AFFDN
AFFNX
AFFZL
AFJKZ
AFOFC
AFPUW
AFRAH
AFXAL
AGCQF
AGINJ
AGKRT
AGNAY
AGQXC
AGUTN
AHMBA
AI.
AIAGR
AIGII
AITUG
AJEEA
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANFBD
APXCP
AQDSO
AQKUS
BAWUL
BAYMD
BKOMP
BTRTY
C1A
CDBKE
CITATION
DAKXR
DIK
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
F9R
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
HF~
HZ~
IH2
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LPU
MBLQV
MHKGH
MV1
MVM
N4W
NEJ
NHB
NHCRO
NOMLY
NOYVH
NU-
NVLIB
O9-
ODMLO
OHT
OK1
OVD
P2P
P6G
PCD
PQQKQ
PRG
Q2X
R0Z
RHI
RNS
ROL
SJN
TCN
TEORI
TMA
TNT
TR2
TWZ
UBH
UHB
UKR
VH1
W2D
W8F
WH7
WHG
WOQ
WOW
X7M
XOL
XSW
YBU
YHG
YOJ
YQJ
YR5
YRY
YSK
YV5
YYQ
YZZ
ZCA
ZCG
ZGI
ZUP
ZXP
~KM
EFKBS
IQODW
A8Z
ABSAR
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
ROX
SV3
VXZ
Z5M
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c292t-4b72e8e96624c663062cc716972ba1bfd30e8728a1cc7b15b11d8e5feb7acc153
ISSN 0002-9165
IngestDate Tue Aug 05 08:35:46 EDT 2025
Sun Sep 28 08:48:45 EDT 2025
Sat Jul 26 02:32:30 EDT 2025
Wed Feb 19 02:41:01 EST 2025
Mon Jul 21 09:17:19 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 03:14:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Methylenetetrahydrofolate reductase (NADPH)
Methylenetetrahydrofolate reductase
Population genetics
Epidemiology
Folic acid
Folate
Enzymatic activity
Homocystein
total homocysteine
Public health
Human
plasma homocysteine concentration
folate intake
Enzyme
plasma folate concentration
MTHFR
Metabolism
Feeding
Micronutrient
Dutch population
Diet
Oxidoreductases
Mutation
Polymorphism
tHcy
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-4b72e8e96624c663062cc716972ba1bfd30e8728a1cc7b15b11d8e5feb7acc153
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 12600862
PQID 231933266
PQPubID 41076
PageCount 7
ParticipantIDs proquest_miscellaneous_73035343
proquest_miscellaneous_49159232
proquest_journals_231933266
pubmed_primary_12600862
pascalfrancis_primary_14629364
crossref_primary_10_1093_ajcn_77_3_687
crossref_citationtrail_10_1093_ajcn_77_3_687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-03-01
PublicationDateYYYYMMDD 2003-03-01
PublicationDate_xml – month: 03
  year: 2003
  text: 2003-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle The American journal of clinical nutrition
PublicationTitleAlternate Am J Clin Nutr
PublicationYear 2003
Publisher American Society for Clinical Nutrition
American Society for Clinical Nutrition, Inc
Publisher_xml – name: American Society for Clinical Nutrition
– name: American Society for Clinical Nutrition, Inc
References Zittoun (10.1093/ajcn/77.3.687_bib12) 1998; 47
Lucock (10.1093/ajcn/77.3.687_bib49) 1994; 52
McQuillan (10.1093/ajcn/77.3.687_bib16) 1999; 99
Willett (10.1093/ajcn/77.3.687_bib32) 1997; 65
Molloy (10.1093/ajcn/77.3.687_bib30) 1997; 281
Ocke (10.1093/ajcn/77.3.687_bib26) 1997; 26
Schwartz (10.1093/ajcn/77.3.687_bib15) 1997; 96
Fiskerstrand (10.1093/ajcn/77.3.687_bib28) 1993; 39
DeLoughery (10.1093/ajcn/77.3.687_bib14) 1996; 94
Nelen (10.1093/ajcn/77.3.687_bib38) 2000; 95
Nelen (10.1093/ajcn/77.3.687_bib10) 1998; 128
Ueland (10.1093/ajcn/77.3.687_bib18) 2000; 72
Brattstrom (10.1093/ajcn/77.3.687_bib5) 1998; 98
Kleinbaum (10.1093/ajcn/77.3.687_bib34) 1998
Brussaard (10.1093/ajcn/77.3.687_bib36) 1997; 51
Molloy (10.1093/ajcn/77.3.687_bib41) 1998; 44
Andersson (10.1093/ajcn/77.3.687_bib44) 1992; 38
Bailey (10.1093/ajcn/77.3.687_bib51) 1999; 129
Brattstrom (10.1093/ajcn/77.3.687_bib17) 2000; 72
Shane (10.1093/ajcn/77.3.687_bib2) 1990
vanAsselt (10.1093/ajcn/77.3.687_bib37) 1998; 68
Malinow (10.1093/ajcn/77.3.687_bib45) 1994; 123
van der Put (10.1093/ajcn/77.3.687_bib48) 1996; 74
Finkelstein (10.1093/ajcn/77.3.687_bib1) 1990; 1
Kelleher (10.1093/ajcn/77.3.687_bib31) 1991; 44
Ocke (10.1093/ajcn/77.3.687_bib35) 1997; 26
Harmon (10.1093/ajcn/77.3.687_bib11) 1996; 89
Kluijtmans (10.1093/ajcn/77.3.687_bib6) 1997; 96
Nishiyama (10.1093/ajcn/77.3.687_bib21) 2000; 10
Sauberlich (10.1093/ajcn/77.3.687_bib27) 1980; 355
Gunter (10.1093/ajcn/77.3.687_bib40) 1996; 42
Ashfield-Watt (10.1093/ajcn/77.3.687_bib23) 2002; 76
Jacques (10.1093/ajcn/77.3.687_bib7) 1996; 93
de Bree (10.1093/ajcn/77.3.687_bib33) 2001; 73
van der Put (10.1093/ajcn/77.3.687_bib8) 1995; 346
Malinow (10.1093/ajcn/77.3.687_bib52) 1997; 17
Yoo (10.1093/ajcn/77.3.687_bib20) 2000; 20
Guttormsen (10.1093/ajcn/77.3.687_bib43) 1994; 124
Chen (10.1093/ajcn/77.3.687_bib19) 1999; 129
Ma (10.1093/ajcn/77.3.687_bib9) 1996; 94
Ubbink (10.1093/ajcn/77.3.687_bib42) 1992; 207
Kang (10.1093/ajcn/77.3.687_bib4) 1988; 43
(10.1093/ajcn/77.3.687_bib53) 1992
Selhub (10.1093/ajcn/77.3.687_bib46) 1992; 55
te Poele Pothoff (10.1093/ajcn/77.3.687_bib29) 1995; 32
van der Put (10.1093/ajcn/77.3.687_bib22) 1997; 90
de Bree (10.1093/ajcn/77.3.687_bib24) 2001; 54
van den Berg (10.1093/ajcn/77.3.687_bib39) 1999; 55
Hustad (10.1093/ajcn/77.3.687_bib13) 2000; 46
Green (10.1093/ajcn/77.3.687_bib47) 1988; 2
Guenther (10.1093/ajcn/77.3.687_bib50) 1999; 6
Frosst (10.1093/ajcn/77.3.687_bib3) 1995; 10
Smit (10.1093/ajcn/77.3.687_bib25) 1994
References_xml – volume: 94
  start-page: 3074
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib14
  article-title: Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine metabolism and late-onset vascular disease
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.12.3074
– volume: 99
  start-page: 2383
  year: 1999
  ident: 10.1093/ajcn/77.3.687_bib16
  article-title: Hyperhomocysteinemia but not the C677T mutation of methylenetetrahydrofolate reductase is an independent risk determinant of carotid wall thickening—The Perth Carotid Ultrasound Disease Assessment Study (CUDAS)
  publication-title: Circulation
  doi: 10.1161/01.CIR.99.18.2383
– volume: 72
  start-page: 315
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib17
  article-title: Homocysteine and cardiovascular disease: cause or effect?
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/72.2.315
– volume: 72
  start-page: 324
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib18
  article-title: The controversy over homocysteine and cardiovascular risk
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/72.2.324
– volume: 98
  start-page: 2520
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib5
  article-title: Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis
  publication-title: Circulation
  doi: 10.1161/01.CIR.98.23.2520
– volume: 96
  start-page: 2573
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib6
  article-title: Thermolabile methylenetetrahydrofolate reductase in coronary artery disease
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.8.2573
– volume: 355
  start-page: 80
  year: 1980
  ident: 10.1093/ajcn/77.3.687_bib27
  article-title: Interactions of thiamin, riboflavin, and other B-vitamins
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1980.tb21329.x
– volume: 2
  start-page: 42
  year: 1988
  ident: 10.1093/ajcn/77.3.687_bib47
  article-title: Examination of the role of methylenetetrahydrofolate reductase in incorporation of methyltetrahydrofolate into cellular metabolism
  publication-title: FASEB J
  doi: 10.1096/fasebj.2.1.3335280
– volume: 39
  start-page: 263
  year: 1993
  ident: 10.1093/ajcn/77.3.687_bib28
  article-title: Homocysteine and other thiols in plasma and urine: automated determination and sample stability
  publication-title: Clin Chem
  doi: 10.1093/clinchem/39.2.263
– volume: 55
  start-page: 29
  year: 1999
  ident: 10.1093/ajcn/77.3.687_bib39
  article-title: Variability of fasting and post-methionine plasma homocysteine levels in normo- and hyperhomocysteinaemic individuals
  publication-title: Neth J Med
  doi: 10.1016/S0300-2977(99)00031-5
– volume: 76
  start-page: 180
  year: 2002
  ident: 10.1093/ajcn/77.3.687_bib23
  article-title: Methylenetetrahydrofolate reductase 677C→T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/76.1.180
– volume: 129
  start-page: 919
  year: 1999
  ident: 10.1093/ajcn/77.3.687_bib51
  article-title: Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement
  publication-title: J Nutr
  doi: 10.1093/jn/129.5.919
– year: 1992
  ident: 10.1093/ajcn/77.3.687_bib53
– volume: 47
  start-page: 1413
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib12
  article-title: Plasma homocysteine levels related to interactions between folate status and methylenetetrahydrofolate reductase: a study in 52 healthy subjects
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(98)90315-8
– volume: 96
  start-page: 412
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib15
  article-title: Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.2.412
– volume: 68
  start-page: 328
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib37
  article-title: Role of cobalamin intake and atrophic gastritis in mild cobalamin deficiency in older Dutch subjects
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/68.2.328
– volume: 20
  start-page: 1921
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib20
  article-title: Pathogenicity of thermolabile methylenetetrahydrofolate reductase for vascular dementia
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.20.8.1921
– start-page: 317
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib34
– volume: 44
  start-page: 592
  year: 1991
  ident: 10.1093/ajcn/77.3.687_bib31
  article-title: Microbiological assay for vitamin B12 performed in 96-well microtitre plates
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.44.7.592
– volume: 281
  start-page: 43
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib30
  article-title: Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)81007-5
– volume: 65
  start-page: S1220
  issue: suppl
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib32
  article-title: Adjustment for total energy intake in epidemiologic studies
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/65.4.1220S
– volume: 46
  start-page: 1065
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib13
  article-title: Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism
  publication-title: Clin Chem
  doi: 10.1093/clinchem/46.8.1065
– volume: 54
  start-page: 462
  year: 2001
  ident: 10.1093/ajcn/77.3.687_bib24
  article-title: The homocysteine distribution: (mis)judging the burden
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(00)00341-3
– volume: 43
  start-page: 414
  year: 1988
  ident: 10.1093/ajcn/77.3.687_bib4
  article-title: Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase
  publication-title: Am J Hum Genet
– volume: 44
  start-page: 186
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib41
  article-title: Whole-blood folate values in subjects with different methylenetetrahydrofolate reductase genotypes: differences between the radioassay and microbiological assays
  publication-title: Clin Chem
  doi: 10.1093/clinchem/44.1.186a
– volume: 38
  start-page: 1311
  year: 1992
  ident: 10.1093/ajcn/77.3.687_bib44
  article-title: Homocysteine export from erythrocytes and its implication for plasma sampling
  publication-title: Clin Chem
  doi: 10.1093/clinchem/38.7.1311
– volume: 42
  start-page: 1689
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib40
  article-title: Results of an international round robin for serum and whole-blood folate
  publication-title: Clin Chem
  doi: 10.1093/clinchem/42.10.1689
– volume: 26
  start-page: S49
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib26
  article-title: The Dutch EPIC food frequency questionnaire. II. Relative validity and reproducibility for nutrients
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/26.suppl_1.S49
– volume: 207
  start-page: 119
  year: 1992
  ident: 10.1093/ajcn/77.3.687_bib42
  article-title: The effect of blood sample aging and food consumption on plasma total homocysteine levels
  publication-title: Clin Chim Acta
  doi: 10.1016/0009-8981(92)90155-J
– volume: 32
  start-page: 218
  year: 1995
  ident: 10.1093/ajcn/77.3.687_bib29
  article-title: Three different methods for the determination of total homocysteine in plasma
  publication-title: Ann Clin Biochem
  doi: 10.1177/000456329503200218
– year: 1994
  ident: 10.1093/ajcn/77.3.687_bib25
– volume: 95
  start-page: 519
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib38
  article-title: Homocysteine and folate levels as risk factors for recurrent early pregnancy loss
  publication-title: Obstet Gynecol
– volume: 73
  start-page: 1027
  year: 2001
  ident: 10.1093/ajcn/77.3.687_bib33
  article-title: Association between B vitamin intake and plasma homocysteine concentration in the general Dutch population aged 20–65 y
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/73.6.1027
– start-page: 65
  year: 1990
  ident: 10.1093/ajcn/77.3.687_bib2
  article-title: Folate metabolism
– volume: 128
  start-page: 1336
  year: 1998
  ident: 10.1093/ajcn/77.3.687_bib10
  article-title: Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages
  publication-title: J Nutr
  doi: 10.1093/jn/128.8.1336
– volume: 10
  start-page: 163
  year: 2000
  ident: 10.1093/ajcn/77.3.687_bib21
  article-title: Apolipoprotein E, methylenetetrahydrofolate reductase (MTHFR) mutation and the risk of senile dementia—an epidemiological study using the polymerase chain reaction (PCR) method
  publication-title: J Epidemiol
  doi: 10.2188/jea.10.163
– volume: 51
  start-page: S46
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib36
  article-title: Folate intake and status among adults in the Netherlands
  publication-title: Eur J Clin Nutr
– volume: 74
  start-page: 691
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib48
  article-title: Decreased methylene tetrahydrofolate reductase activity due to the 677C→T mutation in families with spina bifida offspring
  publication-title: J Mol Med
  doi: 10.1007/s001090050073
– volume: 129
  start-page: 560S
  year: 1999
  ident: 10.1093/ajcn/77.3.687_bib19
  article-title: MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: an example of gene-environment interactions in colorectal tumorigenesis
  publication-title: J Nutr
  doi: 10.1093/jn/129.2.560S
– volume: 26
  start-page: S37
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib35
  article-title: The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/26.suppl_1.S37
– volume: 93
  start-page: 7
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib7
  article-title: Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.1.7
– volume: 17
  start-page: 1157
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib52
  article-title: The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes
  publication-title: Arteriol Thromb Vasc Biol
  doi: 10.1161/01.ATV.17.6.1157
– volume: 124
  start-page: 1934
  year: 1994
  ident: 10.1093/ajcn/77.3.687_bib43
  article-title: Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects
  publication-title: J Nutr
  doi: 10.1093/jn/124.10.1934
– volume: 6
  start-page: 359
  year: 1999
  ident: 10.1093/ajcn/77.3.687_bib50
  article-title: The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia
  publication-title: Nat Struct Biol
  doi: 10.1038/7594
– volume: 346
  start-page: 1070
  year: 1995
  ident: 10.1093/ajcn/77.3.687_bib8
  article-title: Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91743-8
– volume: 90
  start-page: 111
  year: 1997
  ident: 10.1093/ajcn/77.3.687_bib22
  article-title: Is the common 677C→T mutation in the methylenetetrahydrofolate reductase gene a risk factor for neural tube defects? A meta-analysis
  publication-title: QJM
  doi: 10.1093/qjmed/90.2.111
– volume: 10
  start-page: 111
  year: 1995
  ident: 10.1093/ajcn/77.3.687_bib3
  article-title: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase
  publication-title: Nat Genet
  doi: 10.1038/ng0595-111
– volume: 55
  start-page: 131
  year: 1992
  ident: 10.1093/ajcn/77.3.687_bib46
  article-title: The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/55.1.131
– volume: 94
  start-page: 2410
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib9
  article-title: Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.10.2410
– volume: 1
  start-page: 228
  year: 1990
  ident: 10.1093/ajcn/77.3.687_bib1
  article-title: Methionine metabolism in mammals
  publication-title: J Nutr Biochem
  doi: 10.1016/0955-2863(90)90070-2
– volume: 123
  start-page: 421
  year: 1994
  ident: 10.1093/ajcn/77.3.687_bib45
  article-title: Synthesis and transsulfuration of homocysteine in blood
  publication-title: J Lab Clin Med
– volume: 52
  start-page: 101
  year: 1994
  ident: 10.1093/ajcn/77.3.687_bib49
  article-title: The methylfolate axis in neural tube defects: in vitro characterisation and clinical investigation
  publication-title: Biochem Med Metab Biol
  doi: 10.1006/bmmb.1994.1040
– volume: 89
  start-page: 571
  year: 1996
  ident: 10.1093/ajcn/77.3.687_bib11
  article-title: The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia
  publication-title: QJM
  doi: 10.1093/qjmed/89.8.571
SSID ssj0012486
Score 2.145532
Snippet Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the...
Background: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677CT polymorphism decreases...
Background: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C to T polymorphism...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 687
SubjectTerms Adult
Aged
Biological and medical sciences
Cohort Studies
Cross-Sectional Studies
dietary surveys
Feeding. Feeding behavior
Female
folic acid
Folic Acid - administration & dosage
Folic Acid - blood
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Genotype
homocysteine
Homocysteine - blood
Human
human nutrition
Humans
Male
men
Metabolism
methionine
methylenetetrahydrofolate reductase
Methylenetetrahydrofolate Reductase (NADPH2)
Middle Aged
Mutation
Netherlands
nutrient intake
nutrition-genotype interaction
nutritional status
Oxidoreductases Acting on CH-NH Group Donors - genetics
Oxidoreductases Acting on CH-NH Group Donors - metabolism
Plasma
Polymorphism, Genetic
Population genetics, reproduction patterns
pyridoxine
riboflavin
Surveys and Questionnaires
Vertebrates: anatomy and physiology, studies on body, several organs or systems
women
Title Effect of the methylenetetrahydrofolate reductase 677C→T mutation on the relations among folate intake and plasma folate and homocysteine concentrations in a general population sample
URI https://www.ncbi.nlm.nih.gov/pubmed/12600862
https://www.proquest.com/docview/231933266
https://www.proquest.com/docview/49159232
https://www.proquest.com/docview/73035343
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkBASQjBuZTD8AHsp6do4tRMhIU2l04C28JCKvUWO62hdaVq16cP4Zfw8zomdSzWKAKmqKl9qJcefzzk-N0JeBxOPMc0DR8YxJtV2EwfkuMABztkWAZexTNCiOxzx87H36aJ7sXfrXc1raZPFLfXjt3El_0NVaAO6YpTsP1C2_FNogN9AX_gGCsP3X9HYph62Zn4sBn0NTATE4AyOkOsJHLGguGZYGAWzugK_anIhes4b1g-b8431MzTWAhvUgo4zpv6QnTpNMzkzJoYlCNpzWXRgy-VivlCYChpFVYUBkKnNwpt72Uqsz4x3Xs1lWSasuZaYj7guE4dVcEtaz2RRBm2mRcWAYndM0KfBeBCdolPudFYyF7z_U5eblTlNvzWH-allPMvNvcPVYjXTzhC9yG36hFQ7g2llpBqhOQFE8zxCAcO7MN3G1022dUHCKg-xWkwCHpY1N9he8QSj4gluuJ7mvAKEZ2Nz14Y9BMAemGvq9Bb8w5ahmdavF3JmwI0ocYNJmQRe8kohIxaixVp25HY68NGX6Gw8GERh_yLc7jXiB5yloNxj7OJtV4DgiBrBx8-lCc318jKn5WPYBLOw-AkufVIsvCWQ3VvKNbyWxBR12a115dJX-IDct2oTPTUYeEj2dHpAGh_gTdNjWrxmWr7mA3JnaJ1GHpGfBiZ0kVDY6HQnTGgJE5rD5H1IC5BQ-ODcEiQ0Bwm1Ew1IKECCGpAUHdhSBwndBglMpJJakNAKJNSA5DEZn_XD3rljC5Y4yg3czPFi4WpfB5y7ngKKtLmrFKajEm4sO3EyYW3tC9eXHWiOO92405n4upvoWEilQPZ4QvbTRaqfESo7iUi8LrBb9I1gbZgugcoqDhLf51w0yNuCapGy2fyxqMz3yHiVsAiJHAkRsQiI3CDH5fClSWOza-DR1haoRnscNAPuNchhsScieySsI1ASAwaKIG-QV2Uv8Ck0PspULzbryAvg-Af1bfcIkDVYl3msQZ6arVatjVU0fO4-_-Pah-RuBf8XZD9bbfRL0Biy-ChHxi8xhSME
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+methylenetetrahydrofolate+reductase+677C-%3ET+mutation+on+the+relations+among+folate+intake+and+plasma+folate+and+homocysteine+concentrations+in+a+general+population+sample&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=de+Bree%2C+Angelika&rft.au=Verschuren%2C+W+M+Monique&rft.au=Bjorke-Monsen%2C+Anne-Lise&rft.au=Nathalie+M+J+van+der+Put&rft.date=2003-03-01&rft.pub=American+Society+for+Clinical+Nutrition%2C+Inc&rft.issn=0002-9165&rft.eissn=1938-3207&rft.volume=77&rft.issue=3&rft.spage=687&rft_id=info:doi/10.1093%2Fajcn%2F77.3.687&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=301754901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon