Intelligent Interpretation of Dissolved Gases in Transformer Oil With Electronic Nose and Machine Learning
Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized...
Saved in:
| Published in | IEEE transactions on industrial informatics Vol. 21; no. 4; pp. 2839 - 2848 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-3203 1941-0050 |
| DOI | 10.1109/TII.2024.3507943 |
Cover
| Abstract | Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations. |
|---|---|
| AbstractList | Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations. Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations. |
| Author | Govindarajan, Suganya Diaz, Cristhian Camilo Delgado Devarajan, Harimurugan Cerda-Luna, Matias Patricio Ardila-Rey, Jorge Alfredo Araya, Sergi Leandro Torres |
| Author_xml | – sequence: 1 givenname: Suganya orcidid: 0000-0003-3776-367X surname: Govindarajan fullname: Govindarajan, Suganya email: suganyasaravanan46@gmail.com organization: Department of Electrical and Electronics Engineering, Kings College of Engineering, Pudukkottai, India – sequence: 2 givenname: Harimurugan orcidid: 0000-0003-1538-1822 surname: Devarajan fullname: Devarajan, Harimurugan email: harimur@gmail.com organization: Department of Electrical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India – sequence: 3 givenname: Jorge Alfredo orcidid: 0000-0001-8811-2274 surname: Ardila-Rey fullname: Ardila-Rey, Jorge Alfredo email: jorge.ardila@usm.cl organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile – sequence: 4 givenname: Matias Patricio orcidid: 0000-0003-4429-2124 surname: Cerda-Luna fullname: Cerda-Luna, Matias Patricio email: matias.cerda@usm.cl organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile – sequence: 5 givenname: Sergi Leandro Torres orcidid: 0009-0001-8708-3878 surname: Araya fullname: Araya, Sergi Leandro Torres email: sergi.torres@sansano.usm.cl organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile – sequence: 6 givenname: Cristhian Camilo Delgado orcidid: 0009-0000-3997-2147 surname: Diaz fullname: Diaz, Cristhian Camilo Delgado email: cdelgadod@usm.cl organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile |
| BookMark | eNp9kD1PAzEMhiNUJKCwMzBEYr7iXC6XZkR8lEqFLkWMpzTnlFRHUpIUiX_PVe2AGPBiD-9jy88ZGfjgkZBLBiPGQN0sptNRCWU14gKkqvgROWWqYgWAgEE_C8EKXgI_IWcprQG4BK5OyXrqM3adW6HPdDfHTcSsswueBkvvXUqh-8KWTnTCRJ2ni6h9siF-YKRz19E3l9_pQ4cmx-CdoS8hIdW-pc_avDuPdIY6eudX5-TY6i7hxaEPyevjw-LuqZjNJ9O721lhSlXmopJWiJaB7Mu2SyW1rJQ1S6trCWKpa7DK6NYyxWppWlOVZalapsfGSJCAfEiu93s3MXxuMeVmHbbR9ycbzsY1V2LMRZ-q9ykTQ0oRbWPc_u8ctesaBs3Oa9N7bXZem4PXHoQ_4Ca6Dx2__0Ou9ohDxF_xMa8Zr_gPHyaGFg |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_JSEN_2025_3538157 |
| Cites_doi | 10.1109/JSEN.2022.3149409 10.1109/JSEN.2020.3000070 10.1016/j.snb.2008.07.018 10.1007/s11694-013-9162-3 10.1109/ACCESS.2021.3090165 10.1016/j.chemolab.2015.03.010 10.1039/C6AY02610A 10.1109/ACCESS.2019.2941473 10.1109/ACCESS.2018.2810198 10.1016/j.cosrev.2021.100378 10.1109/TDEI.2021.009470 10.1109/JSEN.2020.3000756 10.1109/TIM.2023.3307177 10.1016/j.snb.2007.09.060 10.1016/j.jfoodeng.2014.07.019 10.1038/s41587-020-00809-z 10.1109/JSEN.2022.3176647 10.1109/JSEN.2021.3061616 10.1016/j.snb.2007.01.013 10.1109/TDEI.2017.006727 10.1049/iet-gtd.2016.0886 10.1109/JSEN.2022.3182480 10.1016/j.epsr.2022.109064 10.1016/j.asoc.2021.107541 10.1109/TDEI.2022.3215936 10.1109/TIE.2017.2772184 10.1109/TDEI.2023.3278623 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2024.3507943 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 2848 |
| ExternalDocumentID | 10_1109_TII_2024_3507943 10836134 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Tremendous Effort of Elohim G. and the Genesis – fundername: Agencia Nacional de Investigación y Desarrollo grantid: 1230135; TA24I10002 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-47f55d107777fdb97a749fcbfa6705ba60f9cadf19167cdc42229d1a8cc7070e3 |
| IEDL.DBID | RIE |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:13:11 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Oct 01 06:35:00 EDT 2025 Wed Aug 27 02:04:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-47f55d107777fdb97a749fcbfa6705ba60f9cadf19167cdc42229d1a8cc7070e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-8708-3878 0000-0003-4429-2124 0000-0003-1538-1822 0000-0003-3776-367X 0000-0001-8811-2274 0009-0000-3997-2147 |
| PQID | 3186395835 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TII_2024_3507943 proquest_journals_3186395835 ieee_primary_10836134 crossref_citationtrail_10_1109_TII_2024_3507943 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 Surendran (ref25) 2015; 6 ref1 ref17 ref16 ref18 (ref19) 2009; 5 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1109/JSEN.2022.3149409 – ident: ref11 doi: 10.1109/JSEN.2020.3000070 – ident: ref22 doi: 10.1016/j.snb.2008.07.018 – ident: ref20 doi: 10.1007/s11694-013-9162-3 – ident: ref8 doi: 10.1109/ACCESS.2021.3090165 – ident: ref21 doi: 10.1016/j.chemolab.2015.03.010 – ident: ref24 doi: 10.1039/C6AY02610A – ident: ref13 doi: 10.1109/ACCESS.2019.2941473 – ident: ref28 doi: 10.1109/ACCESS.2018.2810198 – ident: ref27 doi: 10.1016/j.cosrev.2021.100378 – ident: ref7 doi: 10.1109/TDEI.2021.009470 – ident: ref23 doi: 10.1109/JSEN.2020.3000756 – ident: ref16 doi: 10.1109/TIM.2023.3307177 – ident: ref14 doi: 10.1016/j.snb.2007.09.060 – ident: ref9 doi: 10.1016/j.jfoodeng.2014.07.019 – ident: ref26 doi: 10.1038/s41587-020-00809-z – ident: ref17 doi: 10.1109/JSEN.2022.3176647 – ident: ref10 doi: 10.1109/JSEN.2021.3061616 – ident: ref15 doi: 10.1016/j.snb.2007.01.013 – ident: ref4 doi: 10.1109/TDEI.2017.006727 – ident: ref5 doi: 10.1049/iet-gtd.2016.0886 – ident: ref18 doi: 10.1109/JSEN.2022.3182480 – volume: 5 year: 2009 ident: ref19 article-title: Standard test method for analysis of gases dissolved in electrical insulating oil by gas chromatography publication-title: Methods – ident: ref1 doi: 10.1016/j.epsr.2022.109064 – volume: 6 start-page: 2354 issue: 3 year: 2015 ident: ref25 article-title: A review of various linear and non linear dimensionality reduction techniques publication-title: Int. J. Comput. Sci. Inf. Technol. – ident: ref29 doi: 10.1016/j.asoc.2021.107541 – ident: ref6 doi: 10.1109/TDEI.2022.3215936 – ident: ref12 doi: 10.1109/TIE.2017.2772184 – ident: ref3 doi: 10.1109/TDEI.2023.3278623 |
| SSID | ssj0037039 |
| Score | 2.4341645 |
| Snippet | Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2839 |
| SubjectTerms | Accuracy Acetylene Classification Condition monitoring Dielectric oil Dissolved gas analysis Dissolved gases electronic nose Electronic noses Ethane Gas analysis Gases Genetic algorithms Machine learning Metal oxide semiconductors Mineral oils Minerals Monitoring Oil insulation Oils Pollution measurement power transformer Sensor arrays Support vector machines Transformers |
| Title | Intelligent Interpretation of Dissolved Gases in Transformer Oil With Electronic Nose and Machine Learning |
| URI | https://ieeexplore.ieee.org/document/10836134 https://www.proquest.com/docview/3186395835 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxaGlCS243hE0EKRWpYi2CLHPkMBpYimDPx6bCepCgiEJw-2ZOk738O--w6hY8ZFKiJtgijWLKA0VEGaUgiIVDpXPIohdMXJ_UFydUuv79l9Xazua2EAwCefQdtN_V--HqupeyqzNzwl1vzQRbTI06Qq1mrULrGiKzw5KosCEoek-ZMMxemw17ORYEzbxHo_gpIvNsg3Vfmhib156a6hQXOwKqvkuT0t87b6-MbZ-O-Tr6PV2tHEZ5VkbKAFKDbRyhz94BZ66s34OEv8NfsQjw2-GDnBfAeNL62pm-BRgYeNmwtv-Gb0gu9G5SPuzDrp4MF4AlgWGvd9jibgmr71YRvddjvD86ug7r0QqFjEZUC5YUzb2NAOo3PBJafCqNzIhIcsl0lohJLa2HAv4Uor95IkdCRTpbjVIkB20FIxLmAXYRezqdTkKtIxNVxLIMYGKRJUDkYY1kKnDRqZqonJXX-Ml8wHKKHILH6Zwy-r8Wuhk9mO14qU44-12w6OuXUVEi100CCe1dd2klkFZz02Zr3SvV-27aPl2HUA9rk7B2ipfJvCoXVLyvzIi-Mnxj7fZw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5icGAcNmBMdOvABy4cUpLYruPjtJW1QMulaNwix36GDpQimu6wv362k1QwtGk--WBLlr7n98N-73sAR1zITCbGRklqeMRYrKMsYxhRpU2hRZJi7IuTx5P-8IqdXfPrplg91MIgYkg-w56fhr98M9dL_1TmbnhGnflhr2CDM8Z4Xa7VKl7qhFcGelSeRDSNafsrGcuT6WjkYsGU9ajzfySjz6xQaKvyQhcHA3P6Fibt0eq8krvesip6-tcfrI3_ffZteNO4muRzLRs7sIblLmw9ISB8Bz9GK0bOijzPPyRzS77OvGj-REO-OWO3ILOSTFtHFx_J5eyefJ9Vt2Sw6qVDJvMFElUaMg5ZmkgaAtebPbg6HUy_DKOm-0KkU5lWEROWc-OiQzesKaRQgkmrC6v6IuaF6sdWamWsC_j6Qhvt35KkSVSmtXB6BOl7WC_nJe4D8VGbzmyhE5MyK4xCal2YolAXaKXlHThp0ch1Q03uO2Tc5yFEiWXu8Ms9fnmDXweOVzsealqOf6zd83A8WVcj0YFui3jeXNxF7lSc89m480s__GXbIWwOp-OL_GI0Of8Ir1PfDzhk8nRhvXpc4ifnpFTFQRDN358Q4rQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Interpretation+of+Dissolved+Gases+in+Transformer+Oil+With+Electronic+Nose+and+Machine+Learning&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Govindarajan%2C+Suganya&rft.au=Devarajan%2C+Harimurugan&rft.au=Ardila-Rey%2C+Jorge+Alfredo&rft.au=Cerda-Luna%2C+Matias+Patricio&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=21&rft.issue=4&rft.spage=2839&rft.epage=2848&rft_id=info:doi/10.1109%2FTII.2024.3507943&rft.externalDocID=10836134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |