Intelligent Interpretation of Dissolved Gases in Transformer Oil With Electronic Nose and Machine Learning

Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 21; no. 4; pp. 2839 - 2848
Main Authors Govindarajan, Suganya, Devarajan, Harimurugan, Ardila-Rey, Jorge Alfredo, Cerda-Luna, Matias Patricio, Araya, Sergi Leandro Torres, Diaz, Cristhian Camilo Delgado
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2024.3507943

Cover

Abstract Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations.
AbstractList Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations.
Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its high cost and time-consuming nature limit practical use. To address this, a metal-oxide semiconductor based electronic nose (E-nose) is utilized in this study to detect gases in transformer oil, including hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2). Machine learning techniques are integrated with the E-nose system to enhance classification performance. Experimental results using artificially contaminated mineral oil samples demonstrate promising accuracy in gas classification. Initially, without feature reduction, the F1 score was 0.2972. Feature ranking increased the F1 score to 0.7956, and after implementing dimensionality reduction, it further improved to 0.9313. Subsequently, the combination of support vector machine and genetic algorithm was employed for sensor selection, achieving an F1 score of 0.9869. Among the combinations of 2, 3, and 4 sensors, MQ 8 and TGS 2612 consistently showed the best F1 scores, with TGS 813 and TGS 2611 also contributing significantly. This innovative approach suggests a potential solution for transformer oil condition monitoring, offering a rapid, simple, and cost-effective alternative to traditional DGA analyses. By combining E-nose technology with machine learning, this method holds promise for facilitating routine measurements and ensuring the reliability and efficiency of transformer operations.
Author Govindarajan, Suganya
Diaz, Cristhian Camilo Delgado
Devarajan, Harimurugan
Cerda-Luna, Matias Patricio
Ardila-Rey, Jorge Alfredo
Araya, Sergi Leandro Torres
Author_xml – sequence: 1
  givenname: Suganya
  orcidid: 0000-0003-3776-367X
  surname: Govindarajan
  fullname: Govindarajan, Suganya
  email: suganyasaravanan46@gmail.com
  organization: Department of Electrical and Electronics Engineering, Kings College of Engineering, Pudukkottai, India
– sequence: 2
  givenname: Harimurugan
  orcidid: 0000-0003-1538-1822
  surname: Devarajan
  fullname: Devarajan, Harimurugan
  email: harimur@gmail.com
  organization: Department of Electrical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India
– sequence: 3
  givenname: Jorge Alfredo
  orcidid: 0000-0001-8811-2274
  surname: Ardila-Rey
  fullname: Ardila-Rey, Jorge Alfredo
  email: jorge.ardila@usm.cl
  organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile
– sequence: 4
  givenname: Matias Patricio
  orcidid: 0000-0003-4429-2124
  surname: Cerda-Luna
  fullname: Cerda-Luna, Matias Patricio
  email: matias.cerda@usm.cl
  organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile
– sequence: 5
  givenname: Sergi Leandro Torres
  orcidid: 0009-0001-8708-3878
  surname: Araya
  fullname: Araya, Sergi Leandro Torres
  email: sergi.torres@sansano.usm.cl
  organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile
– sequence: 6
  givenname: Cristhian Camilo Delgado
  orcidid: 0009-0000-3997-2147
  surname: Diaz
  fullname: Diaz, Cristhian Camilo Delgado
  email: cdelgadod@usm.cl
  organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile
BookMark eNp9kD1PAzEMhiNUJKCwMzBEYr7iXC6XZkR8lEqFLkWMpzTnlFRHUpIUiX_PVe2AGPBiD-9jy88ZGfjgkZBLBiPGQN0sptNRCWU14gKkqvgROWWqYgWAgEE_C8EKXgI_IWcprQG4BK5OyXrqM3adW6HPdDfHTcSsswueBkvvXUqh-8KWTnTCRJ2ni6h9siF-YKRz19E3l9_pQ4cmx-CdoS8hIdW-pc_avDuPdIY6eudX5-TY6i7hxaEPyevjw-LuqZjNJ9O721lhSlXmopJWiJaB7Mu2SyW1rJQ1S6trCWKpa7DK6NYyxWppWlOVZalapsfGSJCAfEiu93s3MXxuMeVmHbbR9ycbzsY1V2LMRZ-q9ykTQ0oRbWPc_u8ctesaBs3Oa9N7bXZem4PXHoQ_4Ca6Dx2__0Ou9ohDxF_xMa8Zr_gPHyaGFg
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JSEN_2025_3538157
Cites_doi 10.1109/JSEN.2022.3149409
10.1109/JSEN.2020.3000070
10.1016/j.snb.2008.07.018
10.1007/s11694-013-9162-3
10.1109/ACCESS.2021.3090165
10.1016/j.chemolab.2015.03.010
10.1039/C6AY02610A
10.1109/ACCESS.2019.2941473
10.1109/ACCESS.2018.2810198
10.1016/j.cosrev.2021.100378
10.1109/TDEI.2021.009470
10.1109/JSEN.2020.3000756
10.1109/TIM.2023.3307177
10.1016/j.snb.2007.09.060
10.1016/j.jfoodeng.2014.07.019
10.1038/s41587-020-00809-z
10.1109/JSEN.2022.3176647
10.1109/JSEN.2021.3061616
10.1016/j.snb.2007.01.013
10.1109/TDEI.2017.006727
10.1049/iet-gtd.2016.0886
10.1109/JSEN.2022.3182480
10.1016/j.epsr.2022.109064
10.1016/j.asoc.2021.107541
10.1109/TDEI.2022.3215936
10.1109/TIE.2017.2772184
10.1109/TDEI.2023.3278623
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3507943
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2848
ExternalDocumentID 10_1109_TII_2024_3507943
10836134
Genre orig-research
GrantInformation_xml – fundername: Tremendous Effort of Elohim G. and the Genesis
– fundername: Agencia Nacional de Investigación y Desarrollo
  grantid: 1230135; TA24I10002
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-47f55d107777fdb97a749fcbfa6705ba60f9cadf19167cdc42229d1a8cc7070e3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:13:11 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Oct 01 06:35:00 EDT 2025
Wed Aug 27 02:04:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-47f55d107777fdb97a749fcbfa6705ba60f9cadf19167cdc42229d1a8cc7070e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-8708-3878
0000-0003-4429-2124
0000-0003-1538-1822
0000-0003-3776-367X
0000-0001-8811-2274
0009-0000-3997-2147
PQID 3186395835
PQPubID 85507
PageCount 10
ParticipantIDs crossref_primary_10_1109_TII_2024_3507943
proquest_journals_3186395835
ieee_primary_10836134
crossref_citationtrail_10_1109_TII_2024_3507943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
Surendran (ref25) 2015; 6
ref1
ref17
ref16
ref18
(ref19) 2009; 5
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/JSEN.2022.3149409
– ident: ref11
  doi: 10.1109/JSEN.2020.3000070
– ident: ref22
  doi: 10.1016/j.snb.2008.07.018
– ident: ref20
  doi: 10.1007/s11694-013-9162-3
– ident: ref8
  doi: 10.1109/ACCESS.2021.3090165
– ident: ref21
  doi: 10.1016/j.chemolab.2015.03.010
– ident: ref24
  doi: 10.1039/C6AY02610A
– ident: ref13
  doi: 10.1109/ACCESS.2019.2941473
– ident: ref28
  doi: 10.1109/ACCESS.2018.2810198
– ident: ref27
  doi: 10.1016/j.cosrev.2021.100378
– ident: ref7
  doi: 10.1109/TDEI.2021.009470
– ident: ref23
  doi: 10.1109/JSEN.2020.3000756
– ident: ref16
  doi: 10.1109/TIM.2023.3307177
– ident: ref14
  doi: 10.1016/j.snb.2007.09.060
– ident: ref9
  doi: 10.1016/j.jfoodeng.2014.07.019
– ident: ref26
  doi: 10.1038/s41587-020-00809-z
– ident: ref17
  doi: 10.1109/JSEN.2022.3176647
– ident: ref10
  doi: 10.1109/JSEN.2021.3061616
– ident: ref15
  doi: 10.1016/j.snb.2007.01.013
– ident: ref4
  doi: 10.1109/TDEI.2017.006727
– ident: ref5
  doi: 10.1049/iet-gtd.2016.0886
– ident: ref18
  doi: 10.1109/JSEN.2022.3182480
– volume: 5
  year: 2009
  ident: ref19
  article-title: Standard test method for analysis of gases dissolved in electrical insulating oil by gas chromatography
  publication-title: Methods
– ident: ref1
  doi: 10.1016/j.epsr.2022.109064
– volume: 6
  start-page: 2354
  issue: 3
  year: 2015
  ident: ref25
  article-title: A review of various linear and non linear dimensionality reduction techniques
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– ident: ref29
  doi: 10.1016/j.asoc.2021.107541
– ident: ref6
  doi: 10.1109/TDEI.2022.3215936
– ident: ref12
  doi: 10.1109/TIE.2017.2772184
– ident: ref3
  doi: 10.1109/TDEI.2023.3278623
SSID ssj0037039
Score 2.4341645
Snippet Dissolved gas analysis (DGA) is crucial for identifying incipient failures in transformers by analyzing gas concentrations due to degradation. However, its...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2839
SubjectTerms Accuracy
Acetylene
Classification
Condition monitoring
Dielectric oil
Dissolved gas analysis
Dissolved gases
electronic nose
Electronic noses
Ethane
Gas analysis
Gases
Genetic algorithms
Machine learning
Metal oxide semiconductors
Mineral oils
Minerals
Monitoring
Oil insulation
Oils
Pollution measurement
power transformer
Sensor arrays
Support vector machines
Transformers
Title Intelligent Interpretation of Dissolved Gases in Transformer Oil With Electronic Nose and Machine Learning
URI https://ieeexplore.ieee.org/document/10836134
https://www.proquest.com/docview/3186395835
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxaGlCS243hE0EKRWpYi2CLHPkMBpYimDPx6bCepCgiEJw-2ZOk738O--w6hY8ZFKiJtgijWLKA0VEGaUgiIVDpXPIohdMXJ_UFydUuv79l9Xazua2EAwCefQdtN_V--HqupeyqzNzwl1vzQRbTI06Qq1mrULrGiKzw5KosCEoek-ZMMxemw17ORYEzbxHo_gpIvNsg3Vfmhib156a6hQXOwKqvkuT0t87b6-MbZ-O-Tr6PV2tHEZ5VkbKAFKDbRyhz94BZ66s34OEv8NfsQjw2-GDnBfAeNL62pm-BRgYeNmwtv-Gb0gu9G5SPuzDrp4MF4AlgWGvd9jibgmr71YRvddjvD86ug7r0QqFjEZUC5YUzb2NAOo3PBJafCqNzIhIcsl0lohJLa2HAv4Uor95IkdCRTpbjVIkB20FIxLmAXYRezqdTkKtIxNVxLIMYGKRJUDkYY1kKnDRqZqonJXX-Ml8wHKKHILH6Zwy-r8Wuhk9mO14qU44-12w6OuXUVEi100CCe1dd2klkFZz02Zr3SvV-27aPl2HUA9rk7B2ipfJvCoXVLyvzIi-Mnxj7fZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5icGAcNmBMdOvABy4cUpLYruPjtJW1QMulaNwix36GDpQimu6wv362k1QwtGk--WBLlr7n98N-73sAR1zITCbGRklqeMRYrKMsYxhRpU2hRZJi7IuTx5P-8IqdXfPrplg91MIgYkg-w56fhr98M9dL_1TmbnhGnflhr2CDM8Z4Xa7VKl7qhFcGelSeRDSNafsrGcuT6WjkYsGU9ajzfySjz6xQaKvyQhcHA3P6Fibt0eq8krvesip6-tcfrI3_ffZteNO4muRzLRs7sIblLmw9ISB8Bz9GK0bOijzPPyRzS77OvGj-REO-OWO3ILOSTFtHFx_J5eyefJ9Vt2Sw6qVDJvMFElUaMg5ZmkgaAtebPbg6HUy_DKOm-0KkU5lWEROWc-OiQzesKaRQgkmrC6v6IuaF6sdWamWsC_j6Qhvt35KkSVSmtXB6BOl7WC_nJe4D8VGbzmyhE5MyK4xCal2YolAXaKXlHThp0ch1Q03uO2Tc5yFEiWXu8Ms9fnmDXweOVzsealqOf6zd83A8WVcj0YFui3jeXNxF7lSc89m480s__GXbIWwOp-OL_GI0Of8Ir1PfDzhk8nRhvXpc4ifnpFTFQRDN358Q4rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Interpretation+of+Dissolved+Gases+in+Transformer+Oil+With+Electronic+Nose+and+Machine+Learning&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Govindarajan%2C+Suganya&rft.au=Devarajan%2C+Harimurugan&rft.au=Ardila-Rey%2C+Jorge+Alfredo&rft.au=Cerda-Luna%2C+Matias+Patricio&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=21&rft.issue=4&rft.spage=2839&rft.epage=2848&rft_id=info:doi/10.1109%2FTII.2024.3507943&rft.externalDocID=10836134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon