SmartMocap: Joint Estimation of Human and Camera Motion Using Uncalibrated RGB Cameras

Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 8; no. 6; pp. 3206 - 3213
Main Authors Saini, Nitin, Huang, Chun-Hao P., Black, Michael J., Ahmad, Aamir
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2023.3264743

Cover

Abstract Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera.
AbstractList Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera.
Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences ([Formula Omitted]1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera.
Author Saini, Nitin
Huang, Chun-Hao P.
Ahmad, Aamir
Black, Michael J.
Author_xml – sequence: 1
  givenname: Nitin
  orcidid: 0000-0001-6434-8899
  surname: Saini
  fullname: Saini, Nitin
  email: nitin.saini@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 2
  givenname: Chun-Hao P.
  orcidid: 0000-0002-1268-6527
  surname: Huang
  fullname: Huang, Chun-Hao P.
  email: chunhao.huang@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 3
  givenname: Michael J.
  orcidid: 0000-0001-6077-4540
  surname: Black
  fullname: Black, Michael J.
  email: black@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 4
  givenname: Aamir
  orcidid: 0000-0002-0727-3031
  surname: Ahmad
  fullname: Ahmad, Aamir
  email: aamir.ahmad@ifr.uni-stuttgart.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
BookMark eNp9kE1PAjEQhhuDiYjcPXho4nmx3931hgRBAzFB8dqUbtcsYVtsy8F_7_JxIB68zExm3ncm81yDjvPOAnCL0QBjVDzMFsMBQYQOKBFMMnoBuoRKmVEpROesvgL9GNcIIcyJpAXvgs_3Roc090ZvH-Grr12C45jqRqfaO-grON012kHtSjjSjQ0azv1htIy1-4JLZ_SmXgWdbAkXk6eTKN6Ay0pvou2fcg8sn8cfo2k2e5u8jIazzJCCpIyxknMkclxKraXeR0GIodIwK1Zl28M0r6w1fFWZPMeGmwrlXBQ4p5rxgvbA_XHvNvjvnY1Jrf0uuPakIjmiiGNGaKsSR5UJPsZgK2XqdPgwBV1vFEZqj1G1GNUeozphbI3oj3EbWjbh5z_L3dFSW2vP5KigiEn6C80Dfhw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3453277
crossref_primary_10_1016_j_cviu_2024_104190
crossref_primary_10_1109_LRA_2024_3366418
Cites_doi 10.1007/978-3-031-19842-7_38
10.1109/CVPR.2009.5206859
10.1109/ICCV.2019.00091
10.1007/978-3-030-66096-3_37
10.1109/ICCV48922.2021.01129
10.1109/LRA.2020.3013906
10.1109/CVPR.2016.90
10.1111/cgf.12519
10.1109/CVPRW.2018.00230
10.1109/TPAMI.2019.2929257
10.1109/ICCV.2019.00554
10.1109/CVPR52688.2022.01292
10.1109/CVPR.2019.01123
10.1145/1073204.1073207
10.1109/CVPR52688.2022.01076
10.1145/2816795.2818013
10.1109/ICCV48922.2021.01094
10.1109/3DV.2017.00055
10.1109/CVPR.2019.00589
10.1109/ICCV.2019.00781
10.1109/3DV.2019.00042
10.1109/LRA.2022.3145494
10.1109/3DV53792.2021.00080
10.1109/CVPR.2018.00744
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2023.3264743
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3213
ExternalDocumentID 10_1109_LRA_2023_3264743
10093047
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-44d550681d7aa7ad7aa622c37c4e6bdaa7138feec5bfc881c5cf08569183a4593
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Jun 29 15:33:34 EDT 2025
Wed Oct 01 04:32:36 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-44d550681d7aa7ad7aa622c37c4e6bdaa7138feec5bfc881c5cf08569183a4593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6434-8899
0000-0002-0727-3031
0000-0002-1268-6527
0000-0001-6077-4540
PQID 2803051423
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2803051423
ieee_primary_10093047
crossref_citationtrail_10_1109_LRA_2023_3264743
crossref_primary_10_1109_LRA_2023_3264743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
guan (ref17) 0
(ref28) 2021
ref11
ref10
ref2
(ref29) 2016
ref1
ref16
ref19
ref18
kingma (ref24) 0
ref23
ref26
fu (ref25) 0; 1
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1007/978-3-031-19842-7_38
– ident: ref16
  doi: 10.1109/CVPR.2009.5206859
– ident: ref1
  doi: 10.1109/ICCV.2019.00091
– volume: 1
  start-page: 240
  year: 0
  ident: ref25
  article-title: Cyclical annealing schedule: A simple approach to mitigating KL vanishing
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Human Lang Technol
– ident: ref26
  doi: 10.1007/978-3-030-66096-3_37
– year: 2021
  ident: ref28
  article-title: Opencamera-sensors android application
– ident: ref5
  doi: 10.1109/ICCV48922.2021.01129
– year: 0
  ident: ref24
  article-title: Auto-encoding variational bayes
  publication-title: Proc 2nd Int Conf Learn Representations
– ident: ref3
  doi: 10.1109/LRA.2020.3013906
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1111/cgf.12519
– ident: ref11
  doi: 10.1109/CVPRW.2018.00230
– ident: ref7
  doi: 10.1109/TPAMI.2019.2929257
– start-page: 1381
  year: 0
  ident: ref17
  article-title: Estimating human shape and pose from a single image
  publication-title: Proc IEEE 12th Int Conf Comput Vis
– ident: ref4
  doi: 10.1109/ICCV.2019.00554
– ident: ref27
  doi: 10.1109/CVPR52688.2022.01292
– ident: ref2
  doi: 10.1109/CVPR.2019.01123
– ident: ref18
  doi: 10.1145/1073204.1073207
– ident: ref21
  doi: 10.1109/CVPR52688.2022.01076
– year: 2016
  ident: ref29
  article-title: Distance between rotations
– ident: ref6
  doi: 10.1145/2816795.2818013
– ident: ref8
  doi: 10.1109/ICCV48922.2021.01094
– ident: ref10
  doi: 10.1109/3DV.2017.00055
– ident: ref22
  doi: 10.1109/CVPR.2019.00589
– ident: ref9
  doi: 10.1109/ICCV.2019.00781
– ident: ref13
  doi: 10.1109/3DV.2019.00042
– ident: ref15
  doi: 10.1109/LRA.2022.3145494
– ident: ref12
  doi: 10.1109/3DV53792.2021.00080
– ident: ref19
  doi: 10.1109/CVPR.2018.00744
SSID ssj0001527395
Score 2.3113546
Snippet Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3206
SubjectTerms Biological system modeling
Calibration
Cameras
Coordinates
deep learning for visual perception
Gesture
Ground plane
Human body
human detection and tracking
Human motion
Motion capture
Optimization
posture and facial expressions
Robot vision systems
Sequences
Shape
Trajectory
Title SmartMocap: Joint Estimation of Human and Camera Motion Using Uncalibrated RGB Cameras
URI https://ieeexplore.ieee.org/document/10093047
https://www.proquest.com/docview/2803051423
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: KQ8
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwLKJQkAcWhqRx4rzYStVSVbRDoahb5DiOhIC0ounCwG_n7CRQQCCWKIrsyPLZvu_Od98BnNM4SASqFiNkPDWYn1KDS0oNyRDLosLmQiqH_mjsDaZsOHNnZbK6zoWRUurgM2mqV32Xn8zFSrnKcIej_W0xvwY1P_CKZK1Ph4qiEgvd6irSCts3k46pqoObCFGYz5wvqkfXUvlxAGut0t-BcTWeIpjk0VzlsSlev1E1_nvAu7Bd4kvSKRbEHmzIbB-21lgHD-D-9hnXywiV2OKSDOcPWU56uNGLHEYyT4l27BOeJaTLlc-KjHSpH6LDC8g0Q7EqIxuxKplcX5WNlg2Y9nt33YFRllcwhB3aucFYguaJh4DV59zn6unZtnB8waQXJ_iNOkEqpXDjVAQBFa5IEaB5IZ4CnLmhcwj1bJ7JIyBotKjbZOq5XJH7yDDgCDQsTlNhMZomTWhXMx-JkntclcB4irQNYoURyipSsopKWTXh4qPHouDd-KNtQ039Wrti1pvQqqQblTtzGalqXIrz3XaOf-l2Apvq70U8WAvq-ctKniLyyOMzqI3eemd63b0D0O7U3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLQ0KcOC-2UhVKaTuUFnWLHMeREJBWNF349ZydFAoIxBJFka1YPtv33fnuO4AzGgeJQNVihIynBvNTanBJqSEZYllU2FxI5dDv9rzWkLVH7qhMVte5MFJKHXwmTfWq7_KTsZgpVxnucLS_LeYvw4rLGHOLdK1Pl4oiEwvd-WWkFV50-nVT1Qc3EaQwnzlflI-upvLjCNZ65XoTevMRFeEkT-Ysj03x9o2s8d9D3oKNEmGSerEktmFJZjuwvsA7uAsP9y-4YrqoxiaXpD1-zHLSxK1eZDGScUq0a5_wLCENrrxWpKuL_RAdYECGGQpWmdmIVkn_5qpsNN2D4XVz0GgZZYEFQ9ihnRuMJWigeAhZfc59rp6ebQvHF0x6cYLfqBOkUgo3TkUQUOGKFCGaF-I5wJkbOvtQycaZPACCZou6T6aeyxW9jwwDjlDD4jQVFqNpUoWL-cxHomQfV0UwniNthVhhhLKKlKyiUlZVOP_oMSmYN_5ou6emfqFdMetVqM2lG5V7cxqpelyK9d12Dn_pdgqrrUG3E3Vue3dHsKb-VESH1aCSv87kMeKQPD7Rq-8dF2DW-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmartMocap%3A+Joint+Estimation+of+Human+and+Camera+Motion+Using+Uncalibrated+RGB+Cameras&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Saini%2C+Nitin&rft.au=Huang%2C+Chun-Hao+P.&rft.au=Black%2C+Michael+J.&rft.au=Ahmad%2C+Aamir&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=8&rft.issue=6&rft.spage=3206&rft.epage=3213&rft_id=info:doi/10.1109%2FLRA.2023.3264743&rft.externalDocID=10093047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon