SmartMocap: Joint Estimation of Human and Camera Motion Using Uncalibrated RGB Cameras
Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every...
        Saved in:
      
    
          | Published in | IEEE robotics and automation letters Vol. 8; no. 6; pp. 3206 - 3213 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.06.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2377-3766 2377-3766  | 
| DOI | 10.1109/LRA.2023.3264743 | 
Cover
| Abstract | Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera. | 
    
|---|---|
| AbstractList | Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera. Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate them relative to a static camera, which acts as the reference frame for the mocap system. The calibration step has to be done a priori for every capture session, which is a tedious process, and re-calibration is required whenever cameras are intentionally or accidentally moved. In this letter, we propose a mocap method which uses multiple static and moving extrinsically uncalibrated RGB cameras. The key components of our method are as follows. First, since the cameras and the subject can move freely, we select the ground plane as a common reference to represent both the body and the camera motions unlike existing methods which represent bodies in the camera coordinate system. Second, we learn a probability distribution of short human motion sequences ([Formula Omitted]1 sec) relative to the ground plane and leverage it to disambiguate between the camera and human motion. Third, we use this distribution as a motion prior in a novel multi-stage optimization approach to fit the SMPL human body model and the camera poses to the human body keypoints on the images. Finally, we show that our method can work on a variety of datasets ranging from aerial cameras to smartphones. It also gives more accurate results compared to the state-of-the-art on the task of monocular human mocap with a static camera.  | 
    
| Author | Saini, Nitin Huang, Chun-Hao P. Ahmad, Aamir Black, Michael J.  | 
    
| Author_xml | – sequence: 1 givenname: Nitin orcidid: 0000-0001-6434-8899 surname: Saini fullname: Saini, Nitin email: nitin.saini@tuebingen.mpg.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany – sequence: 2 givenname: Chun-Hao P. orcidid: 0000-0002-1268-6527 surname: Huang fullname: Huang, Chun-Hao P. email: chunhao.huang@tuebingen.mpg.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany – sequence: 3 givenname: Michael J. orcidid: 0000-0001-6077-4540 surname: Black fullname: Black, Michael J. email: black@tuebingen.mpg.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany – sequence: 4 givenname: Aamir orcidid: 0000-0002-0727-3031 surname: Ahmad fullname: Ahmad, Aamir email: aamir.ahmad@ifr.uni-stuttgart.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany  | 
    
| BookMark | eNp9kE1PAjEQhhuDiYjcPXho4nmx3931hgRBAzFB8dqUbtcsYVtsy8F_7_JxIB68zExm3ncm81yDjvPOAnCL0QBjVDzMFsMBQYQOKBFMMnoBuoRKmVEpROesvgL9GNcIIcyJpAXvgs_3Roc090ZvH-Grr12C45jqRqfaO-grON012kHtSjjSjQ0azv1htIy1-4JLZ_SmXgWdbAkXk6eTKN6Ay0pvou2fcg8sn8cfo2k2e5u8jIazzJCCpIyxknMkclxKraXeR0GIodIwK1Zl28M0r6w1fFWZPMeGmwrlXBQ4p5rxgvbA_XHvNvjvnY1Jrf0uuPakIjmiiGNGaKsSR5UJPsZgK2XqdPgwBV1vFEZqj1G1GNUeozphbI3oj3EbWjbh5z_L3dFSW2vP5KigiEn6C80Dfhw | 
    
| CODEN | IRALC6 | 
    
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3453277 crossref_primary_10_1016_j_cviu_2024_104190 crossref_primary_10_1109_LRA_2024_3366418  | 
    
| Cites_doi | 10.1007/978-3-031-19842-7_38 10.1109/CVPR.2009.5206859 10.1109/ICCV.2019.00091 10.1007/978-3-030-66096-3_37 10.1109/ICCV48922.2021.01129 10.1109/LRA.2020.3013906 10.1109/CVPR.2016.90 10.1111/cgf.12519 10.1109/CVPRW.2018.00230 10.1109/TPAMI.2019.2929257 10.1109/ICCV.2019.00554 10.1109/CVPR52688.2022.01292 10.1109/CVPR.2019.01123 10.1145/1073204.1073207 10.1109/CVPR52688.2022.01076 10.1145/2816795.2818013 10.1109/ICCV48922.2021.01094 10.1109/3DV.2017.00055 10.1109/CVPR.2019.00589 10.1109/ICCV.2019.00781 10.1109/3DV.2019.00042 10.1109/LRA.2022.3145494 10.1109/3DV53792.2021.00080 10.1109/CVPR.2018.00744  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/LRA.2023.3264743 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2377-3766 | 
    
| EndPage | 3213 | 
    
| ExternalDocumentID | 10_1109_LRA_2023_3264743 10093047  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c292t-44d550681d7aa7ad7aa622c37c4e6bdaa7138feec5bfc881c5cf08569183a4593 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2377-3766 | 
    
| IngestDate | Sun Jun 29 15:33:34 EDT 2025 Wed Oct 01 04:32:36 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Wed Aug 27 02:33:48 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c292t-44d550681d7aa7ad7aa622c37c4e6bdaa7138feec5bfc881c5cf08569183a4593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6434-8899 0000-0002-0727-3031 0000-0002-1268-6527 0000-0001-6077-4540  | 
    
| PQID | 2803051423 | 
    
| PQPubID | 4437225 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_journals_2803051423 ieee_primary_10093047 crossref_citationtrail_10_1109_LRA_2023_3264743 crossref_primary_10_1109_LRA_2023_3264743  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-01 | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE robotics and automation letters | 
    
| PublicationTitleAbbrev | LRA | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 guan (ref17) 0 (ref28) 2021 ref11 ref10 ref2 (ref29) 2016 ref1 ref16 ref19 ref18 kingma (ref24) 0 ref23 ref26 fu (ref25) 0; 1 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref20 doi: 10.1007/978-3-031-19842-7_38 – ident: ref16 doi: 10.1109/CVPR.2009.5206859 – ident: ref1 doi: 10.1109/ICCV.2019.00091 – volume: 1 start-page: 240 year: 0 ident: ref25 article-title: Cyclical annealing schedule: A simple approach to mitigating KL vanishing publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Human Lang Technol – ident: ref26 doi: 10.1007/978-3-030-66096-3_37 – year: 2021 ident: ref28 article-title: Opencamera-sensors android application – ident: ref5 doi: 10.1109/ICCV48922.2021.01129 – year: 0 ident: ref24 article-title: Auto-encoding variational bayes publication-title: Proc 2nd Int Conf Learn Representations – ident: ref3 doi: 10.1109/LRA.2020.3013906 – ident: ref23 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1111/cgf.12519 – ident: ref11 doi: 10.1109/CVPRW.2018.00230 – ident: ref7 doi: 10.1109/TPAMI.2019.2929257 – start-page: 1381 year: 0 ident: ref17 article-title: Estimating human shape and pose from a single image publication-title: Proc IEEE 12th Int Conf Comput Vis – ident: ref4 doi: 10.1109/ICCV.2019.00554 – ident: ref27 doi: 10.1109/CVPR52688.2022.01292 – ident: ref2 doi: 10.1109/CVPR.2019.01123 – ident: ref18 doi: 10.1145/1073204.1073207 – ident: ref21 doi: 10.1109/CVPR52688.2022.01076 – year: 2016 ident: ref29 article-title: Distance between rotations – ident: ref6 doi: 10.1145/2816795.2818013 – ident: ref8 doi: 10.1109/ICCV48922.2021.01094 – ident: ref10 doi: 10.1109/3DV.2017.00055 – ident: ref22 doi: 10.1109/CVPR.2019.00589 – ident: ref9 doi: 10.1109/ICCV.2019.00781 – ident: ref13 doi: 10.1109/3DV.2019.00042 – ident: ref15 doi: 10.1109/LRA.2022.3145494 – ident: ref12 doi: 10.1109/3DV53792.2021.00080 – ident: ref19 doi: 10.1109/CVPR.2018.00744  | 
    
| SSID | ssj0001527395 | 
    
| Score | 2.3113546 | 
    
| Snippet | Markerless human motion capture (mocap) from multiple RGB cameras is a widely studied problem. Existing methods either need calibrated cameras or calibrate... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3206 | 
    
| SubjectTerms | Biological system modeling Calibration Cameras Coordinates deep learning for visual perception Gesture Ground plane Human body human detection and tracking Human motion Motion capture Optimization posture and facial expressions Robot vision systems Sequences Shape Trajectory  | 
    
| Title | SmartMocap: Joint Estimation of Human and Camera Motion Using Uncalibrated RGB Cameras | 
    
| URI | https://ieeexplore.ieee.org/document/10093047 https://www.proquest.com/docview/2803051423  | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwLKJQkAcWhqRx4rzYStVSVbRDoahb5DiOhIC0ounCwG_n7CRQQCCWKIrsyPLZvu_Od98BnNM4SASqFiNkPDWYn1KDS0oNyRDLosLmQiqH_mjsDaZsOHNnZbK6zoWRUurgM2mqV32Xn8zFSrnKcIej_W0xvwY1P_CKZK1Ph4qiEgvd6irSCts3k46pqoObCFGYz5wvqkfXUvlxAGut0t-BcTWeIpjk0VzlsSlev1E1_nvAu7Bd4kvSKRbEHmzIbB-21lgHD-D-9hnXywiV2OKSDOcPWU56uNGLHEYyT4l27BOeJaTLlc-KjHSpH6LDC8g0Q7EqIxuxKplcX5WNlg2Y9nt33YFRllcwhB3aucFYguaJh4DV59zn6unZtnB8waQXJ_iNOkEqpXDjVAQBFa5IEaB5IZ4CnLmhcwj1bJ7JIyBotKjbZOq5XJH7yDDgCDQsTlNhMZomTWhXMx-JkntclcB4irQNYoURyipSsopKWTXh4qPHouDd-KNtQ039Wrti1pvQqqQblTtzGalqXIrz3XaOf-l2Apvq70U8WAvq-ctKniLyyOMzqI3eemd63b0D0O7U3g | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLQ0KcOC-2UhVKaTuUFnWLHMeREJBWNF349ZydFAoIxBJFka1YPtv33fnuO4AzGgeJQNVihIynBvNTanBJqSEZYllU2FxI5dDv9rzWkLVH7qhMVte5MFJKHXwmTfWq7_KTsZgpVxnucLS_LeYvw4rLGHOLdK1Pl4oiEwvd-WWkFV50-nVT1Qc3EaQwnzlflI-upvLjCNZ65XoTevMRFeEkT-Ysj03x9o2s8d9D3oKNEmGSerEktmFJZjuwvsA7uAsP9y-4YrqoxiaXpD1-zHLSxK1eZDGScUq0a5_wLCENrrxWpKuL_RAdYECGGQpWmdmIVkn_5qpsNN2D4XVz0GgZZYEFQ9ihnRuMJWigeAhZfc59rp6ebQvHF0x6cYLfqBOkUgo3TkUQUOGKFCGaF-I5wJkbOvtQycaZPACCZou6T6aeyxW9jwwDjlDD4jQVFqNpUoWL-cxHomQfV0UwniNthVhhhLKKlKyiUlZVOP_oMSmYN_5ou6emfqFdMetVqM2lG5V7cxqpelyK9d12Dn_pdgqrrUG3E3Vue3dHsKb-VESH1aCSv87kMeKQPD7Rq-8dF2DW-g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmartMocap%3A+Joint+Estimation+of+Human+and+Camera+Motion+Using+Uncalibrated+RGB+Cameras&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Saini%2C+Nitin&rft.au=Huang%2C+Chun-Hao+P.&rft.au=Black%2C+Michael+J.&rft.au=Ahmad%2C+Aamir&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=8&rft.issue=6&rft.spage=3206&rft.epage=3213&rft_id=info:doi/10.1109%2FLRA.2023.3264743&rft.externalDocID=10093047 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |