Parameterized Complexity Results for Exact Bayesian Network Structure Learning

Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restric...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of artificial intelligence research Vol. 46; pp. 263 - 302
Main Authors Ordyniak, S., Szeider, S.
Format Journal Article
LanguageEnglish
Published San Francisco AI Access Foundation 01.01.2013
Subjects
Online AccessGet full text
ISSN1076-9757
1943-5037
1076-9757
1943-5037
DOI10.1613/jair.3744

Cover

Abstract Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).
AbstractList Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).
Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).
Author Ordyniak, S.
Szeider, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Ordyniak
  fullname: Ordyniak, S.
– sequence: 2
  givenname: S.
  surname: Szeider
  fullname: Szeider, S.
BookMark eNp1kEtLAzEUhYNUsK0u_AcBVwrTJpNkZrLUUh9QVHysQzq9I6nTpCYZ2vHXO6UuRHR17-I7h8M3QD3rLCB0SsmIZpSNl9r4Ecs5P0B9SvIskbnIez_-IzQIYUkIlTwt-uj-UXu9ggjefMICT9xqXcPWxBY_QWjqGHDlPJ5udRnxlW4hGG3xPcSN8-_4OfqmjI0HPAPtrbFvx-iw0nWAk-87RK_X05fJbTJ7uLmbXM6SMpVpTFhVCS0YE4TnlHEuWSX4omCZJHIuaJXlFKQsdQoUuOzQlIqsmBelYHlK5gs2RBf73saudbvRda3W3qy0bxUlamdC7UyonYkOPtvDa-8-GghRLV3jbbdPpUJwSgSRoqPGe6r0LgQPlSpN1NE4G7029Z-9578S_2_4Ak0ifWk
CitedBy_id crossref_primary_10_1002_adts_202200330
crossref_primary_10_7717_peerj_cs_122
crossref_primary_10_1109_TPAMI_2024_3435503
crossref_primary_10_1002_stc_2912
crossref_primary_10_1007_s00453_024_01241_4
crossref_primary_10_1021_acs_chemmater_2c03435
crossref_primary_10_3390_s19204400
crossref_primary_10_1016_j_jcss_2014_04_010
crossref_primary_10_1016_j_artint_2024_104241
crossref_primary_10_1016_j_tcs_2015_05_012
crossref_primary_10_4204_EPTCS_379_22
ContentType Journal Article
Copyright 2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
Copyright_xml – notice: 2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1613/jair.3744
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1076-9757
1943-5037
EndPage 302
ExternalDocumentID 10.1613/jair.3744
10_1613_jair_3744
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
AAYXX
ACGFO
ACM
ADBBV
ADBSK
AEFXT
AEJOY
AENEX
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
TR2
XSB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADMLS
ADTOC
AFFNX
AMVHM
C1A
UNPAY
ID FETCH-LOGICAL-c292t-3ff5a5335047134493f54d836909b51f671e99ca2e1e495a521568b8c53720bd3
IEDL.DBID BENPR
ISSN 1076-9757
1943-5037
IngestDate Sun Oct 26 02:51:46 EDT 2025
Fri Jul 25 09:08:53 EDT 2025
Wed Oct 01 04:00:52 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-3ff5a5335047134493f54d836909b51f671e99ca2e1e495a521568b8c53720bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2554105095?pq-origsite=%requestingapplication%&accountid=15518
PQID 2554105095
PQPubID 5160723
PageCount 40
ParticipantIDs unpaywall_primary_10_1613_jair_3744
proquest_journals_2554105095
crossref_citationtrail_10_1613_jair_3744
crossref_primary_10_1613_jair_3744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
PublicationTitle The Journal of artificial intelligence research
PublicationYear 2013
Publisher AI Access Foundation
Publisher_xml – name: AI Access Foundation
SSID ssj0019428
Score 2.276295
Snippet Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 263
SubjectTerms Artificial intelligence
Bayesian analysis
Complexity
Constrictions
Graph theory
Machine learning
Optimization
Polynomials
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9s8qAvTastxsayVB98OZP72M0t9CUWJRQaRA3ogxz7daINUcwFm_z1nbnbi21pQQr3dAx3ezOzzG_2Zn4DsI8hiBONVsBFngaJsCZQkdJBnAsX5ehTtjxw-zYSw3Hy9ZJfrsHnuhfmTt0-lj_wS7JAYogob3W9HruWKOTvle1SbVzcJYdLX0FTcETiDWiOR6eDq6rMUASyXxJ9YpqOS-nFfU8shAGsek3cT5Lfw9EzxlyfTx_U4klNJr-Em5MWXNcLrapMvh_OC31oln9wOP7vl7yB1x6HskEl9hbW3HQTWvWMB-a3_BaMThWVbxGj89JZRgJEoVks2JmbzSfFjCHqZcc_lCnYkVo46slko6q2nJ2X5LTzR8c8jevNOxifHF98GQZ-BkNgIhkVaLOcK4SEvJdQ12ki45wnNo0xqZaah7noh05KoyIXOsy1FKIBLlKdGk7jb7SN30Njej9128AQi4TKGKkNYrA4T1IrdWS1cHjlRso2HNSmyIwnKKc5GZOMEhW0Wkb6y8hqbfi0En2oWDn-JtSp7Zn5jTnLMIOiwlYElm3YW9n43w_ZeZHUB9iIyjEZdDTTgQZq1-0iWCn0R--TPwESGupM
  priority: 102
  providerName: Unpaywall
Title Parameterized Complexity Results for Exact Bayesian Network Structure Learning
URI https://www.proquest.com/docview/2554105095
https://jair.org/index.php/jair/article/download/10803/25788
UnpaywallVersion publishedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: KQ8
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: BENPR
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH6CctguDBgTZayygAOXwOrYSXxAE6AWhERUwSqxU-TYDgJVbaGpWPfX817qlE2CSblEsnz4_ON9z_b7PoB9DEGSZLQCGRVJICJrAs11HoRF5HiBc8pWB25XaXTRF5e38nYJ0roWhp5V1ntitVHbkaEz8iOkvvQiERnBj_FjQK5RdLtaW2hob61gjyuJsWVY4aSM1YCV007au17cKyjB58VxcRSoWMZeawhj2tGDvn86DGMh_o1Qr7Tzw3Q41rNnPRj8FYG6a7DqqSM7mY_1Oiy54QZ8qm0ZmF-lnyHtaXpxRSLMf5xl1IBUL8sZu3aT6aCcMCSqrPNbm5Kd6pmjMkqWzp-Ds5tKT3b65JhXXr3bhH638_PsIvC2CYHhipcIcyE1sjj5XVChqFBhIYVNQsyDVS7bRRS3nVJGc9d2mB5pDOAySvLESHKsyW34BRrD0dBtAUP60EZoVW6QNoWFSKzKuc0jh19hlGrCQQ1VZrymOFlbDDLKLRDVjFDNCNUm7C6ajudCGm812qnxzvxammSvI9-EvcUYvN_J9v87-QofeWVpQccoO9BAWN03JBZl3oLlpHve8nOmVaXn-NdPeye_XgDWqdGN
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1RONBLKf1QA7RY_ZB62dJ47d31IaqaEpQUWCEKErfFa3srUBQC2QjCj-O3MbPxJlRqe0Pao2WtxmPPG3vmPYCPGIIk0WgFMiqSQETWBJrrPAiLyPECfcpWF277adQ9Fj9P5MkC3NW9MFRWWZ-J1UFtLwzdkW8h9KWKREQE34aXAalG0etqLaGhvbSCbVUUY76xY9dNrjGFG7V627jenzjf6Rz96AZeZSAwXPES_6qQGkGP_Cqor1KosJDCJiGmjSqXzSKKm04po7lrOswmNMY7GSV5YiQJvOQ2xHmfwJIIhcLkb6ndSQ8OZ-8YSvBpM14cBSqWsec2whi6da7Prr6EsRB_RsQ5zF0eD4Z6cq37_QcRb-c5PPNQlX2f-tYqLLjBC1ipZSCYPxVeQnqgqcKLSJ9vnWU0gFg2ywk7dKNxvxwxBMasc6NNydp64qhtk6XT8nP2q-KvHV855plef7-C40cx4GtYHFwM3BtgCFeauJQqNwjTwkIkVuXc5pHDrzBKNeBzbarMeA5zktLoZ5TLoFUzsmpGVm3A-9nQ4ZS442-DNmp7Z37vjrK5pzXgw2wN_j3J2v8n2YTl7tH-XrbXS3fX4Smv5DToCmcDFtHE7i2CmjJ_5z2HweljO-s9IIUITw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9s8qAvTastxsayVB98OZP72M0t9CUWJRQaRA3ogxz7daINUcwFm_z1nbnbi21pQQr3dAx3ezOzzG_2Zn4DsI8hiBONVsBFngaJsCZQkdJBnAsX5ehTtjxw-zYSw3Hy9ZJfrsHnuhfmTt0-lj_wS7JAYogob3W9HruWKOTvle1SbVzcJYdLX0FTcETiDWiOR6eDq6rMUASyXxJ9YpqOS-nFfU8shAGsek3cT5Lfw9EzxlyfTx_U4klNJr-Em5MWXNcLrapMvh_OC31oln9wOP7vl7yB1x6HskEl9hbW3HQTWvWMB-a3_BaMThWVbxGj89JZRgJEoVks2JmbzSfFjCHqZcc_lCnYkVo46slko6q2nJ2X5LTzR8c8jevNOxifHF98GQZ-BkNgIhkVaLOcK4SEvJdQ12ki45wnNo0xqZaah7noh05KoyIXOsy1FKIBLlKdGk7jb7SN30Njej9128AQi4TKGKkNYrA4T1IrdWS1cHjlRso2HNSmyIwnKKc5GZOMEhW0Wkb6y8hqbfi0En2oWDn-JtSp7Zn5jTnLMIOiwlYElm3YW9n43w_ZeZHUB9iIyjEZdDTTgQZq1-0iWCn0R--TPwESGupM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Complexity+Results+for+Exact+Bayesian+Network+Structure+Learning&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Ordyniak%2C+S&rft.au=Szeider%2C+S&rft.date=2013-01-01&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=46&rft.spage=263&rft_id=info:doi/10.1613%2Fjair.3744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon