Parameterized Complexity Results for Exact Bayesian Network Structure Learning
Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restric...
Saved in:
| Published in | The Journal of artificial intelligence research Vol. 46; pp. 263 - 302 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
San Francisco
AI Access Foundation
01.01.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1076-9757 1943-5037 1076-9757 1943-5037 |
| DOI | 10.1613/jair.3744 |
Cover
| Abstract | Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes.
Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search). |
|---|---|
| AbstractList | Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search). Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search). |
| Author | Ordyniak, S. Szeider, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Ordyniak fullname: Ordyniak, S. – sequence: 2 givenname: S. surname: Szeider fullname: Szeider, S. |
| BookMark | eNp1kEtLAzEUhYNUsK0u_AcBVwrTJpNkZrLUUh9QVHysQzq9I6nTpCYZ2vHXO6UuRHR17-I7h8M3QD3rLCB0SsmIZpSNl9r4Ecs5P0B9SvIskbnIez_-IzQIYUkIlTwt-uj-UXu9ggjefMICT9xqXcPWxBY_QWjqGHDlPJ5udRnxlW4hGG3xPcSN8-_4OfqmjI0HPAPtrbFvx-iw0nWAk-87RK_X05fJbTJ7uLmbXM6SMpVpTFhVCS0YE4TnlHEuWSX4omCZJHIuaJXlFKQsdQoUuOzQlIqsmBelYHlK5gs2RBf73saudbvRda3W3qy0bxUlamdC7UyonYkOPtvDa-8-GghRLV3jbbdPpUJwSgSRoqPGe6r0LgQPlSpN1NE4G7029Z-9578S_2_4Ak0ifWk |
| CitedBy_id | crossref_primary_10_1002_adts_202200330 crossref_primary_10_7717_peerj_cs_122 crossref_primary_10_1109_TPAMI_2024_3435503 crossref_primary_10_1002_stc_2912 crossref_primary_10_1007_s00453_024_01241_4 crossref_primary_10_1021_acs_chemmater_2c03435 crossref_primary_10_3390_s19204400 crossref_primary_10_1016_j_jcss_2014_04_010 crossref_primary_10_1016_j_artint_2024_104241 crossref_primary_10_1016_j_tcs_2015_05_012 crossref_primary_10_4204_EPTCS_379_22 |
| ContentType | Journal Article |
| Copyright | 2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| Copyright_xml | – notice: 2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1613/jair.3744 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Proquest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 1943-5037 |
| EndPage | 302 |
| ExternalDocumentID | 10.1613/jair.3744 10_1613_jair_3744 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK AEFXT AEJOY AENEX AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PUEGO RNS TR2 XSB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADMLS ADTOC AFFNX AMVHM C1A UNPAY |
| ID | FETCH-LOGICAL-c292t-3ff5a5335047134493f54d836909b51f671e99ca2e1e495a521568b8c53720bd3 |
| IEDL.DBID | BENPR |
| ISSN | 1076-9757 1943-5037 |
| IngestDate | Sun Oct 26 02:51:46 EDT 2025 Fri Jul 25 09:08:53 EDT 2025 Wed Oct 01 04:00:52 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-3ff5a5335047134493f54d836909b51f671e99ca2e1e495a521568b8c53720bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2554105095?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2554105095 |
| PQPubID | 5160723 |
| PageCount | 40 |
| ParticipantIDs | unpaywall_primary_10_1613_jair_3744 proquest_journals_2554105095 crossref_citationtrail_10_1613_jair_3744 crossref_primary_10_1613_jair_3744 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2013 |
| Publisher | AI Access Foundation |
| Publisher_xml | – name: AI Access Foundation |
| SSID | ssj0019428 |
| Score | 2.276295 |
| Snippet | Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 263 |
| SubjectTerms | Artificial intelligence Bayesian analysis Complexity Constrictions Graph theory Machine learning Optimization Polynomials |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9s8qAvTastxsayVB98OZP72M0t9CUWJRQaRA3ogxz7daINUcwFm_z1nbnbi21pQQr3dAx3ezOzzG_2Zn4DsI8hiBONVsBFngaJsCZQkdJBnAsX5ehTtjxw-zYSw3Hy9ZJfrsHnuhfmTt0-lj_wS7JAYogob3W9HruWKOTvle1SbVzcJYdLX0FTcETiDWiOR6eDq6rMUASyXxJ9YpqOS-nFfU8shAGsek3cT5Lfw9EzxlyfTx_U4klNJr-Em5MWXNcLrapMvh_OC31oln9wOP7vl7yB1x6HskEl9hbW3HQTWvWMB-a3_BaMThWVbxGj89JZRgJEoVks2JmbzSfFjCHqZcc_lCnYkVo46slko6q2nJ2X5LTzR8c8jevNOxifHF98GQZ-BkNgIhkVaLOcK4SEvJdQ12ki45wnNo0xqZaah7noh05KoyIXOsy1FKIBLlKdGk7jb7SN30Njej9128AQi4TKGKkNYrA4T1IrdWS1cHjlRso2HNSmyIwnKKc5GZOMEhW0Wkb6y8hqbfi0En2oWDn-JtSp7Zn5jTnLMIOiwlYElm3YW9n43w_ZeZHUB9iIyjEZdDTTgQZq1-0iWCn0R--TPwESGupM priority: 102 providerName: Unpaywall |
| Title | Parameterized Complexity Results for Exact Bayesian Network Structure Learning |
| URI | https://www.proquest.com/docview/2554105095 https://jair.org/index.php/jair/article/download/10803/25788 |
| UnpaywallVersion | publishedVersion |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: KQ8 dateStart: 19930101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH6CctguDBgTZayygAOXwOrYSXxAE6AWhERUwSqxU-TYDgJVbaGpWPfX817qlE2CSblEsnz4_ON9z_b7PoB9DEGSZLQCGRVJICJrAs11HoRF5HiBc8pWB25XaXTRF5e38nYJ0roWhp5V1ntitVHbkaEz8iOkvvQiERnBj_FjQK5RdLtaW2hob61gjyuJsWVY4aSM1YCV007au17cKyjB58VxcRSoWMZeawhj2tGDvn86DGMh_o1Qr7Tzw3Q41rNnPRj8FYG6a7DqqSM7mY_1Oiy54QZ8qm0ZmF-lnyHtaXpxRSLMf5xl1IBUL8sZu3aT6aCcMCSqrPNbm5Kd6pmjMkqWzp-Ds5tKT3b65JhXXr3bhH638_PsIvC2CYHhipcIcyE1sjj5XVChqFBhIYVNQsyDVS7bRRS3nVJGc9d2mB5pDOAySvLESHKsyW34BRrD0dBtAUP60EZoVW6QNoWFSKzKuc0jh19hlGrCQQ1VZrymOFlbDDLKLRDVjFDNCNUm7C6ajudCGm812qnxzvxammSvI9-EvcUYvN_J9v87-QofeWVpQccoO9BAWN03JBZl3oLlpHve8nOmVaXn-NdPeye_XgDWqdGN |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1RONBLKf1QA7RY_ZB62dJ47d31IaqaEpQUWCEKErfFa3srUBQC2QjCj-O3MbPxJlRqe0Pao2WtxmPPG3vmPYCPGIIk0WgFMiqSQETWBJrrPAiLyPECfcpWF277adQ9Fj9P5MkC3NW9MFRWWZ-J1UFtLwzdkW8h9KWKREQE34aXAalG0etqLaGhvbSCbVUUY76xY9dNrjGFG7V627jenzjf6Rz96AZeZSAwXPES_6qQGkGP_Cqor1KosJDCJiGmjSqXzSKKm04po7lrOswmNMY7GSV5YiQJvOQ2xHmfwJIIhcLkb6ndSQ8OZ-8YSvBpM14cBSqWsec2whi6da7Prr6EsRB_RsQ5zF0eD4Z6cq37_QcRb-c5PPNQlX2f-tYqLLjBC1ipZSCYPxVeQnqgqcKLSJ9vnWU0gFg2ywk7dKNxvxwxBMasc6NNydp64qhtk6XT8nP2q-KvHV855plef7-C40cx4GtYHFwM3BtgCFeauJQqNwjTwkIkVuXc5pHDrzBKNeBzbarMeA5zktLoZ5TLoFUzsmpGVm3A-9nQ4ZS442-DNmp7Z37vjrK5pzXgw2wN_j3J2v8n2YTl7tH-XrbXS3fX4Smv5DToCmcDFtHE7i2CmjJ_5z2HweljO-s9IIUITw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9s8qAvTastxsayVB98OZP72M0t9CUWJRQaRA3ogxz7daINUcwFm_z1nbnbi21pQQr3dAx3ezOzzG_2Zn4DsI8hiBONVsBFngaJsCZQkdJBnAsX5ehTtjxw-zYSw3Hy9ZJfrsHnuhfmTt0-lj_wS7JAYogob3W9HruWKOTvle1SbVzcJYdLX0FTcETiDWiOR6eDq6rMUASyXxJ9YpqOS-nFfU8shAGsek3cT5Lfw9EzxlyfTx_U4klNJr-Em5MWXNcLrapMvh_OC31oln9wOP7vl7yB1x6HskEl9hbW3HQTWvWMB-a3_BaMThWVbxGj89JZRgJEoVks2JmbzSfFjCHqZcc_lCnYkVo46slko6q2nJ2X5LTzR8c8jevNOxifHF98GQZ-BkNgIhkVaLOcK4SEvJdQ12ki45wnNo0xqZaah7noh05KoyIXOsy1FKIBLlKdGk7jb7SN30Njej9128AQi4TKGKkNYrA4T1IrdWS1cHjlRso2HNSmyIwnKKc5GZOMEhW0Wkb6y8hqbfi0En2oWDn-JtSp7Zn5jTnLMIOiwlYElm3YW9n43w_ZeZHUB9iIyjEZdDTTgQZq1-0iWCn0R--TPwESGupM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Complexity+Results+for+Exact+Bayesian+Network+Structure+Learning&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Ordyniak%2C+S&rft.au=Szeider%2C+S&rft.date=2013-01-01&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=46&rft.spage=263&rft_id=info:doi/10.1613%2Fjair.3744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |