Robust Bias-Compensated LMS Algorithm: Design, Performance Analysis and Applications

This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 72; no. 10; pp. 1 - 15
Main Authors Huang, Fuyi, Song, Fan, Zhang, Sheng, So, Hing Cheung, Yang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2023.3276573

Cover

Abstract This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust bias-compensated least mean squares (R-BC-LMS) algorithm. It is derived by performing the maximum- a - posteriori estimation subject to a constraint on the squared norm of the weight vector difference, and then introducing an unbiasedness criterion to insert a bias compensation term in the update. Under common statistical assumptions, the mean and mean square behaviors of weight deviation are derived for the R-BC-LMS algorithm. In addition, we develop the estimator for the input and output noise variances. Simulations in channel estimation, vehicle handsfree echo cancellation, and direction-of-arrival estimation demonstrate that our method outperforms the competing algorithms.
AbstractList This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust bias-compensated least mean squares (R-BC-LMS) algorithm. It is derived by performing the maximum- a - posteriori estimation subject to a constraint on the squared norm of the weight vector difference, and then introducing an unbiasedness criterion to insert a bias compensation term in the update. Under common statistical assumptions, the mean and mean square behaviors of weight deviation are derived for the R-BC-LMS algorithm. In addition, we develop the estimator for the input and output noise variances. Simulations in channel estimation, vehicle handsfree echo cancellation, and direction-of-arrival estimation demonstrate that our method outperforms the competing algorithms.
Author Zhang, Sheng
So, Hing Cheung
Song, Fan
Huang, Fuyi
Yang, Jun
Author_xml – sequence: 1
  givenname: Fuyi
  orcidid: 0000-0002-3148-332X
  surname: Huang
  fullname: Huang, Fuyi
  organization: Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning, China
– sequence: 2
  givenname: Fan
  surname: Song
  fullname: Song, Fan
  organization: Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning, China
– sequence: 3
  givenname: Sheng
  orcidid: 0000-0002-0247-3317
  surname: Zhang
  fullname: Zhang, Sheng
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Hing Cheung
  orcidid: 0000-0001-8396-7898
  surname: So
  fullname: So, Hing Cheung
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0003-2807-6130
  surname: Yang
  fullname: Yang, Jun
  organization: Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kD1PwzAURS1UJNrCzsAQiZWUZzuOY7ZSPqUiEATWyE1eiqskDnY69N-T0g6IgenpSfdcXZ0RGTS2QUJOKUwoBXWZfqQTBoxPOJOxkPyADKniKlRcqAEZAtAkVCISR2Tk_ap_o0jRIUlf7WLtu-DaaB_ObN1i43WHRTB_egum1dI6033WV8ENerNsLoIXdKV1tW5yDKaNrjbe-EA3RTBt28rkujO28cfksNSVx5P9HZP3u9t09hDOn-8fZ9N5mDPFupBTgFJARJEpxUDkDApaAJOUL9QChUywYInWGgEEMl2KOIGyLKiMJc0l52Nyvuttnf1ao--ylV27fpXPWCITAVRy2afiXSp31nuHZZab7mdo57SpMgrZ1mDWG8y2BrO9wR6EP2DrTK3d5j_kbIcYRPwVp0yA4PwbnR98wA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3546064
crossref_primary_10_1109_TCSII_2024_3412982
crossref_primary_10_1109_TSMC_2024_3491188
crossref_primary_10_1016_j_sigpro_2025_110002
crossref_primary_10_1109_TVT_2024_3406709
crossref_primary_10_1016_j_apacoust_2024_110063
crossref_primary_10_3390_math12091310
crossref_primary_10_1109_TCOMM_2024_3420745
crossref_primary_10_1109_TII_2024_3371979
Cites_doi 10.1109/TSP.2019.2893846
10.1109/LAWP.2019.2923700
10.1109/TSP.2008.2005861
10.1109/78.143435
10.1109/LSP.2015.2439392
10.1109/82.959866
10.1109/TSP.2017.2773420
10.1016/j.sigpro.2017.06.007
10.1109/78.218137
10.1109/78.510611
10.1109/TCSII.2017.2771430
10.1109/TIT.1964.1053656
10.1109/ICASSP.2014.6855214
10.1109/TVT.2021.3061126
10.1109/JSTSP.2013.2266318
10.1109/ICASSP.2015.7178361
10.1109/TSP.2017.2675865
10.1049/el.2013.2482
10.1109/TIT.1958.1057444
10.1109/TSP.2015.2401533
10.1109/TSP.2013.2263502
10.1109/TASL.2013.2245654
10.1049/el:20010955
10.1109/TVT.2022.3169404
10.1109/TSP.2007.913142
10.1049/el.2017.1812
10.1016/j.sigpro.2020.107500
10.1086/300604
10.1016/j.knosys.2014.02.005
10.1109/TVT.2020.3049026
10.1109/TVT.2020.3020946
10.1109/TSP.2021.3066812
10.1109/TSP.2002.1003057
10.1109/TVT.2018.2877457
10.1016/j.sigpro.2016.03.017
10.1109/49.339922
10.1109/ISCAS.2007.378235
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3276573
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 15
ExternalDocumentID 10_1109_TVT_2023_3276573
10125053
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2021YFG0012
– fundername: Interdisciplinary Scientific Research Foundation of GuangXi University
  grantid: 2022JCC015
– fundername: National Natural Science Foundation of China
  grantid: 62201160; 62261003; 61961004; 61801401
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XJ2021KJZK003
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-3100f5041e299205c20d1d02713b9be578ed28aaae005e2af5680ffd17671c733
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:15:22 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Wed Oct 01 02:27:12 EDT 2025
Wed Aug 27 02:56:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-3100f5041e299205c20d1d02713b9be578ed28aaae005e2af5680ffd17671c733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0247-3317
0000-0003-2807-6130
0000-0001-8396-7898
0000-0002-3148-332X
0009-0001-5459-4321
PQID 2878501737
PQPubID 85454
PageCount 15
ParticipantIDs proquest_journals_2878501737
ieee_primary_10125053
crossref_primary_10_1109_TVT_2023_3276573
crossref_citationtrail_10_1109_TVT_2023_3276573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref36
ref31
ref30
(ref43) 2007
ref33
haykin (ref1) 2002
saeed (ref37) 2013; 2013
ref32
ref17
ref39
ref16
ref38
gokcesu (ref11) 2021
ref18
zheng (ref25) 0; 4
ref24
ref23
ref45
ref20
ref42
ref41
ref22
ref44
gokcesu (ref10) 2021
ref21
so (ref26) 2001; 37
ref28
ref27
ref29
ref8
ref7
ref9
sayed (ref2) 2003
ref4
ref3
ref6
ref5
ref40
murphy (ref15) 2012
pei (ref19) 1994; 12
References_xml – ident: ref24
  doi: 10.1109/TSP.2019.2893846
– ident: ref5
  doi: 10.1109/LAWP.2019.2923700
– ident: ref13
  doi: 10.1109/TSP.2008.2005861
– ident: ref35
  doi: 10.1109/78.143435
– year: 2002
  ident: ref1
  publication-title: Adaptive Filter Theory
– ident: ref18
  doi: 10.1109/LSP.2015.2439392
– ident: ref44
  doi: 10.1109/82.959866
– ident: ref20
  doi: 10.1109/TSP.2017.2773420
– ident: ref39
  doi: 10.1016/j.sigpro.2017.06.007
– ident: ref12
  doi: 10.1109/78.218137
– ident: ref45
  doi: 10.1109/78.510611
– ident: ref40
  doi: 10.1109/TCSII.2017.2771430
– ident: ref42
  doi: 10.1109/TIT.1964.1053656
– year: 2021
  ident: ref10
  article-title: Optimal and efficient algorithms for general mixable losses against switching oracles
– ident: ref16
  doi: 10.1109/ICASSP.2014.6855214
– ident: ref4
  doi: 10.1109/TVT.2021.3061126
– ident: ref14
  doi: 10.1109/JSTSP.2013.2266318
– ident: ref17
  doi: 10.1109/ICASSP.2015.7178361
– ident: ref27
  doi: 10.1109/TSP.2017.2675865
– ident: ref29
  doi: 10.1049/el.2013.2482
– year: 2021
  ident: ref11
  article-title: Near-linear time algorithm with near-logarithmic regret per switch for mixable/exp-concave losses
– ident: ref41
  doi: 10.1109/TIT.1958.1057444
– ident: ref38
  doi: 10.1109/TSP.2015.2401533
– ident: ref32
  doi: 10.1109/TSP.2013.2263502
– ident: ref34
  doi: 10.1109/TASL.2013.2245654
– volume: 37
  start-page: 1418
  year: 2001
  ident: ref26
  article-title: lms-based algorithm for unbiased fir filtering with noisy measurements
  publication-title: Electronics Letters
  doi: 10.1049/el:20010955
– year: 2012
  ident: ref15
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref7
  doi: 10.1109/TVT.2022.3169404
– volume: 2013
  year: 2013
  ident: ref37
  article-title: A variable step-size strategy for distributed estimation over adaptive networks
  publication-title: EURASIP J Adv Signal Process
– ident: ref22
  doi: 10.1109/TSP.2007.913142
– volume: 4
  start-page: iv-444
  year: 0
  ident: ref25
  article-title: A least-squares based algorithm for FIR filtering with noisy data
  publication-title: Proc 36th IEEE Int Symp Circuits Syst
– ident: ref30
  doi: 10.1049/el.2017.1812
– ident: ref21
  doi: 10.1016/j.sigpro.2020.107500
– ident: ref28
  doi: 10.1086/300604
– ident: ref8
  doi: 10.1016/j.knosys.2014.02.005
– ident: ref3
  doi: 10.1109/TVT.2020.3049026
– ident: ref6
  doi: 10.1109/TVT.2020.3020946
– ident: ref31
  doi: 10.1109/TSP.2021.3066812
– ident: ref36
  doi: 10.1109/TSP.2002.1003057
– year: 2003
  ident: ref2
  publication-title: Fundamentals of Adaptive Filtering
– ident: ref23
  doi: 10.1109/TVT.2018.2877457
– year: 2007
  ident: ref43
  publication-title: Recommendation ITU-T G 168 Digital Network Echo Cancellers
– ident: ref9
  doi: 10.1016/j.sigpro.2016.03.017
– volume: 12
  start-page: 1540
  year: 1994
  ident: ref19
  article-title: Least mean p-power error criterion for adaptive FIR filter
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/49.339922
– ident: ref33
  doi: 10.1109/ISCAS.2007.378235
SSID ssj0014491
Score 2.4910889
Snippet This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Adaptive filters
Adaptive systems
Bayes methods
Bias
Covariance matrices
Direction of arrival
Direction-of-arrival estimation
Echo cancellation
Estimation
impulsive interferences
Least mean squares
Least mean squares algorithm
Noise measurement
noisy input
Parameter estimation
Performance degradation
robust adaptive signal processing
Robustness
Signal processing algorithms
spatial spectrum
Title Robust Bias-Compensated LMS Algorithm: Design, Performance Analysis and Applications
URI https://ieeexplore.ieee.org/document/10125053
https://www.proquest.com/docview/2878501737
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaACQbOIsolDyxIJI3jJHbYyiWEACFoEVvkK1BRWtSmC7-eZyeBAgKxRZFtWX5-l9_xIbSnU641i4kH1nDoRZwkHgct42kuY5mkWhiHWnJ1nZx3o4uH-KEqVne1MMYYl3xmfPvpYvl6qCb2qaxle1GBxqazaJbxpCzW-ggZRFEFj0eAg8EuqGOSQdrq3Hd8CxPu05AlMaNfdJADVfkhiZ16OVtC1_XGyqySZ39SSF-9fevZ-O-dL6PFytDE7fJmrKAZM1hFC1PtB9dQ53YoJ-MCH_XE2LOCAVxaMD01vry6w-3-43DUK55eDvGJy_I4wDefRQa4bmaCxUDj9lQUvIG6Z6ed43OvQlnwVJiGhWdf-PM4iIgBzRQGsQoDTTR4q4TKVBrgaKNDLoQwwLAmFHmc8CDPNWEJI4pRuo7mBsOB2UA4DyRXVCoWSQOGgZBSwy_JRCKp4oQ1Uas-90xVLcgtEkY_c65IkGZAqcxSKqso1UT7HzNey_Ybf4xt2IOfGleeeRNt17TNKgYdZ-Ao8hikEWWbv0zbQvN29TJxbxvNFaOJ2QEDpJC77uK9AwaW1Tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CcQAOjI-hFQb4wAWJpHFsxw63DpgKtBWCDO0W-StsYrRoTS_89Tw7ySggELcosmXLz-_L7-MH8NSVyjkpaILWcJ5wRYtEoZZJnDLCFKXTPqKWzBfF9Ji_PREnfbF6rIXx3sfkM5-GzxjLdyu7CU9l49CLCjU2uwrXBOdcdOVal0EDznuAPIo8jJbBEJXMynH1qUoDUHjKclkIyX7RQhFW5Q9ZHBXM0S4shq11eSVf0k1rUvv9t66N_73323CrNzXJpLsbd-CKX96Fm1sNCO9B9WFlNuuWHJ7pdRJEAzq1aHw6Mpt_JJPzz6uLs_b06wvyKuZ5PCfvf5YZkKGdCdFLRyZbcfA9OD56Xb2cJj3OQmLzMm-T8MbfiIxTj7opz4TNM0cd-quUmdJ45GnvcqW19siyPteNKFTWNI7KQlIrGbsPO8vV0u8DaTKjLDNWcuPRNNDGOPxlpC4Ms4rKEYyHc69t34Q8YGGc19EZycoaKVUHStU9pUbw7HLGt64Bxz_G7oWD3xrXnfkIDgba1j2Lrmt0FZVAecTkg79MewLXp9V8Vs_eLN49hBthpS6N7wB22ouNf4TmSGsex0v4A1v32Ik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bias-Compensated+LMS+Algorithm%3A+Design%2C+Performance+Analysis+and+Applications&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Huang%2C+Fuyi&rft.au=Song%2C+Fan&rft.au=Zhang%2C+Sheng&rft.au=So%2C+Hing+Cheung&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTVT.2023.3276573&rft.externalDocID=10125053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon