Robust Bias-Compensated LMS Algorithm: Design, Performance Analysis and Applications
This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust b...
        Saved in:
      
    
          | Published in | IEEE transactions on vehicular technology Vol. 72; no. 10; pp. 1 - 15 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.10.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9545 1939-9359  | 
| DOI | 10.1109/TVT.2023.3276573 | 
Cover
| Abstract | This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust bias-compensated least mean squares (R-BC-LMS) algorithm. It is derived by performing the maximum- a - posteriori estimation subject to a constraint on the squared norm of the weight vector difference, and then introducing an unbiasedness criterion to insert a bias compensation term in the update. Under common statistical assumptions, the mean and mean square behaviors of weight deviation are derived for the R-BC-LMS algorithm. In addition, we develop the estimator for the input and output noise variances. Simulations in channel estimation, vehicle handsfree echo cancellation, and direction-of-arrival estimation demonstrate that our method outperforms the competing algorithms. | 
    
|---|---|
| AbstractList | This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in the presence of impulsive noise and biased estimation when the input signal is noisy. To address these issues, this paper proposes a robust bias-compensated least mean squares (R-BC-LMS) algorithm. It is derived by performing the maximum- a - posteriori estimation subject to a constraint on the squared norm of the weight vector difference, and then introducing an unbiasedness criterion to insert a bias compensation term in the update. Under common statistical assumptions, the mean and mean square behaviors of weight deviation are derived for the R-BC-LMS algorithm. In addition, we develop the estimator for the input and output noise variances. Simulations in channel estimation, vehicle handsfree echo cancellation, and direction-of-arrival estimation demonstrate that our method outperforms the competing algorithms. | 
    
| Author | Zhang, Sheng So, Hing Cheung Song, Fan Huang, Fuyi Yang, Jun  | 
    
| Author_xml | – sequence: 1 givenname: Fuyi orcidid: 0000-0002-3148-332X surname: Huang fullname: Huang, Fuyi organization: Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning, China – sequence: 2 givenname: Fan surname: Song fullname: Song, Fan organization: Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning, China – sequence: 3 givenname: Sheng orcidid: 0000-0002-0247-3317 surname: Zhang fullname: Zhang, Sheng organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China – sequence: 4 givenname: Hing Cheung orcidid: 0000-0001-8396-7898 surname: So fullname: So, Hing Cheung organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China – sequence: 5 givenname: Jun orcidid: 0000-0003-2807-6130 surname: Yang fullname: Yang, Jun organization: Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China  | 
    
| BookMark | eNp9kD1PwzAURS1UJNrCzsAQiZWUZzuOY7ZSPqUiEATWyE1eiqskDnY69N-T0g6IgenpSfdcXZ0RGTS2QUJOKUwoBXWZfqQTBoxPOJOxkPyADKniKlRcqAEZAtAkVCISR2Tk_ap_o0jRIUlf7WLtu-DaaB_ObN1i43WHRTB_egum1dI6033WV8ENerNsLoIXdKV1tW5yDKaNrjbe-EA3RTBt28rkujO28cfksNSVx5P9HZP3u9t09hDOn-8fZ9N5mDPFupBTgFJARJEpxUDkDApaAJOUL9QChUywYInWGgEEMl2KOIGyLKiMJc0l52Nyvuttnf1ao--ylV27fpXPWCITAVRy2afiXSp31nuHZZab7mdo57SpMgrZ1mDWG8y2BrO9wR6EP2DrTK3d5j_kbIcYRPwVp0yA4PwbnR98wA | 
    
| CODEN | ITVTAB | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3546064 crossref_primary_10_1109_TCSII_2024_3412982 crossref_primary_10_1109_TSMC_2024_3491188 crossref_primary_10_1016_j_sigpro_2025_110002 crossref_primary_10_1109_TVT_2024_3406709 crossref_primary_10_1016_j_apacoust_2024_110063 crossref_primary_10_3390_math12091310 crossref_primary_10_1109_TCOMM_2024_3420745 crossref_primary_10_1109_TII_2024_3371979  | 
    
| Cites_doi | 10.1109/TSP.2019.2893846 10.1109/LAWP.2019.2923700 10.1109/TSP.2008.2005861 10.1109/78.143435 10.1109/LSP.2015.2439392 10.1109/82.959866 10.1109/TSP.2017.2773420 10.1016/j.sigpro.2017.06.007 10.1109/78.218137 10.1109/78.510611 10.1109/TCSII.2017.2771430 10.1109/TIT.1964.1053656 10.1109/ICASSP.2014.6855214 10.1109/TVT.2021.3061126 10.1109/JSTSP.2013.2266318 10.1109/ICASSP.2015.7178361 10.1109/TSP.2017.2675865 10.1049/el.2013.2482 10.1109/TIT.1958.1057444 10.1109/TSP.2015.2401533 10.1109/TSP.2013.2263502 10.1109/TASL.2013.2245654 10.1049/el:20010955 10.1109/TVT.2022.3169404 10.1109/TSP.2007.913142 10.1049/el.2017.1812 10.1016/j.sigpro.2020.107500 10.1086/300604 10.1016/j.knosys.2014.02.005 10.1109/TVT.2020.3049026 10.1109/TVT.2020.3020946 10.1109/TSP.2021.3066812 10.1109/TSP.2002.1003057 10.1109/TVT.2018.2877457 10.1016/j.sigpro.2016.03.017 10.1109/49.339922 10.1109/ISCAS.2007.378235  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| DOI | 10.1109/TVT.2023.3276573 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1939-9359 | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | 10_1109_TVT_2023_3276573 10125053  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2021YFG0012 – fundername: Interdisciplinary Scientific Research Foundation of GuangXi University grantid: 2022JCC015 – fundername: National Natural Science Foundation of China grantid: 62201160; 62261003; 61961004; 61801401 – fundername: Fundamental Research Funds for the Central Universities grantid: XJ2021KJZK003  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 7SP 8FD FR3 KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c292t-3100f5041e299205c20d1d02713b9be578ed28aaae005e2af5680ffd17671c733 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9545 | 
    
| IngestDate | Mon Jun 30 10:15:22 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Wed Oct 01 02:27:12 EDT 2025 Wed Aug 27 02:56:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c292t-3100f5041e299205c20d1d02713b9be578ed28aaae005e2af5680ffd17671c733 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0247-3317 0000-0003-2807-6130 0000-0001-8396-7898 0000-0002-3148-332X 0009-0001-5459-4321  | 
    
| PQID | 2878501737 | 
    
| PQPubID | 85454 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_2878501737 ieee_primary_10125053 crossref_primary_10_1109_TVT_2023_3276573 crossref_citationtrail_10_1109_TVT_2023_3276573  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on vehicular technology | 
    
| PublicationTitleAbbrev | TVT | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref14 ref36 ref31 ref30 (ref43) 2007 ref33 haykin (ref1) 2002 saeed (ref37) 2013; 2013 ref32 ref17 ref39 ref16 ref38 gokcesu (ref11) 2021 ref18 zheng (ref25) 0; 4 ref24 ref23 ref45 ref20 ref42 ref41 ref22 ref44 gokcesu (ref10) 2021 ref21 so (ref26) 2001; 37 ref28 ref27 ref29 ref8 ref7 ref9 sayed (ref2) 2003 ref4 ref3 ref6 ref5 ref40 murphy (ref15) 2012 pei (ref19) 1994; 12  | 
    
| References_xml | – ident: ref24 doi: 10.1109/TSP.2019.2893846 – ident: ref5 doi: 10.1109/LAWP.2019.2923700 – ident: ref13 doi: 10.1109/TSP.2008.2005861 – ident: ref35 doi: 10.1109/78.143435 – year: 2002 ident: ref1 publication-title: Adaptive Filter Theory – ident: ref18 doi: 10.1109/LSP.2015.2439392 – ident: ref44 doi: 10.1109/82.959866 – ident: ref20 doi: 10.1109/TSP.2017.2773420 – ident: ref39 doi: 10.1016/j.sigpro.2017.06.007 – ident: ref12 doi: 10.1109/78.218137 – ident: ref45 doi: 10.1109/78.510611 – ident: ref40 doi: 10.1109/TCSII.2017.2771430 – ident: ref42 doi: 10.1109/TIT.1964.1053656 – year: 2021 ident: ref10 article-title: Optimal and efficient algorithms for general mixable losses against switching oracles – ident: ref16 doi: 10.1109/ICASSP.2014.6855214 – ident: ref4 doi: 10.1109/TVT.2021.3061126 – ident: ref14 doi: 10.1109/JSTSP.2013.2266318 – ident: ref17 doi: 10.1109/ICASSP.2015.7178361 – ident: ref27 doi: 10.1109/TSP.2017.2675865 – ident: ref29 doi: 10.1049/el.2013.2482 – year: 2021 ident: ref11 article-title: Near-linear time algorithm with near-logarithmic regret per switch for mixable/exp-concave losses – ident: ref41 doi: 10.1109/TIT.1958.1057444 – ident: ref38 doi: 10.1109/TSP.2015.2401533 – ident: ref32 doi: 10.1109/TSP.2013.2263502 – ident: ref34 doi: 10.1109/TASL.2013.2245654 – volume: 37 start-page: 1418 year: 2001 ident: ref26 article-title: lms-based algorithm for unbiased fir filtering with noisy measurements publication-title: Electronics Letters doi: 10.1049/el:20010955 – year: 2012 ident: ref15 publication-title: Machine Learning A Probabilistic Perspective – ident: ref7 doi: 10.1109/TVT.2022.3169404 – volume: 2013 year: 2013 ident: ref37 article-title: A variable step-size strategy for distributed estimation over adaptive networks publication-title: EURASIP J Adv Signal Process – ident: ref22 doi: 10.1109/TSP.2007.913142 – volume: 4 start-page: iv-444 year: 0 ident: ref25 article-title: A least-squares based algorithm for FIR filtering with noisy data publication-title: Proc 36th IEEE Int Symp Circuits Syst – ident: ref30 doi: 10.1049/el.2017.1812 – ident: ref21 doi: 10.1016/j.sigpro.2020.107500 – ident: ref28 doi: 10.1086/300604 – ident: ref8 doi: 10.1016/j.knosys.2014.02.005 – ident: ref3 doi: 10.1109/TVT.2020.3049026 – ident: ref6 doi: 10.1109/TVT.2020.3020946 – ident: ref31 doi: 10.1109/TSP.2021.3066812 – ident: ref36 doi: 10.1109/TSP.2002.1003057 – year: 2003 ident: ref2 publication-title: Fundamentals of Adaptive Filtering – ident: ref23 doi: 10.1109/TVT.2018.2877457 – year: 2007 ident: ref43 publication-title: Recommendation ITU-T G 168 Digital Network Echo Cancellers – ident: ref9 doi: 10.1016/j.sigpro.2016.03.017 – volume: 12 start-page: 1540 year: 1994 ident: ref19 article-title: Least mean p-power error criterion for adaptive FIR filter publication-title: IEEE J Sel Areas Commun doi: 10.1109/49.339922 – ident: ref33 doi: 10.1109/ISCAS.2007.378235  | 
    
| SSID | ssj0014491 | 
    
| Score | 2.4910889 | 
    
| Snippet | This paper considers the problem of system parameter estimation using adaptive filter. Conventional adaptive algorithms will result in degraded performance in... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive algorithms Adaptive filters Adaptive systems Bayes methods Bias Covariance matrices Direction of arrival Direction-of-arrival estimation Echo cancellation Estimation impulsive interferences Least mean squares Least mean squares algorithm Noise measurement noisy input Parameter estimation Performance degradation robust adaptive signal processing Robustness Signal processing algorithms spatial spectrum  | 
    
| Title | Robust Bias-Compensated LMS Algorithm: Design, Performance Analysis and Applications | 
    
| URI | https://ieeexplore.ieee.org/document/10125053 https://www.proquest.com/docview/2878501737  | 
    
| Volume | 72 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLaACQbOIsolDyxIJI3jJHbYyiWEACFoEVvkK1BRWtSmC7-eZyeBAgKxRZFtWX5-l9_xIbSnU641i4kH1nDoRZwkHgct42kuY5mkWhiHWnJ1nZx3o4uH-KEqVne1MMYYl3xmfPvpYvl6qCb2qaxle1GBxqazaJbxpCzW-ggZRFEFj0eAg8EuqGOSQdrq3Hd8CxPu05AlMaNfdJADVfkhiZ16OVtC1_XGyqySZ39SSF-9fevZ-O-dL6PFytDE7fJmrKAZM1hFC1PtB9dQ53YoJ-MCH_XE2LOCAVxaMD01vry6w-3-43DUK55eDvGJy_I4wDefRQa4bmaCxUDj9lQUvIG6Z6ed43OvQlnwVJiGhWdf-PM4iIgBzRQGsQoDTTR4q4TKVBrgaKNDLoQwwLAmFHmc8CDPNWEJI4pRuo7mBsOB2UA4DyRXVCoWSQOGgZBSwy_JRCKp4oQ1Uas-90xVLcgtEkY_c65IkGZAqcxSKqso1UT7HzNey_Ybf4xt2IOfGleeeRNt17TNKgYdZ-Ao8hikEWWbv0zbQvN29TJxbxvNFaOJ2QEDpJC77uK9AwaW1Tw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CcQAOjI-hFQb4wAWJpHFsxw63DpgKtBWCDO0W-StsYrRoTS_89Tw7ySggELcosmXLz-_L7-MH8NSVyjkpaILWcJ5wRYtEoZZJnDLCFKXTPqKWzBfF9Ji_PREnfbF6rIXx3sfkM5-GzxjLdyu7CU9l49CLCjU2uwrXBOdcdOVal0EDznuAPIo8jJbBEJXMynH1qUoDUHjKclkIyX7RQhFW5Q9ZHBXM0S4shq11eSVf0k1rUvv9t66N_73323CrNzXJpLsbd-CKX96Fm1sNCO9B9WFlNuuWHJ7pdRJEAzq1aHw6Mpt_JJPzz6uLs_b06wvyKuZ5PCfvf5YZkKGdCdFLRyZbcfA9OD56Xb2cJj3OQmLzMm-T8MbfiIxTj7opz4TNM0cd-quUmdJ45GnvcqW19siyPteNKFTWNI7KQlIrGbsPO8vV0u8DaTKjLDNWcuPRNNDGOPxlpC4Ms4rKEYyHc69t34Q8YGGc19EZycoaKVUHStU9pUbw7HLGt64Bxz_G7oWD3xrXnfkIDgba1j2Lrmt0FZVAecTkg79MewLXp9V8Vs_eLN49hBthpS6N7wB22ouNf4TmSGsex0v4A1v32Ik | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bias-Compensated+LMS+Algorithm%3A+Design%2C+Performance+Analysis+and+Applications&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Huang%2C+Fuyi&rft.au=Song%2C+Fan&rft.au=Zhang%2C+Sheng&rft.au=So%2C+Hing+Cheung&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTVT.2023.3276573&rft.externalDocID=10125053 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |