Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples From Reference-Plane-Invariant Measurements
A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the mater...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2023.3273664 |
Cover
Abstract | A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-parameter waveguide measurements at the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band (8.2-12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties. |
---|---|
AbstractList | A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-parameter waveguide measurements at the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band (8.2-12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties. A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. [Formula Omitted]-parameter waveguide measurements at the [Formula Omitted]-band (8.2–12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties. |
Author | Ertugrul, Mehmet Ramahi, Omar M. Barroso, Joaquim J. Ozturk, Hamdullah Hasar, Ugur C. |
Author_xml | – sequence: 1 givenname: Ugur C. orcidid: 0000-0002-6098-7762 surname: Hasar fullname: Hasar, Ugur C. email: uchasar@gantep.edu.tr organization: Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep, Turkey – sequence: 2 givenname: Hamdullah orcidid: 0000-0001-8475-5731 surname: Ozturk fullname: Ozturk, Hamdullah organization: Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep, Turkey – sequence: 3 givenname: Mehmet orcidid: 0000-0003-1921-7704 surname: Ertugrul fullname: Ertugrul, Mehmet organization: Department of Electrical and Electronic Engineering, Ataturk University, Erzurum, Turkey – sequence: 4 givenname: Joaquim J. orcidid: 0000-0002-6635-6638 surname: Barroso fullname: Barroso, Joaquim J. organization: Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, Brazil – sequence: 5 givenname: Omar M. orcidid: 0000-0002-9403-0029 surname: Ramahi fullname: Ramahi, Omar M. organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada |
BookMark | eNp9kMFO3DAQhq2KSl1o7z1wsMQ5W9txnOS4QlBWYltU4BxNkjEyJPYydqh4AZ67WZYD4tDTf5j_m9F8h-zAB4-MfZdiKaWof9ysN0slVL7MVZkboz-xhSyKMquNUQdsIYSssloX5gs7jPFeCFEaXS7Yy4qSs65zMPBfONFrpL-BHvgm9DhwG4ifPcEwQXL-jl8BwYgJKfJg-R-0A3bJBZ-t4vM4D8h1_BrG7YCRn1MYdxUk9B1mVwN4zNb-CciBT3yDECfCEX2KX9lnC0PEb295xG7Pz25OL7LL3z_Xp6vLrFO1SplqbW5rUBIrrVCjaY2do-sLlEa0Qhe9trWyreq1tH1VW1W1pYG6LLWCSuRH7GS_d0vhccKYmvswkZ9PNqqSutDSFGZumX2roxAjoW06l2D3ZiJwQyNFs3PezM6bnfPmzfkMig_gltwI9Pw_5HiPOER8V5dK5rnO_wHpj5E3 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1038_s41598_024_60640_3 |
Cites_doi | 10.1364/JOSAB.30.001058 10.1016/j.sna.2013.09.007 10.1109/TMTT.2020.3018712 10.1088/0957-0233/19/5/055706 10.1109/TMTT.2008.2002229 10.1017/CBO9780511812651 10.3923/jas.2013.133.139 10.1364/JOSAA.33.000954 10.1109/TMTT.2008.2011242 10.1063/1.1695439 10.3390/s19214766 10.1177/0142331217721968 10.1109/TIM.2019.2963580 10.1109/22.57336 10.1016/j.sna.2018.09.005 10.1109/TIM.2021.3062676 10.1109/TMTT.2017.2756964 10.1109/TMTT.2016.2644639 10.1103/PhysRevE.79.026610 10.1109/TIM.2020.2988329 10.1109/72.88168 10.1016/j.sna.2013.11.032 10.1109/TMTT.2022.3157718 10.1109/TMTT.2017.2772864 10.1109/ACCESS.2019.2940723 10.1109/TMTT.2015.2431685 10.1109/TMTT.1979.1129778 10.1109/TMTT.2007.906473 10.1088/0957-0233/17/6/R01 10.1109/TEMC.2011.2156416 10.1109/TIE.2020.3032870 10.1109/OJAP.2021.3121177 10.1163/156939311797164756 10.1109/TIM.1970.4313932 10.1109/TMTT.2016.2606389 10.1007/s10762-011-9869-3 10.1002/0470020466 10.1109/PROC.1974.9382 10.1109/TAP.2020.2979292 10.1109/LMWC.2009.2020045 10.1049/el:19700354 10.1109/22.552032 10.2528/PIER09061008 10.1109/TIM.2020.3047490 10.1109/TIM.2021.3126011 10.1109/TMTT.2009.2027160 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3273664 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 8 |
ExternalDocumentID | 10_1109_TIM_2023_3273664 10121334 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-2bf3f9a21e842e4e6b6fe4ecd5e160b045d4f92fb2d41fd89f28b76a97742a803 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:16:04 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Tue Jul 01 03:07:27 EDT 2025 Wed Aug 27 02:50:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-2bf3f9a21e842e4e6b6fe4ecd5e160b045d4f92fb2d41fd89f28b76a97742a803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6098-7762 0000-0003-1921-7704 0000-0002-9403-0029 0000-0002-6635-6638 0000-0001-8475-5731 |
PQID | 2814541656 |
PQPubID | 85462 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TIM_2023_3273664 ieee_primary_10121334 proquest_journals_2814541656 crossref_primary_10_1109_TIM_2023_3273664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 (ref46) 2015 Dean (ref50) ref45 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 (ref48) 2021 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 Erhan (ref51) 2010; 11 ref23 ref26 ref25 ref20 ref22 ref21 Haykin (ref42) 1996 ref28 ref27 ref29 |
References_xml | – ident: ref17 doi: 10.1364/JOSAB.30.001058 – ident: ref26 doi: 10.1016/j.sna.2013.09.007 – ident: ref32 doi: 10.1109/TMTT.2020.3018712 – ident: ref19 doi: 10.1088/0957-0233/19/5/055706 – ident: ref18 doi: 10.1109/TMTT.2008.2002229 – volume-title: Neural Networks: A Comprehensive Foundation year: 1996 ident: ref42 – ident: ref43 doi: 10.1017/CBO9780511812651 – ident: ref49 doi: 10.3923/jas.2013.133.139 – ident: ref44 doi: 10.1364/JOSAA.33.000954 – ident: ref10 doi: 10.1109/TMTT.2008.2011242 – ident: ref35 doi: 10.1063/1.1695439 – ident: ref40 doi: 10.3390/s19214766 – ident: ref2 doi: 10.1177/0142331217721968 – ident: ref3 doi: 10.1109/TIM.2019.2963580 – ident: ref8 doi: 10.1109/22.57336 – ident: ref33 doi: 10.1016/j.sna.2018.09.005 – volume-title: CST Microwave Studio year: 2021 ident: ref48 – ident: ref22 doi: 10.1109/TIM.2021.3062676 – ident: ref30 doi: 10.1109/TMTT.2017.2756964 – ident: ref37 doi: 10.1109/TMTT.2016.2644639 – ident: ref36 doi: 10.1103/PhysRevE.79.026610 – ident: ref21 doi: 10.1109/TIM.2020.2988329 – ident: ref45 doi: 10.1109/72.88168 – ident: ref27 doi: 10.1016/j.sna.2013.11.032 – ident: ref34 doi: 10.1109/TMTT.2022.3157718 – ident: ref13 doi: 10.1109/TMTT.2017.2772864 – ident: ref31 doi: 10.1109/ACCESS.2019.2940723 – ident: ref28 doi: 10.1109/TMTT.2015.2431685 – ident: ref47 doi: 10.1109/TMTT.1979.1129778 – ident: ref15 doi: 10.1109/TMTT.2007.906473 – ident: ref5 doi: 10.1088/0957-0233/17/6/R01 – ident: ref29 doi: 10.1109/TEMC.2011.2156416 – ident: ref41 doi: 10.1109/TIE.2020.3032870 – ident: ref1 doi: 10.1109/OJAP.2021.3121177 – ident: ref25 doi: 10.1163/156939311797164756 – ident: ref6 doi: 10.1109/TIM.1970.4313932 – start-page: 1223 volume-title: Proc. Adv. Neural Inf. Process. Sys. ident: ref50 article-title: Large scale distributed deep networks – ident: ref11 doi: 10.1109/TMTT.2016.2606389 – ident: ref16 doi: 10.1007/s10762-011-9869-3 – ident: ref4 doi: 10.1002/0470020466 – ident: ref7 doi: 10.1109/PROC.1974.9382 – ident: ref38 doi: 10.1109/TAP.2020.2979292 – ident: ref20 doi: 10.1109/LMWC.2009.2020045 – ident: ref14 doi: 10.1049/el:19700354 – ident: ref9 doi: 10.1109/22.552032 – volume-title: MATLAB Neural Network Toolbox Release 2019b year: 2015 ident: ref46 – ident: ref39 doi: 10.2528/PIER09061008 – ident: ref12 doi: 10.1109/TIM.2020.3047490 – ident: ref23 doi: 10.1109/TIM.2021.3126011 – ident: ref24 doi: 10.1109/TMTT.2009.2027160 – volume: 11 start-page: 625 year: 2010 ident: ref51 article-title: Why does unsupervised pretraining help deep learning? publication-title: J. Mach. Learn. Res. |
SSID | ssj0007647 |
Score | 2.378173 |
Snippet | A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Artificial neural networks (ANNs) Asymmetry bianisotropic Biomedical measurement Calibration Economic indicators Electromagnetic properties Electromagnetics Evaluation Invariants material characterization Material properties Mathematical models Metamaterials metamaterials (MMs) Neurons reference-plane-invariant (RPI) reflection-asymmetric S parameters Scattering parameters Slabs Waveguides |
Title | Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples From Reference-Plane-Invariant Measurements |
URI | https://ieeexplore.ieee.org/document/10121334 https://www.proquest.com/docview/2814541656 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQKA9tPkq3TQpOvSSg722rJXtYyhZksKG0CaQm7GkmR666w3xbqH9Af3d0cjebZqS0pN8kIzgjTQz0ug9gA_eDIo68wgQ5j5BMbKMDGZZZCmh2kltKLDtTy71-Y36dDu67R-rh7cwiBiKzzDmz3CX7-Z2yUdlwzQQkGVqEzbzvOwea6233VyrjiAz9SvYhwWrO8mkHF5fTGKWCY8z76y1Vn_4oCCq8tdOHNzL-DVcribWVZV8i5cLE9ufTzgb_3vmO_CqDzTFaWcZu7CBzR68fEQ_uAfbofzTtvvwi7t1XBKC6TpCE-rDBYulTYUPbcVZTwzefBVXNdd0MTGnmJP4jDQNFV1NdNr-mM1YpMuKLzUTD7difD-fiTWfbcQqSRhdNN99ku5RFZPfh5TtAdyMz64_nke9QkNkZSkXkTSUUVnLFAslUaE2mnxj3QhTnRgfLjpFpSQjnUrJFSXJwuS65qBT1kWSvYGtZt7gWxCELrc-GXRI3mEqVxT1yOWOfLzDOQ8NYLjCrLI9fTmraEyrkMYkZeVRrhjlqkd5ACfrEXcddcc_-h4waI_6dXgN4GhlF1W_uNtKFqkaKaYtOnxm2Dt4wX_vjmqOYGtxv8RjH7wszPtgtA_39Ozc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CITQ4wNiGKAzwgcsOSRPHcZLjhFa1sFbT1km7RfGPx4E2RUuLBH_A_u75OWm3gYY4OQdbsfQ9-33Pfv4ewCdnBnmVOATQZi5AUbwIlE2SQGOEleFSoVfbH0_k8EJ8uUwvu8fq_i2MtdYnn9mQPv1dvlnoFR2V9WMvQJaIx_AkdWFF1j7X2my8mRStRGbs1rAjButbyajoT0fjkAqFh4lz11KKe17Il1X5ay_2DmbwEibrqbV5Jd_D1VKF-vcfqo3_PfcdeNFRTXbU2sYreGTrXXh-R4BwF576BFDd7ME1dWvVJBgJdvjGZ4gzKpc2Y47csuNOGrz-xk4ryuoiaU62QHZmceZzuurgqPk1n1OZLs3OK5IebtjgajFnG0XbgOok2WBU_3RhusOVjW-PKZt9uBgcTz8Pg65GQ6B5wZcBV5hgUfHY5oJbYaWS6BptUhvLSDnCaAQWHBU3IkaTF8hzlcmKaCev8ih5DVv1orZvgKE1mXbhoLHoXKYweV6lJjPoGA9FPdiD_hqzUncC5lRHY1b6QCYqSodySSiXHco9ONyM-NGKd_yj7z6Bdqdfi1cPDtZ2UXbLuyl5HotUkHDR2weGfYTt4XR8Up6MJl_fwTP6U3twcwBby6uVfe-ozFJ98AZ8A4ys8C0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+Model+for+Evaluating+Parameters+of+Reflection-Asymmetric+Samples+From+Reference-Plane-Invariant+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Hasar%2C+Ugur+C.&rft.au=Ozturk%2C+Hamdullah&rft.au=Ertugrul%2C+Mehmet&rft.au=Barroso%2C+Joaquim+J.&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2023.3273664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3273664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |