Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples From Reference-Plane-Invariant Measurements

A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the mater...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 8
Main Authors Hasar, Ugur C., Ozturk, Hamdullah, Ertugrul, Mehmet, Barroso, Joaquim J., Ramahi, Omar M.
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2023.3273664

Cover

Abstract A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-parameter waveguide measurements at the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band (8.2-12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties.
AbstractList A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-parameter waveguide measurements at the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band (8.2-12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties.
A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. [Formula Omitted]-parameter waveguide measurements at the [Formula Omitted]-band (8.2–12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties.
Author Ertugrul, Mehmet
Ramahi, Omar M.
Barroso, Joaquim J.
Ozturk, Hamdullah
Hasar, Ugur C.
Author_xml – sequence: 1
  givenname: Ugur C.
  orcidid: 0000-0002-6098-7762
  surname: Hasar
  fullname: Hasar, Ugur C.
  email: uchasar@gantep.edu.tr
  organization: Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep, Turkey
– sequence: 2
  givenname: Hamdullah
  orcidid: 0000-0001-8475-5731
  surname: Ozturk
  fullname: Ozturk, Hamdullah
  organization: Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep, Turkey
– sequence: 3
  givenname: Mehmet
  orcidid: 0000-0003-1921-7704
  surname: Ertugrul
  fullname: Ertugrul, Mehmet
  organization: Department of Electrical and Electronic Engineering, Ataturk University, Erzurum, Turkey
– sequence: 4
  givenname: Joaquim J.
  orcidid: 0000-0002-6635-6638
  surname: Barroso
  fullname: Barroso, Joaquim J.
  organization: Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, Brazil
– sequence: 5
  givenname: Omar M.
  orcidid: 0000-0002-9403-0029
  surname: Ramahi
  fullname: Ramahi, Omar M.
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kMFO3DAQhq2KSl1o7z1wsMQ5W9txnOS4QlBWYltU4BxNkjEyJPYydqh4AZ67WZYD4tDTf5j_m9F8h-zAB4-MfZdiKaWof9ysN0slVL7MVZkboz-xhSyKMquNUQdsIYSssloX5gs7jPFeCFEaXS7Yy4qSs65zMPBfONFrpL-BHvgm9DhwG4ifPcEwQXL-jl8BwYgJKfJg-R-0A3bJBZ-t4vM4D8h1_BrG7YCRn1MYdxUk9B1mVwN4zNb-CciBT3yDECfCEX2KX9lnC0PEb295xG7Pz25OL7LL3z_Xp6vLrFO1SplqbW5rUBIrrVCjaY2do-sLlEa0Qhe9trWyreq1tH1VW1W1pYG6LLWCSuRH7GS_d0vhccKYmvswkZ9PNqqSutDSFGZumX2roxAjoW06l2D3ZiJwQyNFs3PezM6bnfPmzfkMig_gltwI9Pw_5HiPOER8V5dK5rnO_wHpj5E3
CODEN IEIMAO
CitedBy_id crossref_primary_10_1038_s41598_024_60640_3
Cites_doi 10.1364/JOSAB.30.001058
10.1016/j.sna.2013.09.007
10.1109/TMTT.2020.3018712
10.1088/0957-0233/19/5/055706
10.1109/TMTT.2008.2002229
10.1017/CBO9780511812651
10.3923/jas.2013.133.139
10.1364/JOSAA.33.000954
10.1109/TMTT.2008.2011242
10.1063/1.1695439
10.3390/s19214766
10.1177/0142331217721968
10.1109/TIM.2019.2963580
10.1109/22.57336
10.1016/j.sna.2018.09.005
10.1109/TIM.2021.3062676
10.1109/TMTT.2017.2756964
10.1109/TMTT.2016.2644639
10.1103/PhysRevE.79.026610
10.1109/TIM.2020.2988329
10.1109/72.88168
10.1016/j.sna.2013.11.032
10.1109/TMTT.2022.3157718
10.1109/TMTT.2017.2772864
10.1109/ACCESS.2019.2940723
10.1109/TMTT.2015.2431685
10.1109/TMTT.1979.1129778
10.1109/TMTT.2007.906473
10.1088/0957-0233/17/6/R01
10.1109/TEMC.2011.2156416
10.1109/TIE.2020.3032870
10.1109/OJAP.2021.3121177
10.1163/156939311797164756
10.1109/TIM.1970.4313932
10.1109/TMTT.2016.2606389
10.1007/s10762-011-9869-3
10.1002/0470020466
10.1109/PROC.1974.9382
10.1109/TAP.2020.2979292
10.1109/LMWC.2009.2020045
10.1049/el:19700354
10.1109/22.552032
10.2528/PIER09061008
10.1109/TIM.2020.3047490
10.1109/TIM.2021.3126011
10.1109/TMTT.2009.2027160
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3273664
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 8
ExternalDocumentID 10_1109_TIM_2023_3273664
10121334
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-2bf3f9a21e842e4e6b6fe4ecd5e160b045d4f92fb2d41fd89f28b76a97742a803
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:04 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Tue Jul 01 03:07:27 EDT 2025
Wed Aug 27 02:50:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-2bf3f9a21e842e4e6b6fe4ecd5e160b045d4f92fb2d41fd89f28b76a97742a803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6098-7762
0000-0003-1921-7704
0000-0002-9403-0029
0000-0002-6635-6638
0000-0001-8475-5731
PQID 2814541656
PQPubID 85462
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TIM_2023_3273664
ieee_primary_10121334
proquest_journals_2814541656
crossref_primary_10_1109_TIM_2023_3273664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
(ref46) 2015
Dean (ref50)
ref45
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
(ref48) 2021
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Erhan (ref51) 2010; 11
ref23
ref26
ref25
ref20
ref22
ref21
Haykin (ref42) 1996
ref28
ref27
ref29
References_xml – ident: ref17
  doi: 10.1364/JOSAB.30.001058
– ident: ref26
  doi: 10.1016/j.sna.2013.09.007
– ident: ref32
  doi: 10.1109/TMTT.2020.3018712
– ident: ref19
  doi: 10.1088/0957-0233/19/5/055706
– ident: ref18
  doi: 10.1109/TMTT.2008.2002229
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1996
  ident: ref42
– ident: ref43
  doi: 10.1017/CBO9780511812651
– ident: ref49
  doi: 10.3923/jas.2013.133.139
– ident: ref44
  doi: 10.1364/JOSAA.33.000954
– ident: ref10
  doi: 10.1109/TMTT.2008.2011242
– ident: ref35
  doi: 10.1063/1.1695439
– ident: ref40
  doi: 10.3390/s19214766
– ident: ref2
  doi: 10.1177/0142331217721968
– ident: ref3
  doi: 10.1109/TIM.2019.2963580
– ident: ref8
  doi: 10.1109/22.57336
– ident: ref33
  doi: 10.1016/j.sna.2018.09.005
– volume-title: CST Microwave Studio
  year: 2021
  ident: ref48
– ident: ref22
  doi: 10.1109/TIM.2021.3062676
– ident: ref30
  doi: 10.1109/TMTT.2017.2756964
– ident: ref37
  doi: 10.1109/TMTT.2016.2644639
– ident: ref36
  doi: 10.1103/PhysRevE.79.026610
– ident: ref21
  doi: 10.1109/TIM.2020.2988329
– ident: ref45
  doi: 10.1109/72.88168
– ident: ref27
  doi: 10.1016/j.sna.2013.11.032
– ident: ref34
  doi: 10.1109/TMTT.2022.3157718
– ident: ref13
  doi: 10.1109/TMTT.2017.2772864
– ident: ref31
  doi: 10.1109/ACCESS.2019.2940723
– ident: ref28
  doi: 10.1109/TMTT.2015.2431685
– ident: ref47
  doi: 10.1109/TMTT.1979.1129778
– ident: ref15
  doi: 10.1109/TMTT.2007.906473
– ident: ref5
  doi: 10.1088/0957-0233/17/6/R01
– ident: ref29
  doi: 10.1109/TEMC.2011.2156416
– ident: ref41
  doi: 10.1109/TIE.2020.3032870
– ident: ref1
  doi: 10.1109/OJAP.2021.3121177
– ident: ref25
  doi: 10.1163/156939311797164756
– ident: ref6
  doi: 10.1109/TIM.1970.4313932
– start-page: 1223
  volume-title: Proc. Adv. Neural Inf. Process. Sys.
  ident: ref50
  article-title: Large scale distributed deep networks
– ident: ref11
  doi: 10.1109/TMTT.2016.2606389
– ident: ref16
  doi: 10.1007/s10762-011-9869-3
– ident: ref4
  doi: 10.1002/0470020466
– ident: ref7
  doi: 10.1109/PROC.1974.9382
– ident: ref38
  doi: 10.1109/TAP.2020.2979292
– ident: ref20
  doi: 10.1109/LMWC.2009.2020045
– ident: ref14
  doi: 10.1049/el:19700354
– ident: ref9
  doi: 10.1109/22.552032
– volume-title: MATLAB Neural Network Toolbox Release 2019b
  year: 2015
  ident: ref46
– ident: ref39
  doi: 10.2528/PIER09061008
– ident: ref12
  doi: 10.1109/TIM.2020.3047490
– ident: ref23
  doi: 10.1109/TIM.2021.3126011
– ident: ref24
  doi: 10.1109/TMTT.2009.2027160
– volume: 11
  start-page: 625
  year: 2010
  ident: ref51
  article-title: Why does unsupervised pretraining help deep learning?
  publication-title: J. Mach. Learn. Res.
SSID ssj0007647
Score 2.378173
Snippet A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Artificial neural networks (ANNs)
Asymmetry
bianisotropic
Biomedical measurement
Calibration
Economic indicators
Electromagnetic properties
Electromagnetics
Evaluation
Invariants
material characterization
Material properties
Mathematical models
Metamaterials
metamaterials (MMs)
Neurons
reference-plane-invariant (RPI)
reflection-asymmetric
S parameters
Scattering parameters
Slabs
Waveguides
Title Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples From Reference-Plane-Invariant Measurements
URI https://ieeexplore.ieee.org/document/10121334
https://www.proquest.com/docview/2814541656
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQKA9tPkq3TQpOvSSg722rJXtYyhZksKG0CaQm7GkmR666w3xbqH9Af3d0cjebZqS0pN8kIzgjTQz0ug9gA_eDIo68wgQ5j5BMbKMDGZZZCmh2kltKLDtTy71-Y36dDu67R-rh7cwiBiKzzDmz3CX7-Z2yUdlwzQQkGVqEzbzvOwea6233VyrjiAz9SvYhwWrO8mkHF5fTGKWCY8z76y1Vn_4oCCq8tdOHNzL-DVcribWVZV8i5cLE9ufTzgb_3vmO_CqDzTFaWcZu7CBzR68fEQ_uAfbofzTtvvwi7t1XBKC6TpCE-rDBYulTYUPbcVZTwzefBVXNdd0MTGnmJP4jDQNFV1NdNr-mM1YpMuKLzUTD7difD-fiTWfbcQqSRhdNN99ku5RFZPfh5TtAdyMz64_nke9QkNkZSkXkTSUUVnLFAslUaE2mnxj3QhTnRgfLjpFpSQjnUrJFSXJwuS65qBT1kWSvYGtZt7gWxCELrc-GXRI3mEqVxT1yOWOfLzDOQ8NYLjCrLI9fTmraEyrkMYkZeVRrhjlqkd5ACfrEXcddcc_-h4waI_6dXgN4GhlF1W_uNtKFqkaKaYtOnxm2Dt4wX_vjmqOYGtxv8RjH7wszPtgtA_39Ozc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CITQ4wNiGKAzwgcsOSRPHcZLjhFa1sFbT1km7RfGPx4E2RUuLBH_A_u75OWm3gYY4OQdbsfQ9-33Pfv4ewCdnBnmVOATQZi5AUbwIlE2SQGOEleFSoVfbH0_k8EJ8uUwvu8fq_i2MtdYnn9mQPv1dvlnoFR2V9WMvQJaIx_AkdWFF1j7X2my8mRStRGbs1rAjButbyajoT0fjkAqFh4lz11KKe17Il1X5ay_2DmbwEibrqbV5Jd_D1VKF-vcfqo3_PfcdeNFRTXbU2sYreGTrXXh-R4BwF576BFDd7ME1dWvVJBgJdvjGZ4gzKpc2Y47csuNOGrz-xk4ryuoiaU62QHZmceZzuurgqPk1n1OZLs3OK5IebtjgajFnG0XbgOok2WBU_3RhusOVjW-PKZt9uBgcTz8Pg65GQ6B5wZcBV5hgUfHY5oJbYaWS6BptUhvLSDnCaAQWHBU3IkaTF8hzlcmKaCev8ih5DVv1orZvgKE1mXbhoLHoXKYweV6lJjPoGA9FPdiD_hqzUncC5lRHY1b6QCYqSodySSiXHco9ONyM-NGKd_yj7z6Bdqdfi1cPDtZ2UXbLuyl5HotUkHDR2weGfYTt4XR8Up6MJl_fwTP6U3twcwBby6uVfe-ozFJ98AZ8A4ys8C0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+Model+for+Evaluating+Parameters+of+Reflection-Asymmetric+Samples+From+Reference-Plane-Invariant+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Hasar%2C+Ugur+C.&rft.au=Ozturk%2C+Hamdullah&rft.au=Ertugrul%2C+Mehmet&rft.au=Barroso%2C+Joaquim+J.&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2023.3273664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3273664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon