Virtual screening analysis of natural flavonoids as trimethylamine (TMA)‐lyase inhibitors for coronary heart disease
Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and...
Saved in:
Published in | Journal of food biochemistry Vol. 46; no. 12; pp. e14376 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0145-8884 1745-4514 1745-4514 |
DOI | 10.1111/jfbc.14376 |
Cover
Abstract | Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine‐N‐oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin‐containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty‐two flavonoids for the therapy of CHD based on their inhibition of TMA‐lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA‐lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future.
Practical applications
Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α‐rhamnosidase, β‐glucuronidase, β‐glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA‐lyase, which were the most active and could be used as lead compounds for structural modification.
The TMA/TMAO pathway represents one of many microbe‐dependent pathways that will ultimately be linked to CHD pathogenesis Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin and hesperidin in flavonoid glycosides had good binding effects on TMA‐lyase, which were the most active and could be used as lead compounds for structural modification. |
---|---|
AbstractList | Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification. Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine‐N‐oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin‐containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty‐two flavonoids for the therapy of CHD based on their inhibition of TMA‐lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA‐lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. Practical applications Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α‐rhamnosidase, β‐glucuronidase, β‐glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA‐lyase, which were the most active and could be used as lead compounds for structural modification. The TMA/TMAO pathway represents one of many microbe‐dependent pathways that will ultimately be linked to CHD pathogenesis Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin and hesperidin in flavonoid glycosides had good binding effects on TMA‐lyase, which were the most active and could be used as lead compounds for structural modification. Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification. |
Author | Ma, Yao‐Yao Huang, Jin‐Ling Zhao, Xiao‐Ni Wang, Shu‐Shu Wang, Liang Tang, Tong‐Juan Zhou, Peng |
Author_xml | – sequence: 1 givenname: Peng surname: Zhou fullname: Zhou, Peng organization: Anhui Province Key Laboratory of Chinese Medicinal Formula – sequence: 2 givenname: Xiao‐Ni surname: Zhao fullname: Zhao, Xiao‐Ni organization: Anhui University of Chinese Medicine – sequence: 3 givenname: Yao‐Yao surname: Ma fullname: Ma, Yao‐Yao organization: Anhui University of Chinese Medicine – sequence: 4 givenname: Tong‐Juan surname: Tang fullname: Tang, Tong‐Juan organization: Anhui University of Chinese Medicine – sequence: 5 givenname: Shu‐Shu surname: Wang fullname: Wang, Shu‐Shu organization: Anhui University of Chinese Medicine – sequence: 6 givenname: Liang surname: Wang fullname: Wang, Liang email: wangliang_01@163.com organization: Anhui Province Key Laboratory of Chinese Medicinal Formula – sequence: 7 givenname: Jin‐Ling surname: Huang fullname: Huang, Jin‐Ling email: jinling6181@126.com organization: Anhui Province Key Laboratory of Chinese Medicinal Formula |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35945702$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uFDEMxiNURLeFCw-AcixIW5JMMskcy4ryR0VcCteRJ-NhU2WTkmSK5sYj8Iw8CSlbOCAEvtiSf58t-zsiByEGJOQxZ6e8xvOrabCnXDa6vUdWXEu1lorLA7JivNbGGHlIjnK-YoyJrpUPyGGjOqk0Eyty89GlMoOn2SbE4MInCgH8kl2mcaIBypxqd_JwE0N0Y6aQaUluh2W7eNi5gPTk8t3Z0-9fv_kFMlIXtm5wJaZMp5iojSkGSAvdIqRCR5exUg_J_Ql8xkd3-Zh8OH95uXm9vnj_6s3m7GJtRSfatRZyGjgDbhQblGoZGM0HxVjLLHQjoO64GhrRdgoQ7MCEUaOoF3PBWq1lc0xO9nOvU_w8Yy79zmWL3kPAOOdeGM47YxrR_R_Vda1smGor-uQOnYcdjv11_Uc9sf_11go82wM2xZwTTr8Rzvpbz_pbz_qfnlWY_QFbV6C4GEoC5_8u4XvJF-dx-cfw_u35i81e8wMJvKms |
CitedBy_id | crossref_primary_10_4014_jmb_2405_05019 crossref_primary_10_25040_ntsh2023_02_16 crossref_primary_10_3390_ijms241612967 crossref_primary_10_1021_acs_jafc_3c04462 crossref_primary_10_1007_s00210_023_02479_5 crossref_primary_10_2174_1871525721666230822100142 crossref_primary_10_3390_biology13120961 crossref_primary_10_3390_metabo13020256 crossref_primary_10_3389_fphar_2023_1082817 crossref_primary_10_3390_nu14245373 crossref_primary_10_1016_j_trac_2024_117858 crossref_primary_10_3390_nu15030607 crossref_primary_10_3390_ph15121540 |
Cites_doi | 10.1021/acs.jafc.5b02649 10.1007/s12038-020-00047-0 10.3390/biom9050174 10.1074/jbc.M115.670471 10.1016/j.intimp.2019.04.060 10.1080/17425255.2017.1251903 10.1007/s11655-013-1595-3 10.1016/j.biopha.2020.111017 10.3390/nu11071613 10.1016/j.ejphar.2019.03.056 10.1136/heartjnl-2016-309848 10.1002/ptr.6904 10.1002/fsn3.1291 10.1038/s41401-021-00726-0 10.1111/jcmm.16106 10.21037/cdt.2019.12.04 10.5551/jat.47415 10.1021/acs.jafc.9b01270 10.17219/acem/131754 10.1007/s10735-018-9793-0 10.2174/0929867327666200604171351 10.3389/fphar.2021.651926 10.1016/j.ejphar.2017.09.010 10.1002/ptr.7149 10.1016/j.jep.2020.113195 10.1002/jbt.22615 10.1590/s0102-865020190110000004 10.1021/acsomega.0c02364 10.1007/s10787-021-00799-7 10.1039/D1FO00539A 10.1093/jpp/rgab040 10.1016/j.ebiom.2020.102649 10.3390/pharmaceutics13020175 10.3389/fphar.2020.583200 10.1016/j.yexmp.2020.104412 10.1016/j.intimp.2020.106680 10.1016/j.scitotenv.2020.137907 10.1007/s10787-019-00680-8 10.1155/2015/481405 10.1155/2021/3268136 10.3945/jn.116.245944 10.1161/CIRCRESAHA.117.309008 10.3389/fphys.2020.577237 10.1016/j.lfs.2020.119008 10.1155/2016/2918796 10.1016/j.biopha.2021.111419 10.1016/j.ejmech.2017.03.004 10.1042/BSR20204250 10.1016/j.sjbs.2021.02.007 10.3390/microorganisms8081238 10.1056/NEJMoa1109400 10.1039/C9FO01142K 10.1016/j.lfs.2020.118463 10.1016/j.jphs.2017.11.009 10.1097/FJC.0000000000001096 10.1007/s43440-021-00227-1 10.3389/fmicb.2019.01745 10.1080/10408398.2014.906382 10.1007/s10753-019-01099-7 10.4196/kjpp.2021.25.2.147 10.1016/j.phytochem.2021.112895 10.1155/2021/6331630 10.1136/bmjdrc-2019-000948 10.1016/j.intimp.2019.105782 10.1097/FJC.0000000000000757 10.1016/j.jnutbio.2021.108840 10.1002/ptr.6227 10.1016/j.intimp.2020.107086 10.1021/acs.jafc.0c05800 10.1016/j.biopha.2020.110923 10.1016/j.micpath.2020.104658 10.1007/s11356‐022‐19494‐3 10.2147/DDDT.S207185 10.1007/978-3-319-41334-1_10 10.3892/etm.2017.4729 10.1016/j.fsi.2019.08.059 10.1016/bs.apha.2019.10.004 10.1016/j.biopha.2017.12.024 10.1186/s40168-019-0683-9 10.3390/nu11020324 10.1016/j.ccmp.2022.100020 10.1186/s12986-019-0354-7 10.1039/D1FO00126D 10.3390/ijms221810035 10.1038/s41401-019-0228-6 10.1038/s41467-017-00900-1 10.3892/mmr.2020.11241 10.1016/j.lfs.2008.12.005 10.1016/j.lfs.2019.116797 10.3389/fcvm.2021.628471 10.1177/0300060518762060 10.3390/molecules15031270 10.1097/FJC.0000000000000747 10.1007/s00394-021-02593-1 10.3390/nu12102982 10.1139/Y08-085 10.1007/s00394-020-02403-0 10.1002/ptr.2688 10.1016/j.ejphar.2019.172457 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1111/jfbc.14376 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Diet & Clinical Nutrition |
EISSN | 1745-4514 |
EndPage | n/a |
ExternalDocumentID | 35945702 10_1111_jfbc_14376 JFBC14376 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82004180; 81973844 – fundername: Natural Science Foundation of Anhui Province funderid: 2208085MH277 – fundername: Key Project Foundation of Natural Science Research of Anhui University of Chinese Medicine funderid: 2020zrzd06; 2021zrzd22 – fundername: Key Project Foundation of Natural Science Research in Universities of Anhui Province in China funderid: KJ2020A0411 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 169 1OB 1OC 24P 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFZJQ AHEFC AHQJS AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBO EBS EBU EJD ESTFP F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X H13 HF~ HVGLF HZI HZ~ I-F J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QWB R.K RHX RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 UCJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~IA ~KM ~WT 7X2 AAYXX AFKRA AGQPQ ATCPS BENPR BHPHI CCPQU CITATION HCIFZ M0K CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c2926-724fb10a1850b5560a871b50060ca9dae7915b32695aeacb0285d288812067743 |
IEDL.DBID | DR2 |
ISSN | 0145-8884 1745-4514 |
IngestDate | Fri Sep 05 17:15:50 EDT 2025 Sat Sep 27 23:59:57 EDT 2025 Wed Feb 19 02:25:45 EST 2025 Tue Jul 01 02:50:37 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Jan 22 16:25:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | TMAO coronary heart disease trimethylamine-lyase molecular docking flavonoids |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2926-724fb10a1850b5560a871b50060ca9dae7915b32695aeacb0285d288812067743 |
Notes | Peng Zhou and Xiao‐Ni Zhao contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 35945702 |
PQID | 2700643056 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2811988329 proquest_miscellaneous_2700643056 pubmed_primary_35945702 crossref_primary_10_1111_jfbc_14376 crossref_citationtrail_10_1111_jfbc_14376 wiley_primary_10_1111_jfbc_14376_JFBC14376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of food biochemistry |
PublicationTitleAlternate | J Food Biochem |
PublicationYear | 2022 |
References | 2021; 25 2018; 122 2017; 8 2021; 21 2009; 84 2010; 15 2021; 22 2019; 94 2019; 11 2019; 10 2019; 13 2021; 29 2021; 28 2013; 368 2016; 102 2019; 16 2020; 722 2016; 2016 2020; 12 2020; 11 2021; 30 2021; 73 2018; 49 2022; 29 2018; 46 2020; 8 2013; 19 2021; 35 2020; 5 2015; 290 2021; 78 2017; 70 2020; 52 2020; 132 2019; 67 2019; 26 2006; 26 2019; 235 2021; 152 2020; 45 2020; 89 2020; 87 2020; 43 2021; 41 2021; 2021 2021; 191 2019; 8 2009; 23 2021; 8 2019; 7 2019; 9 2017; 815 2021; 43 2019; 73 2019; 75 2020; 41 2020; 261 2019; 74 2020; 85 2019; 33 2021; 269 2019; 32 2016; 928 2019; 34 2017; 131 2021; 265 2017; 135 2021; 13 2018; 17 2002; 2020 2021; 12 2021; 99 2021; 11 2020; 75 2021; 134 2017; 14 2021; 137 2015; 63 2017; 57 2017; 13 2015; 2015 2020; 28 2020; 68 2019; 857 2019; 854 2020; 22 2022; 2 2020; 114 2008; 86 2021; 60 2018; 97 2017; 147 2018; 15 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 Meng C. (e_1_2_8_45_1) 2018; 17 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 Yu X. H. (e_1_2_8_100_1) 2002; 2020 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Lv L. (e_1_2_8_44_1) 2018; 15 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_48_1 e_1_2_8_2_1 Lin J. (e_1_2_8_39_1) 2020; 12 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 Chekalina N. I. (e_1_2_8_9_1) 2017; 70 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 Liu P. (e_1_2_8_42_1) 2006; 26 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Yan L. (e_1_2_8_93_1) 2021; 21 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 Jie Z. (e_1_2_8_25_1) 2019; 32 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 132 year: 2020 article-title: Puerarin improves the bone micro‐environment to inhibit OVX‐induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity publication-title: Biomedicine & Pharmacotherapy – volume: 8 start-page: 199 year: 2019 end-page: 213 article-title: Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake publication-title: Food Science & Nutrition – volume: 2020 year: 2002 article-title: Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response publication-title: Oxidative Medicine and Cellular Longevity – volume: 8 year: 2020 article-title: Impact of cyanidin‐3‐glucoside on gut microbiota and relationship with metabolism and inflammation in high fat‐high sucrose diet‐induced insulin resistant mice publication-title: Microorganisms – volume: 29 start-page: 52574 issue: 35 year: 2022 end-page: 52589 article-title: Hesperetin protects against diesel exhaust particles‐induced cardiovascular oxidative stress and inflammation in Wistar rats publication-title: Environmental Science and Pollution Research International – volume: 73 start-page: 98 year: 2019 end-page: 107 article-title: Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress‐associated apoptosis through regulation of the PI3K/AKT signal pathway publication-title: International Immunopharmacology – volume: 131 start-page: 68 year: 2017 end-page: 80 article-title: Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders publication-title: European Journal of Medicinal Chemistry – volume: 269 year: 2021 article-title: Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats publication-title: Life Sciences – volume: 60 start-page: 4345 issue: 8 year: 2021 end-page: 4355 article-title: Chrysin boosts KLF2 expression through suppression of endothelial cell‐derived exosomal microRNA‐92a in the model of atheroprotection publication-title: European Journal of Nutrition – volume: 26 start-page: 705 year: 2019 end-page: 719 article-title: Effect of resistant starch on the gut microbiota and its metabolites in patients with coronary artery disease publication-title: Journal of Atherosclerosis and Thrombosis – volume: 41 year: 2021 article-title: Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis publication-title: Bioscience Reports – volume: 13 start-page: 323 year: 2017 end-page: 330 article-title: Pharmacokinetic properties and drug interactions of apigenin, a natural flavone publication-title: Expert Opinion on Drug Metabolism & Toxicology – volume: 73 start-page: 1169 year: 2021 end-page: 1179 article-title: Essential role of protein kinase C βI in icariin‐mediated protection against atherosclerosis publication-title: The Journal of Pharmacy and Pharmacology – volume: 10 year: 2019 article-title: Cecal gut microbiota and metabolites might contribute to the severity of acute myocardial ischemia by impacting the intestinal permeability, oxidative stress, and energy metabolism publication-title: Frontiers in Microbiology – volume: 9 start-page: 174 year: 2019 article-title: Fisetin and quercetin: Promising flavonoids with chemopreventive potential publication-title: Biomolecules – volume: 191 year: 2021 article-title: A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids publication-title: Phytochemistry – volume: 28 start-page: 1987 year: 2021 end-page: 2007 article-title: New perspectives in the pharmacological potential of naringin in medicine publication-title: Current Medicinal Chemistry – volume: 2016 year: 2016 article-title: The multifunctional effects of nobiletin and its metabolites in vivo and in vitro publication-title: Evidence‐Based Complementary and Alternative Medicine – volume: 261 year: 2020 article-title: Baicalein ameliorates ionizing radiation‐induced injuries by rebalancing gut microbiota and inhibiting apoptosis publication-title: Life Sciences – volume: 28 start-page: 2772 year: 2021 end-page: 2782 article-title: Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF‐β1/Smad3 signaling: Different mechanisms of action publication-title: Saudi Journal of Biological Sciences – volume: 235 year: 2019 article-title: Chrysin: Pharmacological and therapeutic properties publication-title: Life Sciences – volume: 137 year: 2021 article-title: Kaempferol alleviates human endothelial cell injury through circNOL12/miR‐6873‐3p/FRS2 axis publication-title: Biomedicine & Pharmacotherapy – volume: 15 start-page: 506 year: 2018 end-page: 512 article-title: Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model publication-title: Experimental and Therapeutic Medicine – volume: 57 start-page: 613 year: 2017 end-page: 631 article-title: Health‐promoting effects of the citrus flavanone hesperidin publication-title: Critical Reviews in Food Science and Nutrition – volume: 5 start-page: 20399 year: 2020 end-page: 20408 article-title: Icariin alleviates bisphenol A induced disruption of intestinal epithelial barrier by maintaining redox homeostasis on vivo and on vitro publication-title: ACS Omega – volume: 22 year: 2021 article-title: Hesperetin inhibits expression of virulence factors and growth of publication-title: International Journal of Molecular Sciences – volume: 8 year: 2021 article-title: Association of trimethylamine N‐oxide levels and calcification in culprit lesion segments in patients with ST‐segment‐elevation myocardial infarction evaluated by optical coherence tomography publication-title: Frontiers in Cardiovascular Medicine – volume: 14 start-page: 2255 year: 2017 end-page: 2260 article-title: Hesperetin protects against inflammatory response and cardiac fibrosis in postmyocardial infarction mice by inhibiting nuclear factor κB signaling pathway publication-title: Experimental and Therapeutic Medicine – volume: 94 start-page: 132 year: 2019 end-page: 141 article-title: Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota publication-title: Fish & Shellfish Immunology – volume: 11 year: 2020 article-title: Regulatory mechanisms of baicalin in cardiovascular diseases: A review publication-title: Frontiers in Pharmacology – volume: 78 start-page: e729 year: 2021 end-page: e737 article-title: Fisetin prevents oxidized low‐density lipoprotein‐induced macrophage foam cell formation publication-title: Journal of Cardiovascular Pharmacology – volume: 135 start-page: 156 issue: 4 year: 2017 end-page: 163 article-title: Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway publication-title: Journal of Pharmacological Sciences – volume: 857 start-page: 172457 year: 2019 article-title: Baicalin improves intestinal microecology and abnormal metabolism induced by high‐fat diet publication-title: European Journal of Pharmacology – volume: 30 start-page: 255 year: 2021 end-page: 261 article-title: Puerarin pretreatment inhibits myocardial apoptosis and improves cardiac function in rats after acute myocardial infarction through the PI3K/Akt signaling pathway publication-title: Advances in Clinical and Experimental Medicine – volume: 70 start-page: 707 year: 2017 end-page: 711 article-title: Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease publication-title: Wiadomości Lekarskie – volume: 2021 year: 2021 article-title: Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits publication-title: Oxidative Medicine and Cellular Longevity – volume: 29 start-page: 907 year: 2021 end-page: 923 article-title: Health benefits of cyanidin‐3‐glucoside as a potent modulator of Nrf2‐mediated oxidative stress publication-title: Inflammopharmacology – volume: 60 start-page: 2155 year: 2021 end-page: 2168 article-title: Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice publication-title: European Journal of Nutrition – volume: 8 year: 2020 article-title: Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects publication-title: BMJ Open Diabetes Research & Care – volume: 2015 year: 2015 article-title: Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase‐3β publication-title: Oxidative Medicine and Cellular Longevity – volume: 11 start-page: 324 year: 2019 article-title: Hesperidin effects on gut microbiota and gut‐associated lymphoid tissue in healthy rats publication-title: Nutrients – volume: 12 start-page: 203 year: 2020 end-page: 247 article-title: Fisetin regulates gut microbiota to decrease CCR9 /CXCR3 /CD4 T‐lymphocyte count and IL‐12 secretion to alleviate premature ovarian failure in mice publication-title: American Journal of Translational Research – volume: 97 start-page: 1673 year: 2018 end-page: 1679 article-title: Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF‐κB and p38 MAPK signaling pathways publication-title: Biomedicine & Pharmacotherapy – volume: 12 year: 2020 article-title: Gut microbiota in hypertension and atherosclerosis: A review publication-title: Nutrients – volume: 122 start-page: 369 year: 2018 end-page: 384 article-title: Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways publication-title: Circulation Research – volume: 15 start-page: 1270 year: 2010 end-page: 1279 article-title: Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria publication-title: Molecules – volume: 41 start-page: 138 year: 2020 end-page: 144 article-title: CB‐Dock: A web server for cavity detection‐guided protein‐ligand blind docking publication-title: Acta Pharmacologica Sinica – volume: 75 year: 2019 article-title: Naringin mitigates myocardial strain and the inflammatory response in sepsis‐induced myocardial dysfunction through regulation of PI3K/AKT/NF‐κB pathway publication-title: International Immunopharmacology – volume: 43 start-page: 95 year: 2020 end-page: 108 article-title: Luteolin alters macrophage polarization to inhibit inflammation publication-title: Inflammation – volume: 49 start-page: 555 year: 2018 end-page: 565 article-title: Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction publication-title: Journal of Molecular Histology – volume: 34 year: 2019 article-title: Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF‐κB/NLRP3 signaling pathway publication-title: Acta Cirúrgica Brasileira – volume: 12 start-page: 3516 year: 2021 end-page: 3526 article-title: Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high‐fat diet publication-title: Food & Function – volume: 99 start-page: 108840 year: 2021 article-title: Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high‐fat diet mice publication-title: The Journal of Nutritional Biochemistry – volume: 12 start-page: 5876 year: 2021 end-page: 5891 article-title: Amelioration of high‐fat diet‐induced obesity and its associated complications by a myricetin derivative‐rich fraction from in C57BL/6J mice publication-title: Food & Function – volume: 89 year: 2020 article-title: Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting inflammation and the NLRP3 inflammasome: The role of the SIRT1/NF‐κB pathway publication-title: International Immunopharmacology – volume: 32 start-page: 407 year: 2019 end-page: 412 article-title: Pharmacological mechanism and apoptosis effect of baicalein in protecting myocardial ischemia reperfusion injury in rats publication-title: Pakistan Journal of Pharmaceutical Sciences – volume: 45 start-page: 75 year: 2020 article-title: Apigenin attenuates myocardial infarction‐induced cardiomyocyte injury by modulating Parkin‐mediated mitochondrial autophagy publication-title: Journal of Biosciences – volume: 25 start-page: 521 year: 2021 end-page: 534 article-title: Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE‐/‐ mice publication-title: Journal of Cellular and Molecular Medicine – volume: 84 start-page: 227 year: 2009 end-page: 234 article-title: Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF‐kappaB activation publication-title: Life Sciences – volume: 13 start-page: 175 year: 2021 article-title: Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: Physicochemical and biopharmaceutical aspects publication-title: Pharmaceutics – volume: 87 start-page: 179 year: 2020 end-page: 203 article-title: Pharmacological effects of icariin publication-title: Advances in Pharmacology – volume: 46 start-page: 2371 year: 2018 end-page: 2385 article-title: Icariin influences cardiac remodeling following myocardial infarction by regulating the CD147/MMP‐9 pathway publication-title: The Journal of International Medical Research – volume: 22 start-page: 1335 year: 2020 end-page: 1341 article-title: Diosmetin alleviates hypoxia‐induced myocardial apoptosis by inducing autophagy through AMPK activation publication-title: Molecular Medicine Reports – volume: 290 start-page: 21732 year: 2015 end-page: 21740 article-title: Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae publication-title: The Journal of Biological Chemistry – volume: 854 start-page: 48 year: 2019 end-page: 53 article-title: Nobiletin suppresses oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury publication-title: European Journal of Pharmacology – volume: 35 start-page: 1719 year: 2021 end-page: 1738 article-title: Therapeutic benefits of rutin and its nanoformulations publication-title: Phytotherapy Research – volume: 68 start-page: 12651 year: 2020 end-page: 12660 article-title: Naringin alleviates atherosclerosis in ApoE‐/‐ mice by regulating cholesterol metabolism involved in gut microbiota remodeling publication-title: Journal of Agricultural and Food Chemistry – volume: 85 year: 2020 article-title: Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF‐κB pathway publication-title: International Immunopharmacology – volume: 8 start-page: 845 year: 2017 article-title: The gut microbiome in atherosclerotic cardiovascular disease publication-title: Nature Communications – volume: 102 start-page: 811 year: 2016 end-page: 812 article-title: Heartbeat: The gut microbiota and heart failure publication-title: Heart – volume: 10 start-page: 4566 year: 2019 end-page: 4576 article-title: Effect of chrysin on changes in intestinal environment and microbiome induced by fructose‐feeding in rats publication-title: Food & Function – volume: 28 start-page: 19 year: 2020 end-page: 37 article-title: Therapeutic potential of IKK‐β inhibitors from natural phenolics for inflammation in cardiovascular diseases publication-title: Inflammopharmacology – volume: 74 start-page: 558 year: 2019 end-page: 565 article-title: Dietary apigenin reduces induction of LOX‐1 and NLRP3 expression, leukocyte adhesion, and acetylated low‐density lipoprotein uptake in human endothelial cells exposed to trimethylamine‐N‐oxide publication-title: Journal of Cardiovascular Pharmacology – volume: 16 start-page: 25 year: 2019 article-title: Myricetin ameliorates atherosclerosis in the low‐density‐lipoprotein receptor knockout mice by suppression of cholesterol accumulation in macrophage foam cells publication-title: Nutrition and Metabolism – volume: 815 start-page: 109 year: 2017 end-page: 117 article-title: Anti‐atherosclerotic effect of hesperidin in LDLr / mice and its possible mechanism publication-title: European Journal of Pharmacology – volume: 722 year: 2020 article-title: Biochanin A: A novel bioactive multifunctional compound from nature publication-title: Science of the Total Environment – volume: 75 start-page: 1 year: 2020 end-page: 9 article-title: Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease publication-title: Journal of Cardiovascular Pharmacology – volume: 35 start-page: 4442 year: 2021 end-page: 4455 article-title: Targeting inflammation‐associated AMPK//Mfn‐2/MAPKs signaling pathways by baicalein exerts anti‐atherosclerotic action publication-title: Phytotherapy Research – volume: 52 year: 2020 article-title: The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions publication-title: eBioMedicine – volume: 19 start-page: 792 year: 2013 end-page: 800 article-title: A review on pharmacological and analytical aspects of diosmetin: A concise report publication-title: Chinese Journal of Integrative Medicine – volume: 147 start-page: 1917 year: 2017 end-page: 1925 article-title: Plant‐based food cyanidin‐3‐glucoside modulates human platelet glycoprotein VI signaling and inhibits platelet activation and thrombus formation publication-title: The Journal of Nutrition – volume: 86 start-page: 777 year: 2008 end-page: 784 article-title: Genistein inhibits the development of atherosclerosis via inhibiting NF‐kappaB and VCAM‐1 expression in LDLR knockout mice publication-title: Canadian Journal of Physiology and Pharmacology – volume: 114 year: 2020 article-title: The alterations of mitochondrial DNA in coronary heart disease publication-title: Experimental and Molecular Pathology – volume: 12 year: 2021 article-title: Gut microbiota: A novel regulator of cardiovascular disease and key factor in the therapeutic effects of flavonoids publication-title: Frontiers in Pharmacology – volume: 21 start-page: 25 year: 2021 article-title: Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX‐1 in apoE‐/‐ mice publication-title: Experimental and Therapeutic Medicine – volume: 13 start-page: 3899 year: 2019 end-page: 3911 article-title: Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3‐mediated inflammatory response publication-title: Drug Design, Development and Therapy – volume: 9 start-page: 545 year: 2019 end-page: 560 article-title: Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis publication-title: Cardiovascular Diagnosis and Therapy – volume: 928 start-page: 213 year: 2016 end-page: 244 article-title: Fisetin and its role in chronic diseases publication-title: Advances in Experimental Medicine and Biology – volume: 33 start-page: 263 year: 2019 end-page: 275 article-title: Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review publication-title: Phytotherapy Research – volume: 67 start-page: 6169 year: 2019 end-page: 6176 article-title: Nobiletin prevents trimethylamine oxide‐induced vascular inflammation via inhibition of the NF‐κB/MAPK pathways publication-title: Journal of Agricultural and Food Chemistry – volume: 35 year: 2021 article-title: Rutin treats myocardial damage caused by pirarubicin via regulating miR‐22‐5p‐regulated RAP1/ERK signaling pathway publication-title: Journal of Biochemical and Molecular Toxicology – volume: 11 year: 2021 article-title: Acacetin ameliorates experimental colitis in mice via inhibiting macrophage inflammatory response and regulating the composition of gut microbiota publication-title: Frontiers in Physiology – volume: 43 start-page: 919 issue: 4 year: 2021 end-page: 932 article-title: Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ‐Sirt1/Sirt1 axis publication-title: Acta Pharmacologica Sinica – volume: 134 year: 2021 article-title: Myricetin: A review of the most recent research publication-title: Biomedicine & Pharmacotherapy – volume: 152 year: 2021 article-title: Identification of choline‐degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)‐lyase inhibitors publication-title: Microbial Pathogenesis – volume: 265 year: 2021 article-title: Apigenin attenuates TGF‐β1‐stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR‐155‐5p/c‐Ski/Smad pathway publication-title: Journal of Ethnopharmacology – volume: 26 start-page: 42 year: 2006 end-page: 45 article-title: Clinical observation of daidzein intervention on serum inflammatory factors in senile patients with coronary heart disease publication-title: Zhongguo Zhong Xi Yi Jie He Za Zhi – volume: 63 start-page: 7952 year: 2015 end-page: 7957 article-title: Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short‐chain fatty acids in rats publication-title: Journal of Agricultural and Food Chemistry – volume: 7 start-page: 68 year: 2019 article-title: Alterations in the gut microbiome and metabolism with coronary artery disease severity publication-title: Microbiome – volume: 73 start-page: 1230 year: 2021 end-page: 1239 article-title: Pharmacological properties of baicalin on liver diseases: A narrative review publication-title: Pharmacological Reports – volume: 2021 start-page: 6331630 year: 2021 article-title: Therapeutic potential of isoflavones with an emphasis on daidzein publication-title: Oxidative Medicine and Cellular Longevity – volume: 23 start-page: 1361 year: 2009 end-page: 1366 article-title: Cardioprotective potential of myricetin in isoproterenol‐induced myocardial infarction in Wistar rats publication-title: Phytotherapy Research – volume: 2 year: 2022 article-title: Polyphenolic fractions from three millet types ): Their characterization and biological importance publication-title: Clinical Complementary Medicine and Pharmacology – volume: 368 start-page: 1575 year: 2013 end-page: 1584 article-title: Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk publication-title: The New England Journal of Medicine – volume: 11 start-page: 1613 year: 2019 article-title: Gut microbiome: Profound implications for diet and disease publication-title: Nutrients – volume: 17 start-page: 1261 year: 2018 end-page: 1268 article-title: Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR‐γ and Bcl‐2 in model mice publication-title: Molecular Medicine Reports – volume: 25 start-page: 147 year: 2021 end-page: 157 article-title: Puerarin pretreatment attenuates cardiomyocyte apoptosis induced by coronary microembolization in rats by activating the PI3K/Akt/GSK‐3β signaling pathway publication-title: The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology – ident: e_1_2_8_76_1 doi: 10.1021/acs.jafc.5b02649 – ident: e_1_2_8_85_1 doi: 10.1007/s12038-020-00047-0 – ident: e_1_2_8_28_1 doi: 10.3390/biom9050174 – ident: e_1_2_8_27_1 doi: 10.1074/jbc.M115.670471 – ident: e_1_2_8_101_1 doi: 10.1016/j.intimp.2019.04.060 – ident: e_1_2_8_72_1 doi: 10.1080/17425255.2017.1251903 – ident: e_1_2_8_55_1 doi: 10.1007/s11655-013-1595-3 – volume: 2020 start-page: 8965047 year: 2002 ident: e_1_2_8_100_1 article-title: Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response publication-title: Oxidative Medicine and Cellular Longevity – ident: e_1_2_8_68_1 doi: 10.1016/j.biopha.2020.111017 – ident: e_1_2_8_19_1 doi: 10.3390/nu11071613 – ident: e_1_2_8_40_1 doi: 10.1016/j.ejphar.2019.03.056 – ident: e_1_2_8_52_1 doi: 10.1136/heartjnl-2016-309848 – ident: e_1_2_8_50_1 doi: 10.1002/ptr.6904 – ident: e_1_2_8_56_1 doi: 10.1002/fsn3.1291 – ident: e_1_2_8_34_1 doi: 10.1038/s41401-021-00726-0 – ident: e_1_2_8_88_1 doi: 10.1111/jcmm.16106 – ident: e_1_2_8_87_1 doi: 10.21037/cdt.2019.12.04 – ident: e_1_2_8_99_1 doi: 10.5551/jat.47415 – ident: e_1_2_8_94_1 doi: 10.1021/acs.jafc.9b01270 – ident: e_1_2_8_10_1 doi: 10.17219/acem/131754 – volume: 21 start-page: 25 year: 2021 ident: e_1_2_8_93_1 article-title: Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX‐1 in apoE‐/‐ mice publication-title: Experimental and Therapeutic Medicine – ident: e_1_2_8_96_1 doi: 10.1007/s10735-018-9793-0 – ident: e_1_2_8_60_1 doi: 10.2174/0929867327666200604171351 – ident: e_1_2_8_36_1 doi: 10.3389/fphar.2021.651926 – ident: e_1_2_8_71_1 doi: 10.1016/j.ejphar.2017.09.010 – ident: e_1_2_8_103_1 doi: 10.1002/ptr.7149 – ident: e_1_2_8_80_1 doi: 10.1016/j.jep.2020.113195 – ident: e_1_2_8_57_1 doi: 10.1002/jbt.22615 – ident: e_1_2_8_5_1 doi: 10.1590/s0102-865020190110000004 – ident: e_1_2_8_108_1 doi: 10.1021/acsomega.0c02364 – ident: e_1_2_8_58_1 doi: 10.1007/s10787-021-00799-7 – ident: e_1_2_8_48_1 doi: 10.1039/D1FO00539A – ident: e_1_2_8_104_1 doi: 10.1093/jpp/rgab040 – ident: e_1_2_8_75_1 doi: 10.1016/j.ebiom.2020.102649 – ident: e_1_2_8_16_1 doi: 10.3390/pharmaceutics13020175 – volume: 12 start-page: 203 year: 2020 ident: e_1_2_8_39_1 article-title: Fisetin regulates gut microbiota to decrease CCR9+/CXCR3+/CD4+ T‐lymphocyte count and IL‐12 secretion to alleviate premature ovarian failure in mice publication-title: American Journal of Translational Research – ident: e_1_2_8_90_1 doi: 10.3389/fphar.2020.583200 – ident: e_1_2_8_20_1 doi: 10.1016/j.yexmp.2020.104412 – ident: e_1_2_8_105_1 doi: 10.1016/j.intimp.2020.106680 – ident: e_1_2_8_61_1 doi: 10.1016/j.scitotenv.2020.137907 – ident: e_1_2_8_107_1 doi: 10.1007/s10787-019-00680-8 – ident: e_1_2_8_106_1 doi: 10.1155/2015/481405 – ident: e_1_2_8_62_1 doi: 10.1155/2021/3268136 – ident: e_1_2_8_98_1 doi: 10.3945/jn.116.245944 – ident: e_1_2_8_47_1 doi: 10.1161/CIRCRESAHA.117.309008 – ident: e_1_2_8_59_1 doi: 10.3389/fphys.2020.577237 – volume: 26 start-page: 42 year: 2006 ident: e_1_2_8_42_1 article-title: Clinical observation of daidzein intervention on serum inflammatory factors in senile patients with coronary heart disease publication-title: Zhongguo Zhong Xi Yi Jie He Za Zhi – ident: e_1_2_8_31_1 doi: 10.1016/j.lfs.2020.119008 – ident: e_1_2_8_22_1 doi: 10.1155/2016/2918796 – ident: e_1_2_8_37_1 doi: 10.1016/j.biopha.2021.111419 – ident: e_1_2_8_12_1 doi: 10.1016/j.ejmech.2017.03.004 – ident: e_1_2_8_64_1 doi: 10.1042/BSR20204250 – ident: e_1_2_8_2_1 doi: 10.1016/j.sjbs.2021.02.007 – ident: e_1_2_8_21_1 doi: 10.3390/microorganisms8081238 – ident: e_1_2_8_73_1 doi: 10.1056/NEJMoa1109400 – ident: e_1_2_8_4_1 doi: 10.1039/C9FO01142K – ident: e_1_2_8_83_1 doi: 10.1016/j.lfs.2020.118463 – ident: e_1_2_8_8_1 doi: 10.1016/j.jphs.2017.11.009 – ident: e_1_2_8_77_1 doi: 10.1097/FJC.0000000000001096 – ident: e_1_2_8_95_1 doi: 10.1007/s43440-021-00227-1 – ident: e_1_2_8_69_1 doi: 10.3389/fmicb.2019.01745 – ident: e_1_2_8_33_1 doi: 10.1080/10408398.2014.906382 – ident: e_1_2_8_84_1 doi: 10.1007/s10753-019-01099-7 – ident: e_1_2_8_11_1 doi: 10.4196/kjpp.2021.25.2.147 – ident: e_1_2_8_63_1 doi: 10.1016/j.phytochem.2021.112895 – ident: e_1_2_8_3_1 doi: 10.1155/2021/6331630 – volume: 70 start-page: 707 year: 2017 ident: e_1_2_8_9_1 article-title: Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease publication-title: Wiadomości Lekarskie – ident: e_1_2_8_15_1 doi: 10.1136/bmjdrc-2019-000948 – ident: e_1_2_8_70_1 doi: 10.1016/j.intimp.2019.105782 – volume: 17 start-page: 1261 year: 2018 ident: e_1_2_8_45_1 article-title: Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR‐γ and Bcl‐2 in model mice publication-title: Molecular Medicine Reports – ident: e_1_2_8_92_1 doi: 10.1097/FJC.0000000000000757 – ident: e_1_2_8_7_1 doi: 10.1016/j.jnutbio.2021.108840 – ident: e_1_2_8_23_1 doi: 10.1002/ptr.6227 – ident: e_1_2_8_86_1 doi: 10.1016/j.intimp.2020.107086 – volume: 15 start-page: 506 year: 2018 ident: e_1_2_8_44_1 article-title: Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model publication-title: Experimental and Therapeutic Medicine – ident: e_1_2_8_81_1 doi: 10.1021/acs.jafc.0c05800 – ident: e_1_2_8_32_1 doi: 10.1016/j.biopha.2020.110923 – ident: e_1_2_8_18_1 doi: 10.1016/j.micpath.2020.104658 – ident: e_1_2_8_51_1 doi: 10.1007/s11356‐022‐19494‐3 – ident: e_1_2_8_13_1 doi: 10.2147/DDDT.S207185 – ident: e_1_2_8_54_1 doi: 10.1007/978-3-319-41334-1_10 – ident: e_1_2_8_79_1 doi: 10.3892/etm.2017.4729 – ident: e_1_2_8_53_1 doi: 10.1016/j.fsi.2019.08.059 – ident: e_1_2_8_17_1 doi: 10.1016/bs.apha.2019.10.004 – ident: e_1_2_8_89_1 doi: 10.1016/j.biopha.2017.12.024 – ident: e_1_2_8_41_1 doi: 10.1186/s40168-019-0683-9 – ident: e_1_2_8_14_1 doi: 10.3390/nu11020324 – ident: e_1_2_8_6_1 doi: 10.1016/j.ccmp.2022.100020 – ident: e_1_2_8_46_1 doi: 10.1186/s12986-019-0354-7 – ident: e_1_2_8_102_1 doi: 10.1039/D1FO00126D – ident: e_1_2_8_29_1 doi: 10.3390/ijms221810035 – volume: 32 start-page: 407 year: 2019 ident: e_1_2_8_25_1 article-title: Pharmacological mechanism and apoptosis effect of baicalein in protecting myocardial ischemia reperfusion injury in rats publication-title: Pakistan Journal of Pharmaceutical Sciences – ident: e_1_2_8_43_1 doi: 10.1038/s41401-019-0228-6 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-017-00900-1 – ident: e_1_2_8_66_1 doi: 10.3892/mmr.2020.11241 – ident: e_1_2_8_30_1 doi: 10.1016/j.lfs.2008.12.005 – ident: e_1_2_8_49_1 doi: 10.1016/j.lfs.2019.116797 – ident: e_1_2_8_35_1 doi: 10.3389/fcvm.2021.628471 – ident: e_1_2_8_65_1 doi: 10.1177/0300060518762060 – ident: e_1_2_8_67_1 doi: 10.3390/molecules15031270 – ident: e_1_2_8_91_1 doi: 10.1097/FJC.0000000000000747 – ident: e_1_2_8_38_1 doi: 10.1007/s00394-021-02593-1 – ident: e_1_2_8_78_1 doi: 10.3390/nu12102982 – ident: e_1_2_8_82_1 doi: 10.1139/Y08-085 – ident: e_1_2_8_97_1 doi: 10.1007/s00394-020-02403-0 – ident: e_1_2_8_74_1 doi: 10.1002/ptr.2688 – ident: e_1_2_8_26_1 doi: 10.1016/j.ejphar.2019.172457 |
SSID | ssj0002964 |
Score | 2.3839254 |
SecondaryResourceType | review_article |
Snippet | Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e14376 |
SubjectTerms | atherosclerosis baicalin cardiovascular system Coronary Disease coronary heart disease death flavin-containing monooxygenase Flavonoids hepatocytes Hesperidin Humans intestinal microorganisms Lyases metabolites molecular docking Molecular Docking Simulation myocardial infarction myricetin naringin nitroreductases pathophysiology risk reduction tea therapeutics TMAO trimethylamine trimethylamine‐lyase |
Title | Virtual screening analysis of natural flavonoids as trimethylamine (TMA)‐lyase inhibitors for coronary heart disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfbc.14376 https://www.ncbi.nlm.nih.gov/pubmed/35945702 https://www.proquest.com/docview/2700643056 https://www.proquest.com/docview/2811988329 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_El_piW7XtaZWRFqlC5DaXzd2CL34dItQHUfFFwm6SxeCRKyYn2Kf-Cf0b_Uuc2Xz4idC-BbJLZndndn6Tnf0NwHftK9EzIvXsQFsvSHTo6SDpe4bi69QqGQjtEmSPwoPT4PBcnk_BVnMXpuKHaH-4sWW4_ZoNXJvisZFbE5Odk4HQBix6IRPn7x0_cEfxeWKVvyg9CvOCmpvUpfG0XZ96oxcQ8ylidS5n-B4uGmGrTJOrzUlpNuPfz3gc_3c0H2C2xqK4XSnPR5hK8zno7GVpiWtYE4aO8Kjh65-Dd8015mIebs6ya757grTvUCxMHhB1TXCCY4uOMJTe2pG-oT5ZUqAusORiAqQapIYkMf44-bm9fvfn7-iWfClm-WVmMq7-g4SkMWZuBRoQcs3tEuuTpAU4He6f7B54dREHL_aVH3p9P7BGdDXhgq6RhK80hWhGMg9MrFWi074S0hCIVFKTEzCEd2Ti04IJJpYnfPMJpvNxnn4BjAcE0Ho2NL6wzDGjEkugmyLsICDQ2fU7sN4sZhTXDOdcaGMUtZEOzXLkZrkD39q2vypej1dbrTY6EZHZ8VmKztPxpIj4vD5kurS32gyEUAPaMlUHPlcK1X6rJxUJzTJvOLV4Q4jocLiz654W_6XxEsz4fFXDpd58henyepIuE4AqzYozlHsTuxaa |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa27tBd9mj3yF5l0WJYC7iIHMuJjlm6IH3lMKRDb4ZkW5jRwClqp8B22k_Yb9wvGSk73vpAgfZmwBIsS6T4UaQ-AmxqX4mOEalne9p6QaJDTwdJ1zPkX6dWyUBolyA7DkfHwf6JPKlzc_guTMUP0Ry4sWa4_ZoVnA-k_9dya2JSdNKQh_CIA3Ssl7tf_7FHcUSxymCUHjl6Qc1O6hJ5mr6X7dE1kHkZszqjM3xaVVYtHFch55qc7sxLsxP_vMLkeO__eQZPajiK_Up-nsODNF-B1m6WlvgRa87QKY4XlP0rsLy4yVyswsW37JyvnyBtPeQOkxFEXXOc4Myi4wylt3aqL6hPlhSoCyy5ngBJB0kiDRk_TY76W39-_Z7-IHOKWf49MxkXAEIC0xgzvQL9EXLZ7RLrYNILOB5-mQxGXl3HwYt95Yde1w-sEW1N0KBtJEEsTV6akUwFE2uV6LSrhDSEI5XUZAcMQR6Z-LRigrnlCeK8hKV8lqevAeMeYbSODY0vLNPMqMQS7iYnOwgId7b9FmwtVjOKa5JzrrUxjRpnh2Y5crPcgo2m7VlF7XFjq_WFUESkeRxO0Xk6mxcRh-xDZky7rU1PCNWjXVO14FUlUc23OlLRoHnM204ubhlEtD_8PHBPb-7SeA2WR5Ojw-hwb3zwFh77fHPDZeK8g6XyfJ6-JzxVmg9Oa_4Cb9Aatw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB7aCtYvvlSrp1VHFLGFLZe9ZO8CfumLR616iLSlX8qS7G5w8dgrvb2CfvIn9Df2l3Qm-1KrUtBvC5uwk2Qm88xm8gzAKxNq0bMiC9zAuECmJgqMTPuBpfg6c1pJYXyC7Cja2Ze7h-pwDt42d2Eqfoj2hxtbht-v2cCPU_erkTubkJ2TgczDDRlReMWQ6MsleRQfKFYJjCqgOE_W5KQ-j6fte9Ud_YExr0JW73OGd-CokbZKNfm2PivtevLjNyLH_x3OXbhdg1HcqLTnHsxlxRJ0tvOsxNdYM4aOcdQQ9i_BYnOPeXofTg_yE758grTxUDBMLhBNzXCCE4eeMZTeurE5pT55OkUzxZKrCZBukB6SxPhm79PG6vnPs_F3cqaYF19zm3P5HyQojQmTK9CAkItul1gfJT2A_eG7va2doK7iECShDqOgH0pnRdcQMOhaRQDLUIxmFRPBJEanJutroSyhSK0MeQFLgEelIS2YYGZ5AjjLsFBMiuwRYDIghNZzkQ2FY5IZnTpC3RRiS0mosxt2YLVZzDipKc650sY4bkMdmuXYz3IHXrZtjytij7-2etHoREx2x4cppsgms2nMB_YR86Vd12YghB7Qnqk78LBSqPZbPaVJaJZ5zavFNULEu8PNLf_0-F8aP4ebn7eH8cf3ow9P4FbI1zZ8Gs4KLJQns-wpganSPvM2cwEN7xlm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+screening+analysis+of+natural+flavonoids+as+trimethylamine+%28TMA%29-lyase+inhibitors+for+coronary+heart+disease&rft.jtitle=Journal+of+food+biochemistry&rft.au=Zhou%2C+Peng&rft.au=Zhao%2C+Xiao-Ni&rft.au=Ma%2C+Yao-Yao&rft.au=Tang%2C+Tong-Juan&rft.date=2022-12-01&rft.issn=1745-4514&rft.eissn=1745-4514&rft.volume=46&rft.issue=12&rft.spage=e14376&rft_id=info:doi/10.1111%2Fjfbc.14376&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-8884&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-8884&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-8884&client=summon |