Green Fruit‐Stem Pairing and Clustering for Machine Vision System in Robotic Thinning of Apples

ABSTRACT Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 42; no. 4; pp. 1463 - 1490
Main Authors Hussain, Magni, He, Long, Schupp, James, Lyons, David, Heinemann, Paul
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2025
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
1556-4967
DOI10.1002/rob.22465

Cover

Abstract ABSTRACT Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance.
AbstractList ABSTRACT Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance.
Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance.
Author Heinemann, Paul
Schupp, James
Hussain, Magni
He, Long
Lyons, David
Author_xml – sequence: 1
  givenname: Magni
  surname: Hussain
  fullname: Hussain, Magni
  email: msh5334@psu.edu
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Long
  surname: He
  fullname: He, Long
  organization: The Pennsylvania State University
– sequence: 3
  givenname: James
  surname: Schupp
  fullname: Schupp, James
  organization: The Pennsylvania State University
– sequence: 4
  givenname: David
  surname: Lyons
  fullname: Lyons, David
  organization: The Pennsylvania State University
– sequence: 5
  givenname: Paul
  surname: Heinemann
  fullname: Heinemann, Paul
  organization: The Pennsylvania State University
BookMark eNp9kE1OwzAQhS1UJNrCghtYYgVSWjuJk3hZKlqQiorawtZyUhtcpXawE1XZcQTOyElIGsQOVjOj-d78vAHoaaMFAJcYjTBC_tiadOT7YUROQB8TEnkhjeLeb07oGRg4t0MoDBJK-oDPrRAazmylyq-Pz3Up9vCJK6v0K-R6C6d55UpxLKWx8JFnb0oL-KKcMhqua9cKlIYrk5pSZXDTtHVLGwknRZELdw5OJc-duPiJQ_A8u9tM773Fcv4wnSy8zKc-8SgNwmyLOMEyIbFIEyGoRDilNMZRkMRoK3DCMaVpFsSofTGLMolCGYRYbokIhuCmm1vpgtcHnuessGrPbc0wYq05rDGHHc1p4KsOLqx5r4Qr2c5UVjf3scD3E-qjpNk6BNcdlVnjnBXy34njjj2oXNR_g2y1vO0U3_rmgoo
Cites_doi 10.1080/14786440109462720
10.1016/j.compag.2014.07.004
10.3390/s16081222
10.21273/HORTSCI12158-17
10.1016/j.ifacol.2019.12.499
10.1002/9781119521082.ch6
10.1145/304182.304187
10.13031/ja.14974
10.18653/v1/2020.emnlp-demos.6
10.1016/j.compag.2024.108774
10.55417/fr.2022051
10.1109/CVPR.2019.01182
10.1109/ICRA.2017.7989417
10.1016/j.biosystemseng.2021.08.015
10.1029/2019WR025219
10.9734/CJAST/2017/32909
10.1117/12.421129
10.1016/j.compag.2019.05.012
10.1109/ICCMC.2019.8819750
10.1016/j.compag.2016.08.001
10.1016/j.compag.2023.107734
10.1145/3343031.3350535
10.1002/rob.22330
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/rob.22465
DatabaseName Wiley Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 1490
ExternalDocumentID 10.1002/rob.22465
10_1002_rob_22465
ROB22465
Genre researchArticle
GrantInformation_xml – fundername: This study was supported by the United States Department of Agriculture (USDA)'s National Institute of Food and Agriculture (NIFA) Federal Appropriations under Project #PEN04822 and Accession #7005925; the USDA NIFA AFRI Foundational and Applied Science Program 2020‐67021‐31959; the USDA NIFA Specialty Crop Research Initiative 2020‐51181‐32197; and the North‐East Sustainable Agriculture Research Education (NE‐SARE) Graduate Student Research Grant Program GNE22‐285‐AWD00000495.
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c2925-9934cd0a51f857eb8ee9f01b997163870de18a199bc3702246c6cf04f341fd5e3
IEDL.DBID 24P
ISSN 1556-4959
1556-4967
IngestDate Sun Sep 07 11:16:49 EDT 2025
Sat Aug 23 12:53:36 EDT 2025
Wed Oct 01 06:05:13 EDT 2025
Fri May 16 09:30:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2925-9934cd0a51f857eb8ee9f01b997163870de18a199bc3702246c6cf04f341fd5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22465
PQID 3228920816
PQPubID 1006410
PageCount 28
ParticipantIDs unpaywall_primary_10_1002_rob_22465
proquest_journals_3228920816
crossref_primary_10_1002_rob_22465
wiley_primary_10_1002_rob_22465_ROB22465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 108
2017; 52
2023
2019; 52
2019; 55
2020
2024; 219
2017; 23
2019
2024; 41
2017
2016; 127
1901; 2
2011; 12
2015
2022; 65
2023; 207
2021; 210
2022; 2
2019; 162
2016; 16
2001; 4387
1999
2018; 46
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_27_1
Pedregosa F. (e_1_2_8_19_1) 2011; 12
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Vaswani A. (e_1_2_8_26_1) 2017
e_1_2_8_17_1
e_1_2_8_18_1
USDA‐NASS (e_1_2_8_24_1) 2020
Vanheems B. (e_1_2_8_25_1) 2015
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 162
  start-page: 719
  year: 2019
  end-page: 731
  article-title: A Weighted Multivariate Spatial Clustering Model to Determine Irrigation Management Zones
  publication-title: Computers and Electronics in Agriculture
– volume: 127
  start-page: 754
  year: 2016
  end-page: 762
  article-title: Multi‐Template Matching Algorithm for Cucumber Recognition in Natural Environment
  publication-title: Computers and Electronics in Agriculture
– volume: 46
  start-page: 255
  year: 2018
  end-page: 298
  article-title: Apple Crop Load Management with Special Focus on Early Thinning Strategies: A Us Perspective
  publication-title: Horticultural Reviews, Volume 46
– start-page: 11545
  year: 2019
  end-page: 11554
  article-title: Qatm: Quality‐Aware Template Matching for Deep Learning
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019‐June
– volume: 16
  issue: 8
  year: 2016
  article-title: Deepfruits: A Fruit Detection System Using Deep Neural Networks
  publication-title: Sensors
– start-page: 3626
  year: 2017
  end-page: 3633
  article-title: Deep Fruit Detection in Orchards
  publication-title: Proceedings—IEEE International Conference on Robotics and Automation
– start-page: 38
  year: 2020
  end-page: 45
  article-title: Transformers: State‐Of‐The‐Art Natural Language Processing
  publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
– volume: 2
  start-page: 1661
  issue: 1
  year: 2022
  end-page: 1696
  article-title: Bumblebee: A Path Towards Fully Autonomous Robotic Vine Pruning
  publication-title: Field Robotics
– start-page: 6000
  year: 2017
  end-page: 6010
  article-title: Attention is All You Need
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– start-page: 2276–2279
  year: 2019
  article-title: The VIA Annotation Software for Images, Audio and Video
  publication-title: Proceedings of the 27th ACM International Conference on Multimedia
– volume: 219
  issue: February
  year: 2024
  article-title: Dynamic Visual Servo Control Methods for Continuous Operation of a Fruit Harvesting Robot Working Throughout an Orchard
  publication-title: Computers and Electronics in Agriculture
– volume: 52
  start-page: 1233
  issue: 9
  year: 2017
  end-page: 1240
  article-title: A Method for Quantifying Whole‐Tree Pruning Severity in Mature Tall Spindle Apple Plantings
  publication-title: HortScience
– volume: 210
  start-page: 271
  year: 2021
  end-page: 281
  article-title: Channel Pruned Yolo V5s‐based Deep Learning Approach for Rapid and Accurate Apple Fruitlet Detection before Fruit Thinning
  publication-title: Biosystems Engineering
– start-page: 49
  year: 1999
  end-page: 60
  article-title: OPTICS: Ordering Points to Identify the Clustering Structure
  publication-title: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data
– volume: 52
  start-page: 70
  issue: 30
  year: 2019
  end-page: 75
  article-title: Deep Orange: Mask R‐CNN Based Orange Detection and Segmentation
  publication-title: IFAC‐PapersOnLine
– volume: 207
  year: 2023
  article-title: Green Fruit Segmentation and Orientation Estimation for Robotic Green Fruit Thinning of Apples
  publication-title: Computers and Electronics in Agriculture
– year: 2020
– volume: 41
  start-page: 1366
  issue: 5
  year: 2024
  end-page: 1385
  article-title: Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops
  publication-title: Journal of Field Robotics
– volume: 4387
  start-page: 95
  year: 2001
  end-page: 102
  article-title: Template Matching Using Fast Normalized Cross Correlation
  publication-title: Optical Pattern Recognition XII
– year: 2023
– start-page: 1095
  year: 2019
  end-page: 1098
  article-title: Leaf Disease Detection: Feature Extraction with K‐Means Clustering and Classification with ANN
  publication-title: 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC)
– volume: 55
  start-page: 6911
  issue: 8
  year: 2019
  end-page: 6922
  article-title: Multiscale Digital Porous Rock Reconstruction Using Template Matching
  publication-title: Water Resources Research
– volume: 65
  start-page: 779
  issue: 4
  year: 2022
  end-page: 788
  article-title: Green Fruit Removal Dynamics for Development of Robotic Green Fruit Thinning End‐Effector
  publication-title: Journal of the ASABE
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  end-page: 572
  article-title: Liii. On Lines and Planes of Closest Fit to Systems of Points in Space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– year: 2015
– volume: 23
  start-page: 1
  issue: 4
  year: 2017
  end-page: 12
  article-title: Pre‐Harvest Factors Influencing the Postharvest Quality of Fruits: A Review
  publication-title: Current Journal of Applied Science and Technology
– volume: 108
  start-page: 58
  year: 2014
  end-page: 70
  article-title: Disease Detection of Cercospora Leaf Spot in Sugar Beet By Robust Template Matching
  publication-title: Computers and Electronics in Agriculture
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐Learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_18_1
  doi: 10.1080/14786440109462720
– ident: e_1_2_8_29_1
  doi: 10.1016/j.compag.2014.07.004
– ident: e_1_2_8_20_1
  doi: 10.3390/s16081222
– ident: e_1_2_8_21_1
  doi: 10.21273/HORTSCI12158-17
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ifacol.2019.12.499
– ident: e_1_2_8_14_1
  doi: 10.1002/9781119521082.ch6
– ident: e_1_2_8_2_1
  doi: 10.1145/304182.304187
– ident: e_1_2_8_12_1
  doi: 10.13031/ja.14974
– ident: e_1_2_8_28_1
  doi: 10.18653/v1/2020.emnlp-demos.6
– ident: e_1_2_8_7_1
  doi: 10.1016/j.compag.2024.108774
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_19_1
  article-title: Scikit‐Learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_22_1
  doi: 10.55417/fr.2022051
– volume-title: National Statistics for Apples
  year: 2020
  ident: e_1_2_8_24_1
– ident: e_1_2_8_8_1
  doi: 10.1109/CVPR.2019.01182
– ident: e_1_2_8_4_1
  doi: 10.1109/ICRA.2017.7989417
– ident: e_1_2_8_27_1
  doi: 10.1016/j.biosystemseng.2021.08.015
– ident: e_1_2_8_16_1
  doi: 10.1029/2019WR025219
– ident: e_1_2_8_23_1
  doi: 10.9734/CJAST/2017/32909
– start-page: 6000
  year: 2017
  ident: e_1_2_8_26_1
  article-title: Attention is All You Need
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– ident: e_1_2_8_6_1
  doi: 10.1117/12.421129
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compag.2019.05.012
– ident: e_1_2_8_15_1
  doi: 10.1109/ICCMC.2019.8819750
– ident: e_1_2_8_3_1
  doi: 10.1016/j.compag.2016.08.001
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compag.2023.107734
– ident: e_1_2_8_9_1
– ident: e_1_2_8_10_1
  doi: 10.1145/3343031.3350535
– ident: e_1_2_8_5_1
  doi: 10.1002/rob.22330
– volume-title: How to Thin Fruit for a Better Harvest
  year: 2015
  ident: e_1_2_8_25_1
SSID ssj0043895
Score 2.4310083
Snippet ABSTRACT Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit...
Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers,...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1463
SubjectTerms Algorithms
apple
Clustering
computer vision
Critical components
Crop production
Damage
deep learning
Fruits
fruit‐stem pairing
green fruit
Machine vision
Neural networks
Performance evaluation
Robotics
Stems
Thinning
Three dimensional models
Vision systems
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDbgfx4G9xMiX-OHjpbJsmTY5THCJMhzrRU2naBIazHVuL6Mk_wb_Rv8QkbXUTFG8pbV5LXtJ8ad_7PAAOXYJ9joRtMeITy1OS32IUUwuFsfRRLHxqSid0L8l537u4x_dzYK_KhZn9f-8ej1Pe0swzPA_qBCu5XQP1_mWv_WA4qFiZZ6YgWtkmfkUPmu47u-d8C8mFPBmFL8_hcDgrTc3e0ln-ztApQkoeW3nGW9HrD2Djn4-9ApZKZQnbxVRYBXMiWQOLU7zBdRCaKBvYGeeD7OPt_SYTT7AXDvRJGCYxPB3mmpugD5WWhV0TaCngnck_hwXcHA4SeJ3yVN0F6qKf-rsKTCXUclZMNkC_c3Z7em6VNRasyGUutpQ88aLYDrEjKfYFp0IwaTucabQUUos5Fg4NHcZ4hHxDn4tIJG1Pqt1PxligTVBL0kRsARh7klNEbelGxBOewwniqqP0JSJR7NoNsF95IRgVKI2ggCa7gRqvwIxXAzQr_wTlapoE6qVDmatLhDTAwZfP_jJyZLz5-xXB9dWJaWz_y2AT1LJxLnaU_sj4bjkDPwFk_tac
  priority: 102
  providerName: Unpaywall
Title Green Fruit‐Stem Pairing and Clustering for Machine Vision System in Robotic Thinning of Apples
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22465
https://www.proquest.com/docview/3228920816
https://doi.org/10.1002/rob.22465
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1556-4967
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1556-4967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043895
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL34WKgL8YmjowR14abaJk2b4Gp8DCKow-iIrkrSJjAwtjIPxJ2f4Df6JSbpdNSF4qa0NGnKTe69h0tyDsA-jmgsifI9HsWRFxrI73FGmUdEpmOSqZg56YSr6-iiE14-0IcpOK7OwpT8EJOCm_UMF6-tgws5OPoiDe0X8tCyodFpmA0MjrHLG4etKgxbVW_qyFKp-QdOeUUr5OOjSdefyegLYc6N8mfx-iJ6vZ-Y1SWd5hIsjtEiapTTuwxTKl-BhW8cgqsg3M4Z1OyPusOPt_fboXpCLdG1L5HIM3TaG1kuBPto8Cm6cpsnFbp3Z8pRSViOujlqF7IwoyAr5GlrJajQyEJUNViDTvP87vTCG-smeCnmmHoGcoRp5gsaaEZjJZlSXPuB5JYuihgHzVTARMC5TEnsGOXSKNV-qE1G0xlVZB1m8iJXG4CyUEtGmK9xGoUqDGREpOmoY02iNMN-DXYrAybPJT1GUhIh48RYOXFWrkG9Mm0y9pBBYgIJ49jKftRgb2Luvz5y4Cbi9xZJ--bE3Wz-v-kWzGMr6OvKKnWYGfZHatugjKHccavJXM_aeAdmO9etxuMnD4bOuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bT9swFMePCnsoPEwbF1EumwU88BJIfIst8cKqVeXSUpWLeIvixJYqlQSVVtPe9hH2GfdJsJ2mjAemvSWKnUTHOcf_HNm_A3CIOYsV0WEgecwDaiV_IAUTAUlzE5Ncx8KXTuj1efeOXjywhwac1nthKj7EIuHmPMPHa-fgLiF98koNnZTq2OHQ2BJ8oDzi7tcL00Edh11Zb-Zpqcy-hGSy5gqF-GTR9e1s9Coxm7PiKf35Ix2P34pWP-t0PsHHuVxEZ9X4foaGLtZg9S-I4DqkfukM6kxmo-mfX79vpvoRDdKRu4jSIkft8czBENypFaio51dPanTvN5WjiliORgUalqq0T0GukqdLlqDSIKdR9fMG3HW-37a7wbxwQpBhiVlgNQfN8jBlkREs1kpoLU0YKel4UcR6aK4jkUZSqozEHimX8cyE1NgpzeRMk01YLspCbwHKqVGCiNDgjFNNI8WJsh1NbAjPchy2YL82YPJU8TGSioSME2vlxFu5Bbu1aZO5izwnNpIIiV3djxYcLMz9r5sc-YF4v0UyvP7mD7b_v-lXaHZve1fJ1Xn_cgdWsKvu63Msu7A8ncz0npUcU_XFf1kv6JbPjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTtwwFIaPKEgtLIC2IIZLsdouusmQ2HFiS2y4jaAtFE0LYoOiOLalEUMyGhIhWPEIPCNPgu1MhlKJquouUez4cnz5dWR_B-AzjmgsiPI9HsWRFxrJ73FGmUdSqWMiVcxc6ITDo2j_JPx6Rs8mYLO5C1PzIcYONzsz3HptJ7gaSL3xRA0dFqJtcWj0FUyF1JRgJVF3DI-yYb2po6VSUwlOecMV8vHGOOvz3ehJYr6p8kF6c532-89Fq9t1OnNw3tS3Pmxy0a5K0c5u_0A5_m-D5mF2JEfRVj1-3sKEyt_BzG-QwveQuqM5qDOseuXD3f3PUl2i47RnP6I0l2inX1nYgn01AhgdutOZCp26S-uoJqKjXo66hShMKchGCrXOGFRoZDWwulqAk87er519bxSYwcswx9QzmibMpJ_SQDMaK8GU4toPBLc8KmJWAKkClgaci4zEDlmXRZn2Q222TC2pIoswmRe5WgIkQy0YYb7GWRSqMBARESajjjWJMon9FnxsDJQMav5GUpOWcWL6K3H91YLVxnTJaApeJWalYhzbuCIt-DQ2599-8sVZ5-UUSffHtntY_vek6_D6eLeTfD84-rYC09gGD3YunFWYLIeVWjOKphQf3MB9BHys78o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDbgfx4G9xMiX-OHjpbJsmTY5THCJMhzrRU2naBIazHVuL6Mk_wb_Rv8QkbXUTFG8pbV5LXtJ8ad_7PAAOXYJ9joRtMeITy1OS32IUUwuFsfRRLHxqSid0L8l537u4x_dzYK_KhZn9f-8ej1Pe0swzPA_qBCu5XQP1_mWv_WA4qFiZZ6YgWtkmfkUPmu47u-d8C8mFPBmFL8_hcDgrTc3e0ln-ztApQkoeW3nGW9HrD2Djn4-9ApZKZQnbxVRYBXMiWQOLU7zBdRCaKBvYGeeD7OPt_SYTT7AXDvRJGCYxPB3mmpugD5WWhV0TaCngnck_hwXcHA4SeJ3yVN0F6qKf-rsKTCXUclZMNkC_c3Z7em6VNRasyGUutpQ88aLYDrEjKfYFp0IwaTucabQUUos5Fg4NHcZ4hHxDn4tIJG1Pqt1PxligTVBL0kRsARh7klNEbelGxBOewwniqqP0JSJR7NoNsF95IRgVKI2ggCa7gRqvwIxXAzQr_wTlapoE6qVDmatLhDTAwZfP_jJyZLz5-xXB9dWJaWz_y2AT1LJxLnaU_sj4bjkDPwFk_tac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Fruit%E2%80%90Stem+Pairing+and+Clustering+for+Machine+Vision+System+in+Robotic+Thinning+of+Apples&rft.jtitle=Journal+of+field+robotics&rft.au=Hussain%2C+Magni&rft.au=He%2C+Long&rft.au=Schupp%2C+James&rft.au=Lyons%2C+David&rft.date=2025-06-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=4&rft.spage=1463&rft.epage=1490&rft_id=info:doi/10.1002%2Frob.22465&rft.externalDBID=10.1002%252Frob.22465&rft.externalDocID=ROB22465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon