Green Fruit‐Stem Pairing and Clustering for Machine Vision System in Robotic Thinning of Apples
ABSTRACT Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between...
Saved in:
| Published in | Journal of field robotics Vol. 42; no. 4; pp. 1463 - 1490 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1556-4959 1556-4967 1556-4967 |
| DOI | 10.1002/rob.22465 |
Cover
| Abstract | ABSTRACT
Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance. |
|---|---|
| AbstractList | ABSTRACT
Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance. Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers, including the task of green fruit thinning. Current methods including hand, chemical, and mechanical thinning impose tradeoffs between selectivity, cost, tree damage, and speed. A robotic green fruit thinning system could potentially selectively thin fruit in a quick, cost‐effective, and non‐damaging manner. The machine vision system would be a critical component for robotic thinning, and would not only need to perform green fruit detection/segmentation, but also fruit‐stem pairing and clustering to facilitate proper decision‐making for thinning. A neural network‐based fruit and stem pairing algorithm was devised and evaluated; an LSTM‐based clustering algorithm was devised and compared to the density‐based clustering algorithm, OPTICS. The algorithms were evaluated on an image data set consisting of GoldRush, Fuji, and Golden Delicious cultivars at the green fruit stage, with evaluations on overall performance, cultivar‐wise performance, cluster size‐specific performance, and feature importance. For fruit and stem pairing, the neural network‐based pairing algorithm achieved an AP of 81.4% on all fruits and stems, and that reached 90.6% when only fruits and stems with labeled angles were considered. For green fruit clustering, the LSTM‐based clustering achieved a clustering success rate of 68.4%, whereas the OPTICS algorithm obtained 50.9%. The algorithms will be further implemented in a pipeline of a future green fruit thinning vision system, as well as integrate the use of point clouds and other 3D orchard information to improve pairing and clustering performance. |
| Author | Heinemann, Paul Schupp, James Hussain, Magni He, Long Lyons, David |
| Author_xml | – sequence: 1 givenname: Magni surname: Hussain fullname: Hussain, Magni email: msh5334@psu.edu organization: The Pennsylvania State University – sequence: 2 givenname: Long surname: He fullname: He, Long organization: The Pennsylvania State University – sequence: 3 givenname: James surname: Schupp fullname: Schupp, James organization: The Pennsylvania State University – sequence: 4 givenname: David surname: Lyons fullname: Lyons, David organization: The Pennsylvania State University – sequence: 5 givenname: Paul surname: Heinemann fullname: Heinemann, Paul organization: The Pennsylvania State University |
| BookMark | eNp9kE1OwzAQhS1UJNrCghtYYgVSWjuJk3hZKlqQiorawtZyUhtcpXawE1XZcQTOyElIGsQOVjOj-d78vAHoaaMFAJcYjTBC_tiadOT7YUROQB8TEnkhjeLeb07oGRg4t0MoDBJK-oDPrRAazmylyq-Pz3Up9vCJK6v0K-R6C6d55UpxLKWx8JFnb0oL-KKcMhqua9cKlIYrk5pSZXDTtHVLGwknRZELdw5OJc-duPiJQ_A8u9tM773Fcv4wnSy8zKc-8SgNwmyLOMEyIbFIEyGoRDilNMZRkMRoK3DCMaVpFsSofTGLMolCGYRYbokIhuCmm1vpgtcHnuessGrPbc0wYq05rDGHHc1p4KsOLqx5r4Qr2c5UVjf3scD3E-qjpNk6BNcdlVnjnBXy34njjj2oXNR_g2y1vO0U3_rmgoo |
| Cites_doi | 10.1080/14786440109462720 10.1016/j.compag.2014.07.004 10.3390/s16081222 10.21273/HORTSCI12158-17 10.1016/j.ifacol.2019.12.499 10.1002/9781119521082.ch6 10.1145/304182.304187 10.13031/ja.14974 10.18653/v1/2020.emnlp-demos.6 10.1016/j.compag.2024.108774 10.55417/fr.2022051 10.1109/CVPR.2019.01182 10.1109/ICRA.2017.7989417 10.1016/j.biosystemseng.2021.08.015 10.1029/2019WR025219 10.9734/CJAST/2017/32909 10.1117/12.421129 10.1016/j.compag.2019.05.012 10.1109/ICCMC.2019.8819750 10.1016/j.compag.2016.08.001 10.1016/j.compag.2023.107734 10.1145/3343031.3350535 10.1002/rob.22330 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC. 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC. – notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1002/rob.22465 |
| DatabaseName | Wiley Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1556-4967 |
| EndPage | 1490 |
| ExternalDocumentID | 10.1002/rob.22465 10_1002_rob_22465 ROB22465 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: This study was supported by the United States Department of Agriculture (USDA)'s National Institute of Food and Agriculture (NIFA) Federal Appropriations under Project #PEN04822 and Accession #7005925; the USDA NIFA AFRI Foundational and Applied Science Program 2020‐67021‐31959; the USDA NIFA Specialty Crop Research Initiative 2020‐51181‐32197; and the North‐East Sustainable Agriculture Research Education (NE‐SARE) Graduate Student Research Grant Program GNE22‐285‐AWD00000495. |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2925-9934cd0a51f857eb8ee9f01b997163870de18a199bc3702246c6cf04f341fd5e3 |
| IEDL.DBID | 24P |
| ISSN | 1556-4959 1556-4967 |
| IngestDate | Sun Sep 07 11:16:49 EDT 2025 Sat Aug 23 12:53:36 EDT 2025 Wed Oct 01 06:05:13 EDT 2025 Fri May 16 09:30:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2925-9934cd0a51f857eb8ee9f01b997163870de18a199bc3702246c6cf04f341fd5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22465 |
| PQID | 3228920816 |
| PQPubID | 1006410 |
| PageCount | 28 |
| ParticipantIDs | unpaywall_primary_10_1002_rob_22465 proquest_journals_3228920816 crossref_primary_10_1002_rob_22465 wiley_primary_10_1002_rob_22465_ROB22465 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Journal of field robotics |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2014; 108 2017; 52 2023 2019; 52 2019; 55 2020 2024; 219 2017; 23 2019 2024; 41 2017 2016; 127 1901; 2 2011; 12 2015 2022; 65 2023; 207 2021; 210 2022; 2 2019; 162 2016; 16 2001; 4387 1999 2018; 46 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_27_1 Pedregosa F. (e_1_2_8_19_1) 2011; 12 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Vaswani A. (e_1_2_8_26_1) 2017 e_1_2_8_17_1 e_1_2_8_18_1 USDA‐NASS (e_1_2_8_24_1) 2020 Vanheems B. (e_1_2_8_25_1) 2015 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – volume: 162 start-page: 719 year: 2019 end-page: 731 article-title: A Weighted Multivariate Spatial Clustering Model to Determine Irrigation Management Zones publication-title: Computers and Electronics in Agriculture – volume: 127 start-page: 754 year: 2016 end-page: 762 article-title: Multi‐Template Matching Algorithm for Cucumber Recognition in Natural Environment publication-title: Computers and Electronics in Agriculture – volume: 46 start-page: 255 year: 2018 end-page: 298 article-title: Apple Crop Load Management with Special Focus on Early Thinning Strategies: A Us Perspective publication-title: Horticultural Reviews, Volume 46 – start-page: 11545 year: 2019 end-page: 11554 article-title: Qatm: Quality‐Aware Template Matching for Deep Learning publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019‐June – volume: 16 issue: 8 year: 2016 article-title: Deepfruits: A Fruit Detection System Using Deep Neural Networks publication-title: Sensors – start-page: 3626 year: 2017 end-page: 3633 article-title: Deep Fruit Detection in Orchards publication-title: Proceedings—IEEE International Conference on Robotics and Automation – start-page: 38 year: 2020 end-page: 45 article-title: Transformers: State‐Of‐The‐Art Natural Language Processing publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations – volume: 2 start-page: 1661 issue: 1 year: 2022 end-page: 1696 article-title: Bumblebee: A Path Towards Fully Autonomous Robotic Vine Pruning publication-title: Field Robotics – start-page: 6000 year: 2017 end-page: 6010 article-title: Attention is All You Need publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – start-page: 2276–2279 year: 2019 article-title: The VIA Annotation Software for Images, Audio and Video publication-title: Proceedings of the 27th ACM International Conference on Multimedia – volume: 219 issue: February year: 2024 article-title: Dynamic Visual Servo Control Methods for Continuous Operation of a Fruit Harvesting Robot Working Throughout an Orchard publication-title: Computers and Electronics in Agriculture – volume: 52 start-page: 1233 issue: 9 year: 2017 end-page: 1240 article-title: A Method for Quantifying Whole‐Tree Pruning Severity in Mature Tall Spindle Apple Plantings publication-title: HortScience – volume: 210 start-page: 271 year: 2021 end-page: 281 article-title: Channel Pruned Yolo V5s‐based Deep Learning Approach for Rapid and Accurate Apple Fruitlet Detection before Fruit Thinning publication-title: Biosystems Engineering – start-page: 49 year: 1999 end-page: 60 article-title: OPTICS: Ordering Points to Identify the Clustering Structure publication-title: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data – volume: 52 start-page: 70 issue: 30 year: 2019 end-page: 75 article-title: Deep Orange: Mask R‐CNN Based Orange Detection and Segmentation publication-title: IFAC‐PapersOnLine – volume: 207 year: 2023 article-title: Green Fruit Segmentation and Orientation Estimation for Robotic Green Fruit Thinning of Apples publication-title: Computers and Electronics in Agriculture – year: 2020 – volume: 41 start-page: 1366 issue: 5 year: 2024 end-page: 1385 article-title: Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops publication-title: Journal of Field Robotics – volume: 4387 start-page: 95 year: 2001 end-page: 102 article-title: Template Matching Using Fast Normalized Cross Correlation publication-title: Optical Pattern Recognition XII – year: 2023 – start-page: 1095 year: 2019 end-page: 1098 article-title: Leaf Disease Detection: Feature Extraction with K‐Means Clustering and Classification with ANN publication-title: 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) – volume: 55 start-page: 6911 issue: 8 year: 2019 end-page: 6922 article-title: Multiscale Digital Porous Rock Reconstruction Using Template Matching publication-title: Water Resources Research – volume: 65 start-page: 779 issue: 4 year: 2022 end-page: 788 article-title: Green Fruit Removal Dynamics for Development of Robotic Green Fruit Thinning End‐Effector publication-title: Journal of the ASABE – volume: 2 start-page: 559 issue: 11 year: 1901 end-page: 572 article-title: Liii. On Lines and Planes of Closest Fit to Systems of Points in Space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – year: 2015 – volume: 23 start-page: 1 issue: 4 year: 2017 end-page: 12 article-title: Pre‐Harvest Factors Influencing the Postharvest Quality of Fruits: A Review publication-title: Current Journal of Applied Science and Technology – volume: 108 start-page: 58 year: 2014 end-page: 70 article-title: Disease Detection of Cercospora Leaf Spot in Sugar Beet By Robust Template Matching publication-title: Computers and Electronics in Agriculture – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐Learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_2_8_18_1 doi: 10.1080/14786440109462720 – ident: e_1_2_8_29_1 doi: 10.1016/j.compag.2014.07.004 – ident: e_1_2_8_20_1 doi: 10.3390/s16081222 – ident: e_1_2_8_21_1 doi: 10.21273/HORTSCI12158-17 – ident: e_1_2_8_11_1 doi: 10.1016/j.ifacol.2019.12.499 – ident: e_1_2_8_14_1 doi: 10.1002/9781119521082.ch6 – ident: e_1_2_8_2_1 doi: 10.1145/304182.304187 – ident: e_1_2_8_12_1 doi: 10.13031/ja.14974 – ident: e_1_2_8_28_1 doi: 10.18653/v1/2020.emnlp-demos.6 – ident: e_1_2_8_7_1 doi: 10.1016/j.compag.2024.108774 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_19_1 article-title: Scikit‐Learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_2_8_22_1 doi: 10.55417/fr.2022051 – volume-title: National Statistics for Apples year: 2020 ident: e_1_2_8_24_1 – ident: e_1_2_8_8_1 doi: 10.1109/CVPR.2019.01182 – ident: e_1_2_8_4_1 doi: 10.1109/ICRA.2017.7989417 – ident: e_1_2_8_27_1 doi: 10.1016/j.biosystemseng.2021.08.015 – ident: e_1_2_8_16_1 doi: 10.1029/2019WR025219 – ident: e_1_2_8_23_1 doi: 10.9734/CJAST/2017/32909 – start-page: 6000 year: 2017 ident: e_1_2_8_26_1 article-title: Attention is All You Need publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – ident: e_1_2_8_6_1 doi: 10.1117/12.421129 – ident: e_1_2_8_17_1 doi: 10.1016/j.compag.2019.05.012 – ident: e_1_2_8_15_1 doi: 10.1109/ICCMC.2019.8819750 – ident: e_1_2_8_3_1 doi: 10.1016/j.compag.2016.08.001 – ident: e_1_2_8_13_1 doi: 10.1016/j.compag.2023.107734 – ident: e_1_2_8_9_1 – ident: e_1_2_8_10_1 doi: 10.1145/3343031.3350535 – ident: e_1_2_8_5_1 doi: 10.1002/rob.22330 – volume-title: How to Thin Fruit for a Better Harvest year: 2015 ident: e_1_2_8_25_1 |
| SSID | ssj0043895 |
| Score | 2.4310083 |
| Snippet | ABSTRACT
Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit... Apples are one of the most highly‐valued specialty crops in the United States. Recent labor shortages have made crop production difficult for fruit growers,... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1463 |
| SubjectTerms | Algorithms apple Clustering computer vision Critical components Crop production Damage deep learning Fruits fruit‐stem pairing green fruit Machine vision Neural networks Performance evaluation Robotics Stems Thinning Three dimensional models Vision systems |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDbgfx4G9xMiX-OHjpbJsmTY5THCJMhzrRU2naBIazHVuL6Mk_wb_Rv8QkbXUTFG8pbV5LXtJ8ad_7PAAOXYJ9joRtMeITy1OS32IUUwuFsfRRLHxqSid0L8l537u4x_dzYK_KhZn9f-8ej1Pe0swzPA_qBCu5XQP1_mWv_WA4qFiZZ6YgWtkmfkUPmu47u-d8C8mFPBmFL8_hcDgrTc3e0ln-ztApQkoeW3nGW9HrD2Djn4-9ApZKZQnbxVRYBXMiWQOLU7zBdRCaKBvYGeeD7OPt_SYTT7AXDvRJGCYxPB3mmpugD5WWhV0TaCngnck_hwXcHA4SeJ3yVN0F6qKf-rsKTCXUclZMNkC_c3Z7em6VNRasyGUutpQ88aLYDrEjKfYFp0IwaTucabQUUos5Fg4NHcZ4hHxDn4tIJG1Pqt1PxligTVBL0kRsARh7klNEbelGxBOewwniqqP0JSJR7NoNsF95IRgVKI2ggCa7gRqvwIxXAzQr_wTlapoE6qVDmatLhDTAwZfP_jJyZLz5-xXB9dWJaWz_y2AT1LJxLnaU_sj4bjkDPwFk_tac priority: 102 providerName: Unpaywall |
| Title | Green Fruit‐Stem Pairing and Clustering for Machine Vision System in Robotic Thinning of Apples |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22465 https://www.proquest.com/docview/3228920816 https://doi.org/10.1002/rob.22465 |
| UnpaywallVersion | publishedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1556-4967 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1556-4967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0043895 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL34WKgL8YmjowR14abaJk2b4Gp8DCKow-iIrkrSJjAwtjIPxJ2f4Df6JSbpdNSF4qa0NGnKTe69h0tyDsA-jmgsifI9HsWRFxrI73FGmUdEpmOSqZg56YSr6-iiE14-0IcpOK7OwpT8EJOCm_UMF6-tgws5OPoiDe0X8tCyodFpmA0MjrHLG4etKgxbVW_qyFKp-QdOeUUr5OOjSdefyegLYc6N8mfx-iJ6vZ-Y1SWd5hIsjtEiapTTuwxTKl-BhW8cgqsg3M4Z1OyPusOPt_fboXpCLdG1L5HIM3TaG1kuBPto8Cm6cpsnFbp3Z8pRSViOujlqF7IwoyAr5GlrJajQyEJUNViDTvP87vTCG-smeCnmmHoGcoRp5gsaaEZjJZlSXPuB5JYuihgHzVTARMC5TEnsGOXSKNV-qE1G0xlVZB1m8iJXG4CyUEtGmK9xGoUqDGREpOmoY02iNMN-DXYrAybPJT1GUhIh48RYOXFWrkG9Mm0y9pBBYgIJ49jKftRgb2Luvz5y4Cbi9xZJ--bE3Wz-v-kWzGMr6OvKKnWYGfZHatugjKHccavJXM_aeAdmO9etxuMnD4bOuQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bT9swFMePCnsoPEwbF1EumwU88BJIfIst8cKqVeXSUpWLeIvixJYqlQSVVtPe9hH2GfdJsJ2mjAemvSWKnUTHOcf_HNm_A3CIOYsV0WEgecwDaiV_IAUTAUlzE5Ncx8KXTuj1efeOXjywhwac1nthKj7EIuHmPMPHa-fgLiF98koNnZTq2OHQ2BJ8oDzi7tcL00Edh11Zb-Zpqcy-hGSy5gqF-GTR9e1s9Coxm7PiKf35Ix2P34pWP-t0PsHHuVxEZ9X4foaGLtZg9S-I4DqkfukM6kxmo-mfX79vpvoRDdKRu4jSIkft8czBENypFaio51dPanTvN5WjiliORgUalqq0T0GukqdLlqDSIKdR9fMG3HW-37a7wbxwQpBhiVlgNQfN8jBlkREs1kpoLU0YKel4UcR6aK4jkUZSqozEHimX8cyE1NgpzeRMk01YLspCbwHKqVGCiNDgjFNNI8WJsh1NbAjPchy2YL82YPJU8TGSioSME2vlxFu5Bbu1aZO5izwnNpIIiV3djxYcLMz9r5sc-YF4v0UyvP7mD7b_v-lXaHZve1fJ1Xn_cgdWsKvu63Msu7A8ncz0npUcU_XFf1kv6JbPjA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTtwwFIaPKEgtLIC2IIZLsdouusmQ2HFiS2y4jaAtFE0LYoOiOLalEUMyGhIhWPEIPCNPgu1MhlKJquouUez4cnz5dWR_B-AzjmgsiPI9HsWRFxrJ73FGmUdSqWMiVcxc6ITDo2j_JPx6Rs8mYLO5C1PzIcYONzsz3HptJ7gaSL3xRA0dFqJtcWj0FUyF1JRgJVF3DI-yYb2po6VSUwlOecMV8vHGOOvz3ehJYr6p8kF6c532-89Fq9t1OnNw3tS3Pmxy0a5K0c5u_0A5_m-D5mF2JEfRVj1-3sKEyt_BzG-QwveQuqM5qDOseuXD3f3PUl2i47RnP6I0l2inX1nYgn01AhgdutOZCp26S-uoJqKjXo66hShMKchGCrXOGFRoZDWwulqAk87er519bxSYwcswx9QzmibMpJ_SQDMaK8GU4toPBLc8KmJWAKkClgaci4zEDlmXRZn2Q222TC2pIoswmRe5WgIkQy0YYb7GWRSqMBARESajjjWJMon9FnxsDJQMav5GUpOWcWL6K3H91YLVxnTJaApeJWalYhzbuCIt-DQ2599-8sVZ5-UUSffHtntY_vek6_D6eLeTfD84-rYC09gGD3YunFWYLIeVWjOKphQf3MB9BHys78o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDbgfx4G9xMiX-OHjpbJsmTY5THCJMhzrRU2naBIazHVuL6Mk_wb_Rv8QkbXUTFG8pbV5LXtJ8ad_7PAAOXYJ9joRtMeITy1OS32IUUwuFsfRRLHxqSid0L8l537u4x_dzYK_KhZn9f-8ej1Pe0swzPA_qBCu5XQP1_mWv_WA4qFiZZ6YgWtkmfkUPmu47u-d8C8mFPBmFL8_hcDgrTc3e0ln-ztApQkoeW3nGW9HrD2Djn4-9ApZKZQnbxVRYBXMiWQOLU7zBdRCaKBvYGeeD7OPt_SYTT7AXDvRJGCYxPB3mmpugD5WWhV0TaCngnck_hwXcHA4SeJ3yVN0F6qKf-rsKTCXUclZMNkC_c3Z7em6VNRasyGUutpQ88aLYDrEjKfYFp0IwaTucabQUUos5Fg4NHcZ4hHxDn4tIJG1Pqt1PxligTVBL0kRsARh7klNEbelGxBOewwniqqP0JSJR7NoNsF95IRgVKI2ggCa7gRqvwIxXAzQr_wTlapoE6qVDmatLhDTAwZfP_jJyZLz5-xXB9dWJaWz_y2AT1LJxLnaU_sj4bjkDPwFk_tac |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Fruit%E2%80%90Stem+Pairing+and+Clustering+for+Machine+Vision+System+in+Robotic+Thinning+of+Apples&rft.jtitle=Journal+of+field+robotics&rft.au=Hussain%2C+Magni&rft.au=He%2C+Long&rft.au=Schupp%2C+James&rft.au=Lyons%2C+David&rft.date=2025-06-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=4&rft.spage=1463&rft.epage=1490&rft_id=info:doi/10.1002%2Frob.22465&rft.externalDBID=10.1002%252Frob.22465&rft.externalDocID=ROB22465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |