Approximation of the Multidimensional Optimal Control Problem for the Heat Equation (Applicable to Computational Fluid Dynamics (CFD))
This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problem...
Saved in:
| Published in | Civil Engineering Journal Vol. 6; no. 4; pp. 743 - 768 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2020
|
| Online Access | Get full text |
| ISSN | 2676-6957 2476-3055 2476-3055 |
| DOI | 10.28991/cej-2020-03091506 |
Cover
| Abstract | This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the determination of the order of convergence, which plays a very important role in applications. The paper uses the discretization method of the differential problem and the method of integral estimates. The reduction of a differential multidimensional mixed problem to a difference one is based on the approximation of the desired solution and its derivatives by difference expressions, for which the error of such an approximation is known. The idea of using integral estimates is typical for such problems, but in the multidimensional case significant technical difficulties arise. To estimate errors, we used multidimensional analogues of the integration formula by parts, Friedrichs and Poincare inequalities. The technique used in this work can be applied under some additional assumptions, and for nonlinear multidimensional mixed problems of parabolic type. To find a numerical solution, the variable direction method is used for the difference problem of a parabolic type equation. The resulting algorithm is implemented using program code written in the Python 3.7 programming language. |
|---|---|
| AbstractList | This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the determination of the order of convergence, which plays a very important role in applications. The paper uses the discretization method of the differential problem and the method of integral estimates. The reduction of a differential multidimensional mixed problem to a difference one is based on the approximation of the desired solution and its derivatives by difference expressions, for which the error of such an approximation is known. The idea of using integral estimates is typical for such problems, but in the multidimensional case significant technical difficulties arise. To estimate errors, we used multidimensional analogues of the integration formula by parts, Friedrichs and Poincare inequalities. The technique used in this work can be applied under some additional assumptions, and for nonlinear multidimensional mixed problems of parabolic type. To find a numerical solution, the variable direction method is used for the difference problem of a parabolic type equation. The resulting algorithm is implemented using program code written in the Python 3.7 programming language. |
| Author | Kostikov, Yuri Alexandrovich Romanenkov, Alexander Mikhailovich |
| Author_xml | – sequence: 1 givenname: Yuri Alexandrovich surname: Kostikov fullname: Kostikov, Yuri Alexandrovich – sequence: 2 givenname: Alexander Mikhailovich surname: Romanenkov fullname: Romanenkov, Alexander Mikhailovich |
| BookMark | eNqNkL1OwzAURi0EEqX0BZg8tkPAduzYGav-UKSiMsAcuY4jjJw4OI6gL8BzYxpYGBDTvbr-zif5XIDTxjUagCuMronIc3yj9EtCEEEJSlGOGcpOwIhQniUpYuw07lncs5zxczDpOrNHlPI0RukIfMzb1rt3U8tgXANdBcOzhve9DaY0tW66eJUW7toQIxYuXBO8s_DBu73VNaycPwIbLQNcvfZDyzSWWqNkjMDgIlS3fTg-xYq17U0Jl4dG1kZ1cLpYL2ezS3BWSdvpyfccg6f16nGxSba727vFfJsokuOQVCUhSAmBBJVaZBxXeZkxzvaMcM0ZRpiXRFIqCVcpZlWZYkUFLVMpMp1VIh2DdOjtm1Ye3qS1Revjz_yhwKg42iyizeLLZvFjM1JkoJR3Xed19T9I_IKUGSQEL439C_0E6n2NHA |
| CitedBy_id | crossref_primary_10_1080_27684830_2022_2133211 crossref_primary_10_3390_en15041348 crossref_primary_10_1016_j_sciaf_2022_e01385 crossref_primary_10_3390_fractalfract7110783 crossref_primary_10_1016_j_ijhydene_2021_03_021 crossref_primary_10_1007_s13762_021_03861_7 crossref_primary_10_1080_27684830_2022_2115873 crossref_primary_10_1016_j_ijhydene_2021_03_074 crossref_primary_10_1016_j_ijhydene_2022_04_006 crossref_primary_10_1080_25742558_2020_1868135 crossref_primary_10_1016_j_jclepro_2021_128643 crossref_primary_10_1007_s11220_021_00359_x crossref_primary_10_1016_j_asej_2021_01_027 crossref_primary_10_1080_27658449_2021_1979733 crossref_primary_10_1515_eng_2022_0336 crossref_primary_10_1016_j_asej_2021_01_031 crossref_primary_10_1016_j_asej_2021_05_010 crossref_primary_10_1088_1742_6596_2016_1_012007 crossref_primary_10_1016_j_asej_2021_03_007 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.28991/cej-2020-03091506 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2476-3055 |
| EndPage | 768 |
| ExternalDocumentID | 10.28991/cej-2020-03091506 10_28991_cej_2020_03091506 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION OK1 ADTOC AFWDF ARCSS UNPAY |
| ID | FETCH-LOGICAL-c291t-fd220c88084ae8671f9d6575b527e751017d2a44a27c315fd31c484d3a86e6f83 |
| IEDL.DBID | UNPAY |
| ISSN | 2676-6957 2476-3055 |
| IngestDate | Tue Aug 19 22:40:46 EDT 2025 Wed Oct 01 05:51:41 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-fd220c88084ae8671f9d6575b527e751017d2a44a27c315fd31c484d3a86e6f83 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://civilejournal.org/index.php/cej/article/download/2154/pdf |
| PageCount | 26 |
| ParticipantIDs | unpaywall_primary_10_28991_cej_2020_03091506 crossref_primary_10_28991_cej_2020_03091506 crossref_citationtrail_10_28991_cej_2020_03091506 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Civil Engineering Journal |
| PublicationYear | 2020 |
| SSID | ssib044733094 ssib046626805 |
| Score | 2.2542095 |
| Snippet | This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 743 |
| Title | Approximation of the Multidimensional Optimal Control Problem for the Heat Equation (Applicable to Computational Fluid Dynamics (CFD)) |
| URI | https://civilejournal.org/index.php/cej/article/download/2154/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2476-3055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733094 issn: 2676-6957 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagHZh4CBAgQB4YQBDSxI6TjFVpVSHxGKgEU-SnVChpgZTXwMjv5hynFTAgEFMynKPEZ_vucnffh9AOaaiGpqnyDKHSo5wQTwTKeEoqoYJUxg1hA8WTU9bt0ePLaFJNaHthZP8RdkM1j2Umv0QNtFARvtTXfjWfvrJQ8kOufDBZ1B8pM4vqLAJ3vIbqvdPz5pUllaOxresqmU9DBvcsjWLXOGPDjMA-EFYJxE82z2Ch9r4Yp7lxPuIvT3ww-GRxOgtITN7VFZrcHI4LcShfv8E4_utjFtF85Y_ippNZQjM6X0bvTYs0_tx3bY14aDC4ibjs1VWWDcAheeAzOG5u4dpy5e743JHTYPCDywFdOOdx-86BiePdpsuVgwguhtjRSVS_InFnMO4rfPSS89u-fMC7rc7R3t4K6nXaF62uVxE2eDJMg8IzKgwbEk6EhHJtgfNMqmxiR0RhrONy96uQU8rDWJIgMooEkiZUEZ4wzUxCVlEtH-Z6DWEwkklAZQpDNTWCgnoEoUxLCv4GYWwdBRNNZbJCM7ekGoMMoppSuxnMcGa1m020u472p2NGDsvjR-mD6QL4hfjG38Q3Ua24H-st8GgKsY1mT97a29XK_QCVKvhn |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagHZh4CBAgQB4YqCCkiR0nGatCVSFRGKgEU-SnVChpgZTXD-B3c47TChgQiCkZzlHis313ubvvQ2iPNFVT01R5hlDpUU6IJwJlPCWVUEEq46awgeJZj3X79PQqmlYT2l4YOXiC3VDNY5nJL1EDLVSEL_WNX82nryyU_IgrH0wW9cfKzKM6i8Adr6F6v3fRurakcjS2dV0l82nI4J6lUewaZ2yYEdgHwiqB-MnmGSzU3hfjtDDJx_z1mQ-HnyxOZwmJ6bu6QpPbo0khjuTbNxjHf33MMlqs_FHccjIraE7nq-i9ZZHGXwaurRGPDAY3EZe9usqyATgkD3wOx80dXNuu3B1fOHIaDH5wOaAL5zw-uXdg4ni_5XLlIIKLEXZ0EtWvSNwZTgYKH7_m_G4gH_F-u3PcaKyhfufkst31KsIGT4ZpUHhGhWFTwomQUK4tcJ5JlU3siCiMdVzufhVySnkYSxJERpFA0oQqwhOmmUnIOqrlo1xvIAxGMgmoTGGopkZQUI8glGlJwd8gjG2iYKqpTFZo5pZUY5hBVFNqN4MZzqx2s6l2N9HBbMzYYXn8KH04WwC_EN_6m_g2qhUPE70DHk0hdqs1-wHHPPc2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+the+Multidimensional+Optimal+Control+Problem+for+the+Heat+Equation+%28Applicable+to+Computational+Fluid+Dynamics+%28CFD%29%29&rft.jtitle=Civil+Engineering+Journal&rft.au=Kostikov%2C+Yuri+Alexandrovich&rft.au=Romanenkov%2C+Alexander+Mikhailovich&rft.date=2020-04-01&rft.issn=2676-6957&rft.eissn=2476-3055&rft.volume=6&rft.issue=4&rft.spage=743&rft.epage=768&rft_id=info:doi/10.28991%2Fcej-2020-03091506&rft.externalDBID=n%2Fa&rft.externalDocID=10_28991_cej_2020_03091506 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2676-6957&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2676-6957&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2676-6957&client=summon |