Approximation of the Multidimensional Optimal Control Problem for the Heat Equation (Applicable to Computational Fluid Dynamics (CFD))

This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problem...

Full description

Saved in:
Bibliographic Details
Published inCivil Engineering Journal Vol. 6; no. 4; pp. 743 - 768
Main Authors Kostikov, Yuri Alexandrovich, Romanenkov, Alexander Mikhailovich
Format Journal Article
LanguageEnglish
Published 01.04.2020
Online AccessGet full text
ISSN2676-6957
2476-3055
2476-3055
DOI10.28991/cej-2020-03091506

Cover

Abstract This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the determination of the order of convergence, which plays a very important role in applications. The paper uses the discretization method of the differential problem and the method of integral estimates. The reduction of a differential multidimensional mixed problem to a difference one is based on the approximation of the desired solution and its derivatives by difference expressions, for which the error of such an approximation is known. The idea of using integral estimates is typical for such problems, but in the multidimensional case significant technical difficulties arise. To estimate errors, we used multidimensional analogues of the integration formula by parts, Friedrichs and Poincare inequalities. The technique used in this work can be applied under some additional assumptions, and for nonlinear multidimensional mixed problems of parabolic type. To find a numerical solution, the variable direction method is used for the difference problem of a parabolic type equation. The resulting algorithm is implemented using program code written in the Python 3.7 programming language.
AbstractList This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the determination of the order of convergence, which plays a very important role in applications. The paper uses the discretization method of the differential problem and the method of integral estimates. The reduction of a differential multidimensional mixed problem to a difference one is based on the approximation of the desired solution and its derivatives by difference expressions, for which the error of such an approximation is known. The idea of using integral estimates is typical for such problems, but in the multidimensional case significant technical difficulties arise. To estimate errors, we used multidimensional analogues of the integration formula by parts, Friedrichs and Poincare inequalities. The technique used in this work can be applied under some additional assumptions, and for nonlinear multidimensional mixed problems of parabolic type. To find a numerical solution, the variable direction method is used for the difference problem of a parabolic type equation. The resulting algorithm is implemented using program code written in the Python 3.7 programming language.
Author Kostikov, Yuri Alexandrovich
Romanenkov, Alexander Mikhailovich
Author_xml – sequence: 1
  givenname: Yuri Alexandrovich
  surname: Kostikov
  fullname: Kostikov, Yuri Alexandrovich
– sequence: 2
  givenname: Alexander Mikhailovich
  surname: Romanenkov
  fullname: Romanenkov, Alexander Mikhailovich
BookMark eNqNkL1OwzAURi0EEqX0BZg8tkPAduzYGav-UKSiMsAcuY4jjJw4OI6gL8BzYxpYGBDTvbr-zif5XIDTxjUagCuMronIc3yj9EtCEEEJSlGOGcpOwIhQniUpYuw07lncs5zxczDpOrNHlPI0RukIfMzb1rt3U8tgXANdBcOzhve9DaY0tW66eJUW7toQIxYuXBO8s_DBu73VNaycPwIbLQNcvfZDyzSWWqNkjMDgIlS3fTg-xYq17U0Jl4dG1kZ1cLpYL2ezS3BWSdvpyfccg6f16nGxSba727vFfJsokuOQVCUhSAmBBJVaZBxXeZkxzvaMcM0ZRpiXRFIqCVcpZlWZYkUFLVMpMp1VIh2DdOjtm1Ye3qS1Revjz_yhwKg42iyizeLLZvFjM1JkoJR3Xed19T9I_IKUGSQEL439C_0E6n2NHA
CitedBy_id crossref_primary_10_1080_27684830_2022_2133211
crossref_primary_10_3390_en15041348
crossref_primary_10_1016_j_sciaf_2022_e01385
crossref_primary_10_3390_fractalfract7110783
crossref_primary_10_1016_j_ijhydene_2021_03_021
crossref_primary_10_1007_s13762_021_03861_7
crossref_primary_10_1080_27684830_2022_2115873
crossref_primary_10_1016_j_ijhydene_2021_03_074
crossref_primary_10_1016_j_ijhydene_2022_04_006
crossref_primary_10_1080_25742558_2020_1868135
crossref_primary_10_1016_j_jclepro_2021_128643
crossref_primary_10_1007_s11220_021_00359_x
crossref_primary_10_1016_j_asej_2021_01_027
crossref_primary_10_1080_27658449_2021_1979733
crossref_primary_10_1515_eng_2022_0336
crossref_primary_10_1016_j_asej_2021_01_031
crossref_primary_10_1016_j_asej_2021_05_010
crossref_primary_10_1088_1742_6596_2016_1_012007
crossref_primary_10_1016_j_asej_2021_03_007
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.28991/cej-2020-03091506
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2476-3055
EndPage 768
ExternalDocumentID 10.28991/cej-2020-03091506
10_28991_cej_2020_03091506
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
OK1
ADTOC
AFWDF
ARCSS
UNPAY
ID FETCH-LOGICAL-c291t-fd220c88084ae8671f9d6575b527e751017d2a44a27c315fd31c484d3a86e6f83
IEDL.DBID UNPAY
ISSN 2676-6957
2476-3055
IngestDate Tue Aug 19 22:40:46 EDT 2025
Wed Oct 01 05:51:41 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fd220c88084ae8671f9d6575b527e751017d2a44a27c315fd31c484d3a86e6f83
OpenAccessLink https://proxy.k.utb.cz/login?url=https://civilejournal.org/index.php/cej/article/download/2154/pdf
PageCount 26
ParticipantIDs unpaywall_primary_10_28991_cej_2020_03091506
crossref_primary_10_28991_cej_2020_03091506
crossref_citationtrail_10_28991_cej_2020_03091506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Civil Engineering Journal
PublicationYear 2020
SSID ssib044733094
ssib046626805
Score 2.2542095
Snippet This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 743
Title Approximation of the Multidimensional Optimal Control Problem for the Heat Equation (Applicable to Computational Fluid Dynamics (CFD))
URI https://civilejournal.org/index.php/cej/article/download/2154/pdf
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2476-3055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733094
  issn: 2676-6957
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagHZh4CBAgQB4YQBDSxI6TjFVpVSHxGKgEU-SnVChpgZTXwMjv5hynFTAgEFMynKPEZ_vucnffh9AOaaiGpqnyDKHSo5wQTwTKeEoqoYJUxg1hA8WTU9bt0ePLaFJNaHthZP8RdkM1j2Umv0QNtFARvtTXfjWfvrJQ8kOufDBZ1B8pM4vqLAJ3vIbqvdPz5pUllaOxresqmU9DBvcsjWLXOGPDjMA-EFYJxE82z2Ch9r4Yp7lxPuIvT3ww-GRxOgtITN7VFZrcHI4LcShfv8E4_utjFtF85Y_ippNZQjM6X0bvTYs0_tx3bY14aDC4ibjs1VWWDcAheeAzOG5u4dpy5e743JHTYPCDywFdOOdx-86BiePdpsuVgwguhtjRSVS_InFnMO4rfPSS89u-fMC7rc7R3t4K6nXaF62uVxE2eDJMg8IzKgwbEk6EhHJtgfNMqmxiR0RhrONy96uQU8rDWJIgMooEkiZUEZ4wzUxCVlEtH-Z6DWEwkklAZQpDNTWCgnoEoUxLCv4GYWwdBRNNZbJCM7ekGoMMoppSuxnMcGa1m020u472p2NGDsvjR-mD6QL4hfjG38Q3Ua24H-st8GgKsY1mT97a29XK_QCVKvhn
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagHZh4CBAgQB4YqCCkiR0nGatCVSFRGKgEU-SnVChpgZTXD-B3c47TChgQiCkZzlHis313ubvvQ2iPNFVT01R5hlDpUU6IJwJlPCWVUEEq46awgeJZj3X79PQqmlYT2l4YOXiC3VDNY5nJL1EDLVSEL_WNX82nryyU_IgrH0wW9cfKzKM6i8Adr6F6v3fRurakcjS2dV0l82nI4J6lUewaZ2yYEdgHwiqB-MnmGSzU3hfjtDDJx_z1mQ-HnyxOZwmJ6bu6QpPbo0khjuTbNxjHf33MMlqs_FHccjIraE7nq-i9ZZHGXwaurRGPDAY3EZe9usqyATgkD3wOx80dXNuu3B1fOHIaDH5wOaAL5zw-uXdg4ni_5XLlIIKLEXZ0EtWvSNwZTgYKH7_m_G4gH_F-u3PcaKyhfufkst31KsIGT4ZpUHhGhWFTwomQUK4tcJ5JlU3siCiMdVzufhVySnkYSxJERpFA0oQqwhOmmUnIOqrlo1xvIAxGMgmoTGGopkZQUI8glGlJwd8gjG2iYKqpTFZo5pZUY5hBVFNqN4MZzqx2s6l2N9HBbMzYYXn8KH04WwC_EN_6m_g2qhUPE70DHk0hdqs1-wHHPPc2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+the+Multidimensional+Optimal+Control+Problem+for+the+Heat+Equation+%28Applicable+to+Computational+Fluid+Dynamics+%28CFD%29%29&rft.jtitle=Civil+Engineering+Journal&rft.au=Kostikov%2C+Yuri+Alexandrovich&rft.au=Romanenkov%2C+Alexander+Mikhailovich&rft.date=2020-04-01&rft.issn=2676-6957&rft.eissn=2476-3055&rft.volume=6&rft.issue=4&rft.spage=743&rft.epage=768&rft_id=info:doi/10.28991%2Fcej-2020-03091506&rft.externalDBID=n%2Fa&rft.externalDocID=10_28991_cej_2020_03091506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2676-6957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2676-6957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2676-6957&client=summon