GAN and Multi-Agent DRL Based Decentralized Traffic Light Signal Control

Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 2; pp. 1333 - 1348
Main Authors Wang, Zixin, Zhu, Hanyu, He, Mingcheng, Zhou, Yong, Luo, Xiliang, Zhang, Ning
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2021.3134329

Cover

Abstract Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by bandwidth-limited communication links in practice. In this article, we develop a communication-efficient decentralized ATSC framework for traffic networks with multiple intersections, where each intersection only exchanges traffic statistics with its neighboring intersections. In particular, the proposed framework consists of a generative adversarial network (GAN) based algorithm for traffic data recovery, and a multi-agent deep reinforcement learning (DRL) based decentralized ATSC algorithm for traffic efficiency enhancement. By adopting the value decomposition technique that establishes a nonlinear mapping from the local state-action values to the global reward, each intersection can independently determine its traffic light signal based on its local traffic data while achieving collaboration among neighboring intersections. Our proposed decentralized ATSC framework is scalable to large-scale traffic networks, and is also robust to traffic flow variations via interacting with the environment. Simulations show that our proposed algorithm can significantly reduce the vehicle travel time while maintaining high and stable traffic throughput.
AbstractList Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by bandwidth-limited communication links in practice. In this article, we develop a communication-efficient decentralized ATSC framework for traffic networks with multiple intersections, where each intersection only exchanges traffic statistics with its neighboring intersections. In particular, the proposed framework consists of a generative adversarial network (GAN) based algorithm for traffic data recovery, and a multi-agent deep reinforcement learning (DRL) based decentralized ATSC algorithm for traffic efficiency enhancement. By adopting the value decomposition technique that establishes a nonlinear mapping from the local state-action values to the global reward, each intersection can independently determine its traffic light signal based on its local traffic data while achieving collaboration among neighboring intersections. Our proposed decentralized ATSC framework is scalable to large-scale traffic networks, and is also robust to traffic flow variations via interacting with the environment. Simulations show that our proposed algorithm can significantly reduce the vehicle travel time while maintaining high and stable traffic throughput.
Author He, Mingcheng
Zhou, Yong
Zhu, Hanyu
Luo, Xiliang
Wang, Zixin
Zhang, Ning
Author_xml – sequence: 1
  givenname: Zixin
  surname: Wang
  fullname: Wang, Zixin
  email: wangzx2@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 2
  givenname: Hanyu
  orcidid: 0000-0002-6800-269X
  surname: Zhu
  fullname: Zhu, Hanyu
  email: zhuhy@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Mingcheng
  orcidid: 0000-0003-4747-5890
  surname: He
  fullname: He, Mingcheng
  email: mingcheng.he@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 4
  givenname: Yong
  orcidid: 0000-0002-7499-6256
  surname: Zhou
  fullname: Zhou, Yong
  email: zhouyong@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 5
  givenname: Xiliang
  orcidid: 0000-0003-3816-6789
  surname: Luo
  fullname: Luo, Xiliang
  email: luoxl@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 6
  givenname: Ning
  orcidid: 0000-0002-8781-4925
  surname: Zhang
  fullname: Zhang, Ning
  email: ning.zhang@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
BookMark eNp9UD1PwzAQtVCRKIUdiSUSc4q_U4-lhRYpgASB1XKSc3EVkmKnA_x6XLViYGC50zu9d-_unaJB27WA0AXBY0Kwui7eijHFlIwZYZxRdYSGRDGVKibUAA0xJpNUCS5O0GkI6wg5V2SIlovpY2LaOnnYNr1Lpyto-2T-nCc3JkCdzKGKA28a9x1R4Y21rkpyt3rvkxe3ak2TzLpI6JozdGxNE-D80Efo9e62mC3T_GlxP5vmaUUV6VNbiozXwkhqpVVQMloSobKS1cBtScoMcznJxCQDU0coK6hMLaUAC4pLKtkIXe33bnz3uYXQ63W39fGQoKmMFrEIFll4z6p8F4IHqzfefRj_pQnWu7x0zEvv8tKHvKJE_pFUrje9271nXPOf8HIvdADw66Mkz1S89wfognh6
CODEN ITVTAB
CitedBy_id crossref_primary_10_3390_electronics14010156
crossref_primary_10_1016_j_ins_2022_11_062
crossref_primary_10_1109_TVT_2023_3319698
crossref_primary_10_1007_s10489_024_06208_0
crossref_primary_10_1016_j_cosrev_2024_100635
crossref_primary_10_1109_TCSS_2022_3225362
crossref_primary_10_1364_OE_499380
crossref_primary_10_1109_TVT_2022_3178808
crossref_primary_10_1109_TVT_2024_3379972
crossref_primary_10_1177_03611981231184250
crossref_primary_10_1016_j_trc_2024_104663
crossref_primary_10_1109_TMI_2024_3383716
crossref_primary_10_3390_math12193125
crossref_primary_10_1016_j_dcan_2024_03_001
crossref_primary_10_1109_JSYST_2023_3302876
crossref_primary_10_1016_j_neucom_2025_129344
crossref_primary_10_1109_JIOT_2024_3401829
crossref_primary_10_1109_TITS_2024_3462153
crossref_primary_10_1109_TIV_2023_3331002
crossref_primary_10_1007_s12083_022_01434_0
crossref_primary_10_23919_cje_2022_00_231
Cites_doi 10.1109/TITS.2020.2987832
10.1061/(asce)0733-947x(2003)129:3(278)
10.1080/15472450.2013.810991
10.1109/TITS.2020.3035841
10.1145/3308558.3314139
10.1109/ACCESS.2018.2831228
10.1109/TITS.2021.3062072
10.1109/TCYB.2019.2904742
10.1109/CCDC.2019.8832406
10.1613/jair.4818
10.1109/TVT.2017.2702388
10.1109/TVT.2021.3056457
10.1038/nature14236
10.1109/OJITS.2020.3027518
10.1145/3219819.3220096
10.1109/IWCMC.2019.8766739
10.1016/j.trb.2017.08.009
10.1109/ACCESS.2021.3096666
10.1109/TITS.2020.3010725
10.1145/3357384.3357902
10.1613/jair.2447
10.1109/TITS.2019.2901791
10.1109/TVT.2020.2997896
10.1109/TITS.2010.2091408
10.1109/TSMC.2019.2930138
10.1109/TVT.2018.2890726
10.1145/3292500.3330949
10.1109/MCOM.2017.1600514
10.1016/j.trc.2018.11.003
10.1049/iet-its.2018.5170
10.1016/j.physa.2015.09.105
10.1109/AEROCS.1993.720907
10.1109/TITS.2021.3067057
10.1109/TITS.2021.3118843
10.1109/ICASSP40776.2020.9054656
10.1109/MCE.2016.2556879
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3134329
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 1348
ExternalDocumentID 10_1109_TVT_2021_3134329
9647926
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971286
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-fb574d5a62f6f9eb32b1597b3de4fb1b704687587eadb1b6cecad665efe946263
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:09:38 EDT 2025
Wed Oct 01 02:27:04 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Wed Aug 27 02:49:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fb574d5a62f6f9eb32b1597b3de4fb1b704687587eadb1b6cecad665efe946263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7499-6256
0000-0002-8781-4925
0000-0002-6800-269X
0000-0003-4747-5890
0000-0003-3816-6789
PQID 2629126253
PQPubID 85454
PageCount 16
ParticipantIDs crossref_primary_10_1109_TVT_2021_3134329
proquest_journals_2629126253
ieee_primary_9647926
crossref_citationtrail_10_1109_TVT_2021_3134329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
Rashid (ref41) 2018
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Goodfellow (ref38) 2014
ref19
Krau (ref43) 1998
Chang (ref7) 1985; 1027
Mnih (ref18) 2013
Wei (ref9) 2020
Sutton (ref15) 2018
Hunt (ref6) 1982; 23
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref28
ref27
ref29
ref8
Sunehag (ref40) 2018
ref4
ref3
ref5
References_xml – ident: ref1
  doi: 10.1109/TITS.2020.2987832
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref15
– ident: ref16
  doi: 10.1061/(asce)0733-947x(2003)129:3(278)
– start-page: 2672
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2014
  ident: ref38
  article-title: Generative adversarial nets
– ident: ref45
  doi: 10.1080/15472450.2013.810991
– ident: ref33
  doi: 10.1109/TITS.2020.3035841
– ident: ref42
  doi: 10.1145/3308558.3314139
– ident: ref25
  doi: 10.1109/ACCESS.2018.2831228
– ident: ref20
  doi: 10.1109/TITS.2021.3062072
– ident: ref28
  doi: 10.1109/TCYB.2019.2904742
– volume: 1027
  start-page: 20
  year: 1985
  ident: ref7
  article-title: Timing traffic signal change intervals based on driver behavior
  publication-title: Transp. Res. Rec.
– ident: ref23
  doi: 10.1109/CCDC.2019.8832406
– start-page: 2085
  volume-title: Proc. Int. Conf. Auton. Agents MultiAgent Syst.
  year: 2018
  ident: ref40
  article-title: Value-decomposition networks for cooperative multi-agent learning based on team reward
– ident: ref27
  doi: 10.1613/jair.4818
– ident: ref34
  doi: 10.1109/TVT.2017.2702388
– ident: ref11
  doi: 10.1109/TVT.2021.3056457
– ident: ref19
  doi: 10.1038/nature14236
– ident: ref35
  doi: 10.1109/OJITS.2020.3027518
– ident: ref21
  doi: 10.1145/3219819.3220096
– ident: ref26
  doi: 10.1109/IWCMC.2019.8766739
– ident: ref10
  doi: 10.1016/j.trb.2017.08.009
– ident: ref31
  doi: 10.1109/ACCESS.2021.3096666
– ident: ref14
  doi: 10.1109/TITS.2020.3010725
– ident: ref29
  doi: 10.1145/3357384.3357902
– volume: 23
  issue: 4
  year: 1982
  ident: ref6
  article-title: The SCOOT on-line traffic signal optimisation technique
  publication-title: Traffic Eng. Control
– ident: ref36
  doi: 10.1613/jair.2447
– ident: ref30
  doi: 10.1109/TITS.2019.2901791
– ident: ref32
  doi: 10.1109/TVT.2020.2997896
– ident: ref17
  doi: 10.1109/TITS.2010.2091408
– ident: ref12
  doi: 10.1109/TSMC.2019.2930138
– ident: ref2
  doi: 10.1109/TVT.2018.2890726
– ident: ref24
  doi: 10.1145/3292500.3330949
– ident: ref5
  doi: 10.1109/MCOM.2017.1600514
– ident: ref44
  doi: 10.1016/j.trc.2018.11.003
– ident: ref22
  doi: 10.1049/iet-its.2018.5170
– ident: ref37
  doi: 10.1016/j.physa.2015.09.105
– ident: ref8
  doi: 10.1109/AEROCS.1993.720907
– start-page: 1
  volume-title: Proc. NIPS Deep Learn. Workshop
  year: 2013
  ident: ref18
  article-title: Playing atari with deep reinforcement learning
– ident: ref3
  doi: 10.1109/TITS.2021.3067057
– year: 2020
  ident: ref9
  article-title: A survey on traffic signal control methods
– ident: ref13
  doi: 10.1109/TITS.2021.3118843
– year: 1998
  ident: ref43
  article-title: Microscopic modeling of traffic flow: Investigation of collisionfree vehicle dynamics
– start-page: 4295
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref41
  article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning
– ident: ref39
  doi: 10.1109/ICASSP40776.2020.9054656
– ident: ref4
  doi: 10.1109/MCE.2016.2556879
SSID ssj0014491
Score 2.503273
Snippet Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1333
SubjectTerms Adaptive control
Adaptive traffic light signal control
Algorithms
Collaboration
Computational modeling
Data exchange
Data recovery
generative adversarial network
Generative adversarial networks
Intelligent transportation systems
Machine learning
multi-agent deep reinforcement learning
Multiagent systems
Real-time systems
Reinforcement learning
Switches
Traffic congestion
Traffic control
Traffic flow
Traffic information
Traffic intersections
Traffic signals
Transportation networks
Travel time
Vehicle dynamics
Title GAN and Multi-Agent DRL Based Decentralized Traffic Light Signal Control
URI https://ieeexplore.ieee.org/document/9647926
https://www.proquest.com/docview/2629126253
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh68mDhgW9ttRwSRGOCgYLgt69oZohlGx4W_3tduI37FeFnWpF26vnbv_fbe7z2AC0WlbSsaWVzqEma-cPSRYhZzPT8RqMIjw-IfT_hwRu_mbF6Bqw0XRillgs9US98aX75cxiv9q6ytWZOBw6tQ9Xyec7U2HgNKi-p4Nh5gNAtKl2QnaE8fpwgEHRvxqaZRBl9UkKmp8uNDbLTLYBfG5bzyoJLn1ioTrXj9LWXjfye-BzuFmUm6-b7Yh4pKD2D7U_LBOgxvuxMSpZIYDq7V1Rwr0r8fkWtUbJL0VRG3uVhjC1WazjVBRhrLk4fFk356Lw9zP4TZ4GbaG1pFXQUrdgI7sxLBPCpZxJ2EJwGiaUegUeMJVyqaCFt4iJkRxvge7jJs8ljFkeScqUQFVGevOYJaukzVMRC0JnwhhEdZIqgtcDSjXixc7go77iR-A9rlUodxkXRc1754CQ346AQhCifUwgkL4TTgcjPiNU-48Ufful7rTb9imRvQLKUZFifyPXQ4vjtemHvy-6hT2HI0tcFEZDehlr2t1BkaHJk4NzvtA37Lz-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CIovbgxcQB29puOyKIU4GDguG2rFtniAaMjgt_va_dWPyK8bKsSbt0fe3e--2933sAZ5LGpilpaPBYlTBzhaWOFDOY7biJQBUeahZ_f8D9Eb0ds3EJLgoujJRSB5_JurrVvvx4Fs3Vr7KGYk16Fl-BVUYpZRlbq_AZUJrXxzPxCKNhsHRKNr3G8HGIUNAyEaEqIqX3RQnpqio_PsVav3S3oL-cWRZW8lyfp6IeLb4lbfzv1LdhMzc0SSvbGTtQktNd2PiUfrAC_nVrQMJpTDQL12gplhXp3PfIJaq2mHRkHrk5WWALlZrKNkF6Cs2Th8mTeno7C3Tfg1H3atj2jbyyghFZnpkaiWAOjVnIrYQnHuJpS6BZ4wg7ljQRpnAQNSOQcR3cZ9jkkYzCmHMmE-lRlb9mH8rT2VQeAEF7whVCOJQlgpoCRzPqRMLmtjCjZuJWobFc6iDK046r6hcvgYYfTS9A4QRKOEEunCqcFyNes5Qbf_StqLUu-uXLXIXaUppBfibfA4vju-OF2Ye_jzqFNX_Y7wW9m8HdEaxbiuig47NrUE7f5vIYzY9UnOhd9wGN7dMx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN+and+Multi-Agent+DRL+Based+Decentralized+Traffic+Light+Signal+Control&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Zixin&rft.au=Zhu%2C+Hanyu&rft.au=He%2C+Mingcheng&rft.au=Zhou%2C+Yong&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=71&rft.issue=2&rft.spage=1333&rft.epage=1348&rft_id=info:doi/10.1109%2FTVT.2021.3134329&rft.externalDocID=9647926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon