GAN and Multi-Agent DRL Based Decentralized Traffic Light Signal Control
Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 71; no. 2; pp. 1333 - 1348 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2021.3134329 |
Cover
| Abstract | Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by bandwidth-limited communication links in practice. In this article, we develop a communication-efficient decentralized ATSC framework for traffic networks with multiple intersections, where each intersection only exchanges traffic statistics with its neighboring intersections. In particular, the proposed framework consists of a generative adversarial network (GAN) based algorithm for traffic data recovery, and a multi-agent deep reinforcement learning (DRL) based decentralized ATSC algorithm for traffic efficiency enhancement. By adopting the value decomposition technique that establishes a nonlinear mapping from the local state-action values to the global reward, each intersection can independently determine its traffic light signal based on its local traffic data while achieving collaboration among neighboring intersections. Our proposed decentralized ATSC framework is scalable to large-scale traffic networks, and is also robust to traffic flow variations via interacting with the environment. Simulations show that our proposed algorithm can significantly reduce the vehicle travel time while maintaining high and stable traffic throughput. |
|---|---|
| AbstractList | Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the existing methods require heavy traffic data exchange among neighboring intersections to achieve collaborative ATSC, which may not be supported by bandwidth-limited communication links in practice. In this article, we develop a communication-efficient decentralized ATSC framework for traffic networks with multiple intersections, where each intersection only exchanges traffic statistics with its neighboring intersections. In particular, the proposed framework consists of a generative adversarial network (GAN) based algorithm for traffic data recovery, and a multi-agent deep reinforcement learning (DRL) based decentralized ATSC algorithm for traffic efficiency enhancement. By adopting the value decomposition technique that establishes a nonlinear mapping from the local state-action values to the global reward, each intersection can independently determine its traffic light signal based on its local traffic data while achieving collaboration among neighboring intersections. Our proposed decentralized ATSC framework is scalable to large-scale traffic networks, and is also robust to traffic flow variations via interacting with the environment. Simulations show that our proposed algorithm can significantly reduce the vehicle travel time while maintaining high and stable traffic throughput. |
| Author | He, Mingcheng Zhou, Yong Zhu, Hanyu Luo, Xiliang Wang, Zixin Zhang, Ning |
| Author_xml | – sequence: 1 givenname: Zixin surname: Wang fullname: Wang, Zixin email: wangzx2@shanghaitech.edu.cn organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China – sequence: 2 givenname: Hanyu orcidid: 0000-0002-6800-269X surname: Zhu fullname: Zhu, Hanyu email: zhuhy@shanghaitech.edu.cn organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China – sequence: 3 givenname: Mingcheng orcidid: 0000-0003-4747-5890 surname: He fullname: He, Mingcheng email: mingcheng.he@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Yong orcidid: 0000-0002-7499-6256 surname: Zhou fullname: Zhou, Yong email: zhouyong@shanghaitech.edu.cn organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China – sequence: 5 givenname: Xiliang orcidid: 0000-0003-3816-6789 surname: Luo fullname: Luo, Xiliang email: luoxl@shanghaitech.edu.cn organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China – sequence: 6 givenname: Ning orcidid: 0000-0002-8781-4925 surname: Zhang fullname: Zhang, Ning email: ning.zhang@uwindsor.ca organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada |
| BookMark | eNp9UD1PwzAQtVCRKIUdiSUSc4q_U4-lhRYpgASB1XKSc3EVkmKnA_x6XLViYGC50zu9d-_unaJB27WA0AXBY0Kwui7eijHFlIwZYZxRdYSGRDGVKibUAA0xJpNUCS5O0GkI6wg5V2SIlovpY2LaOnnYNr1Lpyto-2T-nCc3JkCdzKGKA28a9x1R4Y21rkpyt3rvkxe3ak2TzLpI6JozdGxNE-D80Efo9e62mC3T_GlxP5vmaUUV6VNbiozXwkhqpVVQMloSobKS1cBtScoMcznJxCQDU0coK6hMLaUAC4pLKtkIXe33bnz3uYXQ63W39fGQoKmMFrEIFll4z6p8F4IHqzfefRj_pQnWu7x0zEvv8tKHvKJE_pFUrje9271nXPOf8HIvdADw66Mkz1S89wfognh6 |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_3390_electronics14010156 crossref_primary_10_1016_j_ins_2022_11_062 crossref_primary_10_1109_TVT_2023_3319698 crossref_primary_10_1007_s10489_024_06208_0 crossref_primary_10_1016_j_cosrev_2024_100635 crossref_primary_10_1109_TCSS_2022_3225362 crossref_primary_10_1364_OE_499380 crossref_primary_10_1109_TVT_2022_3178808 crossref_primary_10_1109_TVT_2024_3379972 crossref_primary_10_1177_03611981231184250 crossref_primary_10_1016_j_trc_2024_104663 crossref_primary_10_1109_TMI_2024_3383716 crossref_primary_10_3390_math12193125 crossref_primary_10_1016_j_dcan_2024_03_001 crossref_primary_10_1109_JSYST_2023_3302876 crossref_primary_10_1016_j_neucom_2025_129344 crossref_primary_10_1109_JIOT_2024_3401829 crossref_primary_10_1109_TITS_2024_3462153 crossref_primary_10_1109_TIV_2023_3331002 crossref_primary_10_1007_s12083_022_01434_0 crossref_primary_10_23919_cje_2022_00_231 |
| Cites_doi | 10.1109/TITS.2020.2987832 10.1061/(asce)0733-947x(2003)129:3(278) 10.1080/15472450.2013.810991 10.1109/TITS.2020.3035841 10.1145/3308558.3314139 10.1109/ACCESS.2018.2831228 10.1109/TITS.2021.3062072 10.1109/TCYB.2019.2904742 10.1109/CCDC.2019.8832406 10.1613/jair.4818 10.1109/TVT.2017.2702388 10.1109/TVT.2021.3056457 10.1038/nature14236 10.1109/OJITS.2020.3027518 10.1145/3219819.3220096 10.1109/IWCMC.2019.8766739 10.1016/j.trb.2017.08.009 10.1109/ACCESS.2021.3096666 10.1109/TITS.2020.3010725 10.1145/3357384.3357902 10.1613/jair.2447 10.1109/TITS.2019.2901791 10.1109/TVT.2020.2997896 10.1109/TITS.2010.2091408 10.1109/TSMC.2019.2930138 10.1109/TVT.2018.2890726 10.1145/3292500.3330949 10.1109/MCOM.2017.1600514 10.1016/j.trc.2018.11.003 10.1049/iet-its.2018.5170 10.1016/j.physa.2015.09.105 10.1109/AEROCS.1993.720907 10.1109/TITS.2021.3067057 10.1109/TITS.2021.3118843 10.1109/ICASSP40776.2020.9054656 10.1109/MCE.2016.2556879 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2021.3134329 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 1348 |
| ExternalDocumentID | 10_1109_TVT_2021_3134329 9647926 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971286 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-fb574d5a62f6f9eb32b1597b3de4fb1b704687587eadb1b6cecad665efe946263 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:09:38 EDT 2025 Wed Oct 01 02:27:04 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Wed Aug 27 02:49:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-fb574d5a62f6f9eb32b1597b3de4fb1b704687587eadb1b6cecad665efe946263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7499-6256 0000-0002-8781-4925 0000-0002-6800-269X 0000-0003-4747-5890 0000-0003-3816-6789 |
| PQID | 2629126253 |
| PQPubID | 85454 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2021_3134329 proquest_journals_2629126253 ieee_primary_9647926 crossref_citationtrail_10_1109_TVT_2021_3134329 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref37 ref14 ref36 ref31 ref30 ref11 ref33 Rashid (ref41) 2018 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Goodfellow (ref38) 2014 ref19 Krau (ref43) 1998 Chang (ref7) 1985; 1027 Mnih (ref18) 2013 Wei (ref9) 2020 Sutton (ref15) 2018 Hunt (ref6) 1982; 23 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref22 ref44 ref21 ref28 ref27 ref29 ref8 Sunehag (ref40) 2018 ref4 ref3 ref5 |
| References_xml | – ident: ref1 doi: 10.1109/TITS.2020.2987832 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref15 – ident: ref16 doi: 10.1061/(asce)0733-947x(2003)129:3(278) – start-page: 2672 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. year: 2014 ident: ref38 article-title: Generative adversarial nets – ident: ref45 doi: 10.1080/15472450.2013.810991 – ident: ref33 doi: 10.1109/TITS.2020.3035841 – ident: ref42 doi: 10.1145/3308558.3314139 – ident: ref25 doi: 10.1109/ACCESS.2018.2831228 – ident: ref20 doi: 10.1109/TITS.2021.3062072 – ident: ref28 doi: 10.1109/TCYB.2019.2904742 – volume: 1027 start-page: 20 year: 1985 ident: ref7 article-title: Timing traffic signal change intervals based on driver behavior publication-title: Transp. Res. Rec. – ident: ref23 doi: 10.1109/CCDC.2019.8832406 – start-page: 2085 volume-title: Proc. Int. Conf. Auton. Agents MultiAgent Syst. year: 2018 ident: ref40 article-title: Value-decomposition networks for cooperative multi-agent learning based on team reward – ident: ref27 doi: 10.1613/jair.4818 – ident: ref34 doi: 10.1109/TVT.2017.2702388 – ident: ref11 doi: 10.1109/TVT.2021.3056457 – ident: ref19 doi: 10.1038/nature14236 – ident: ref35 doi: 10.1109/OJITS.2020.3027518 – ident: ref21 doi: 10.1145/3219819.3220096 – ident: ref26 doi: 10.1109/IWCMC.2019.8766739 – ident: ref10 doi: 10.1016/j.trb.2017.08.009 – ident: ref31 doi: 10.1109/ACCESS.2021.3096666 – ident: ref14 doi: 10.1109/TITS.2020.3010725 – ident: ref29 doi: 10.1145/3357384.3357902 – volume: 23 issue: 4 year: 1982 ident: ref6 article-title: The SCOOT on-line traffic signal optimisation technique publication-title: Traffic Eng. Control – ident: ref36 doi: 10.1613/jair.2447 – ident: ref30 doi: 10.1109/TITS.2019.2901791 – ident: ref32 doi: 10.1109/TVT.2020.2997896 – ident: ref17 doi: 10.1109/TITS.2010.2091408 – ident: ref12 doi: 10.1109/TSMC.2019.2930138 – ident: ref2 doi: 10.1109/TVT.2018.2890726 – ident: ref24 doi: 10.1145/3292500.3330949 – ident: ref5 doi: 10.1109/MCOM.2017.1600514 – ident: ref44 doi: 10.1016/j.trc.2018.11.003 – ident: ref22 doi: 10.1049/iet-its.2018.5170 – ident: ref37 doi: 10.1016/j.physa.2015.09.105 – ident: ref8 doi: 10.1109/AEROCS.1993.720907 – start-page: 1 volume-title: Proc. NIPS Deep Learn. Workshop year: 2013 ident: ref18 article-title: Playing atari with deep reinforcement learning – ident: ref3 doi: 10.1109/TITS.2021.3067057 – year: 2020 ident: ref9 article-title: A survey on traffic signal control methods – ident: ref13 doi: 10.1109/TITS.2021.3118843 – year: 1998 ident: ref43 article-title: Microscopic modeling of traffic flow: Investigation of collisionfree vehicle dynamics – start-page: 4295 volume-title: Proc. Int. Conf. Mach. Learn. year: 2018 ident: ref41 article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning – ident: ref39 doi: 10.1109/ICASSP40776.2020.9054656 – ident: ref4 doi: 10.1109/MCE.2016.2556879 |
| SSID | ssj0014491 |
| Score | 2.503273 |
| Snippet | Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic congestion in intelligent transportation systems. Most of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1333 |
| SubjectTerms | Adaptive control Adaptive traffic light signal control Algorithms Collaboration Computational modeling Data exchange Data recovery generative adversarial network Generative adversarial networks Intelligent transportation systems Machine learning multi-agent deep reinforcement learning Multiagent systems Real-time systems Reinforcement learning Switches Traffic congestion Traffic control Traffic flow Traffic information Traffic intersections Traffic signals Transportation networks Travel time Vehicle dynamics |
| Title | GAN and Multi-Agent DRL Based Decentralized Traffic Light Signal Control |
| URI | https://ieeexplore.ieee.org/document/9647926 https://www.proquest.com/docview/2629126253 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh68mDhgW9ttRwSRGOCgYLgt69oZohlGx4W_3tduI37FeFnWpF26vnbv_fbe7z2AC0WlbSsaWVzqEma-cPSRYhZzPT8RqMIjw-IfT_hwRu_mbF6Bqw0XRillgs9US98aX75cxiv9q6ytWZOBw6tQ9Xyec7U2HgNKi-p4Nh5gNAtKl2QnaE8fpwgEHRvxqaZRBl9UkKmp8uNDbLTLYBfG5bzyoJLn1ioTrXj9LWXjfye-BzuFmUm6-b7Yh4pKD2D7U_LBOgxvuxMSpZIYDq7V1Rwr0r8fkWtUbJL0VRG3uVhjC1WazjVBRhrLk4fFk356Lw9zP4TZ4GbaG1pFXQUrdgI7sxLBPCpZxJ2EJwGiaUegUeMJVyqaCFt4iJkRxvge7jJs8ljFkeScqUQFVGevOYJaukzVMRC0JnwhhEdZIqgtcDSjXixc7go77iR-A9rlUodxkXRc1754CQ346AQhCifUwgkL4TTgcjPiNU-48Ufful7rTb9imRvQLKUZFifyPXQ4vjtemHvy-6hT2HI0tcFEZDehlr2t1BkaHJk4NzvtA37Lz-Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CIovbgxcQB29puOyKIU4GDguG2rFtniAaMjgt_va_dWPyK8bKsSbt0fe3e--2933sAZ5LGpilpaPBYlTBzhaWOFDOY7biJQBUeahZ_f8D9Eb0ds3EJLgoujJRSB5_JurrVvvx4Fs3Vr7KGYk16Fl-BVUYpZRlbq_AZUJrXxzPxCKNhsHRKNr3G8HGIUNAyEaEqIqX3RQnpqio_PsVav3S3oL-cWRZW8lyfp6IeLb4lbfzv1LdhMzc0SSvbGTtQktNd2PiUfrAC_nVrQMJpTDQL12gplhXp3PfIJaq2mHRkHrk5WWALlZrKNkF6Cs2Th8mTeno7C3Tfg1H3atj2jbyyghFZnpkaiWAOjVnIrYQnHuJpS6BZ4wg7ljQRpnAQNSOQcR3cZ9jkkYzCmHMmE-lRlb9mH8rT2VQeAEF7whVCOJQlgpoCRzPqRMLmtjCjZuJWobFc6iDK046r6hcvgYYfTS9A4QRKOEEunCqcFyNes5Qbf_StqLUu-uXLXIXaUppBfibfA4vju-OF2Ye_jzqFNX_Y7wW9m8HdEaxbiuig47NrUE7f5vIYzY9UnOhd9wGN7dMx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN+and+Multi-Agent+DRL+Based+Decentralized+Traffic+Light+Signal+Control&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Zixin&rft.au=Zhu%2C+Hanyu&rft.au=He%2C+Mingcheng&rft.au=Zhou%2C+Yong&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=71&rft.issue=2&rft.spage=1333&rft.epage=1348&rft_id=info:doi/10.1109%2FTVT.2021.3134329&rft.externalDocID=9647926 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |