Towards Fast and Robust Real Image Denoising With Attentive Neural Network and PID Controller
With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this...
        Saved in:
      
    
          | Published in | IEEE transactions on multimedia Vol. 24; pp. 2366 - 2377 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1520-9210 1941-0077  | 
| DOI | 10.1109/TMM.2021.3079697 | 
Cover
| Abstract | With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this problem, we propose a robust and efficient denoiser, called a hierarchical-based PID-attention denoising network (HPDNet), to flexibly deal with the sophisticated noise. The core of our algorithm is the PID-attentive recurrent network (PAR-Net) whose framework mainly consists of the LSTM network and PID controller. PAR-Net inherits the advantages of both the attentive recurrent network and control action, which can encourage more discriminatory feature representations. This learning procedure is implemented within a feedback control system, allowing a faster and more robust means to enhance feature discriminability. Furthermore, by decomposing the noisy image and stacking the PAR-Nets, our PAR-Net can work on a progressively hierarchical framework, and hence obtain multi-scale features and manageable successive refinements. On several widely used datasets, the proposed HPDNet demonstrates high efficiency, while delivering a better perceptually appealing image quality over state-of-the-art image denoising methods. | 
    
|---|---|
| AbstractList | With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this problem, we propose a robust and efficient denoiser, called a hierarchical-based PID-attention denoising network (HPDNet), to flexibly deal with the sophisticated noise. The core of our algorithm is the PID-attentive recurrent network (PAR-Net) whose framework mainly consists of the LSTM network and PID controller. PAR-Net inherits the advantages of both the attentive recurrent network and control action, which can encourage more discriminatory feature representations. This learning procedure is implemented within a feedback control system, allowing a faster and more robust means to enhance feature discriminability. Furthermore, by decomposing the noisy image and stacking the PAR-Nets, our PAR-Net can work on a progressively hierarchical framework, and hence obtain multi-scale features and manageable successive refinements. On several widely used datasets, the proposed HPDNet demonstrates high efficiency, while delivering a better perceptually appealing image quality over state-of-the-art image denoising methods. | 
    
| Author | Zhang, Bob Ma, Ruijun Li, Shuyi Li, Zhengming  | 
    
| Author_xml | – sequence: 1 givenname: Ruijun orcidid: 0000-0001-6876-8153 surname: Ma fullname: Ma, Ruijun email: yb97442@um.edu.mo organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China – sequence: 2 givenname: Shuyi orcidid: 0000-0001-6264-9006 surname: Li fullname: Li, Shuyi email: yb97443@um.edu.mo organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China – sequence: 3 givenname: Bob orcidid: 0000-0001-5628-6237 surname: Zhang fullname: Zhang, Bob email: bobzhang@um.edu.mo organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China – sequence: 4 givenname: Zhengming surname: Li fullname: Li, Zhengming email: gslzm@gpnu.edu.cn organization: Guangdong Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou, China  | 
    
| BookMark | eNp9kDFPwzAUhC0EEi2wI7FYYk55dh2nHlGhUIkWVBUxochJXsAQ4mI7VPx7XIoYGJjeDffd6V2f7La2RUKOGQwYA3W2nM0GHDgbDCFTUmU7pMeUYAlAlu1GnXJIFGewT_revwAwkULWI49Lu9au8nSifaC6rejCFl2UC9QNnb7pJ6QX2FrjTftEH0x4puchYBvMB9I5di665hjW1r1-03fTCzq2bXC2adAdkr1aNx6Pfu4BuZ9cLsfXyc3t1XR8fpOUXLGQ1KKSpdZFCSKrKyWGoirqNM0EKl4wPaoYk1orIUeg2KiWhQRVVmldc8EwRT08IKfb3JWz7x36kL_YzrWxMudSclBpTI4u2LpKZ713WOcrZ960-8wZ5JsR8zhivhkx_xkxIvIPUpqgg9l8qE3zH3iyBQ0i_vbE1zIpYPgFmiSAgg | 
    
| CODEN | ITMUF8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_isatra_2022_04_003 crossref_primary_10_1007_s42853_022_00166_6 crossref_primary_10_1109_TMM_2022_3233247 crossref_primary_10_1016_j_biosystemseng_2022_12_012 crossref_primary_10_1109_TCYB_2022_3170472 crossref_primary_10_1016_j_neunet_2024_106218 crossref_primary_10_1109_TSMC_2023_3289873 crossref_primary_10_1016_j_compag_2023_108100 crossref_primary_10_1155_2022_9322534 crossref_primary_10_3390_electronics12245019 crossref_primary_10_1007_s11760_022_02471_1 crossref_primary_10_1109_TCSVT_2022_3172998 crossref_primary_10_1016_j_inffus_2025_103013 crossref_primary_10_1007_s11760_023_02521_2 crossref_primary_10_1016_j_dsp_2023_104052 crossref_primary_10_3390_buildings14051463 crossref_primary_10_1109_TMM_2024_3407656 crossref_primary_10_1109_TIP_2024_3404253 crossref_primary_10_1007_s11227_023_05150_1 crossref_primary_10_3390_agronomy14092074 crossref_primary_10_3390_sym17030424 crossref_primary_10_1109_TMM_2022_3214375 crossref_primary_10_1109_TMM_2022_3233398 crossref_primary_10_1016_j_neucom_2024_128316 crossref_primary_10_1109_TIP_2022_3150294 crossref_primary_10_1007_s11042_023_14872_6 crossref_primary_10_3390_electronics14050871 crossref_primary_10_1016_j_compag_2024_108772 crossref_primary_10_1016_j_cviu_2025_104302  | 
    
| Cites_doi | 10.1137/120874989 10.1109/TPAMI.2021.3096255 10.1109/CVPR.2017.294 10.1109/TMM.2016.2609419 10.1109/TMM.2019.2960588 10.1109/TIP.2018.2839891 10.1109/CVPR.2018.00333 10.1109/CVPR.2014.366 10.1109/VCIP47243.2019.8965754 10.1109/TPAMI.2016.2596743 10.1109/CVPR.2019.00326 10.1109/ICCV.2001.937655 10.1109/CVPR.2018.00068 10.1007/s10916-019-1371-9 10.1109/ICCV.2017.125 10.1109/CVPR.2017.300 10.1109/ICCV.2001.937555 10.1109/CVPR.2019.00181 10.1109/CVPR.2018.00259 10.1007/s11263-023-01843-5 10.1007/978-3-030-01237-3_2 10.1109/TIP.2018.2811546 10.1109/CVPR.2018.00889 10.1109/CVPR.2011.5995413 10.1109/TNNLS.2020.3048031 10.1016/j.neunet.2019.08.022 10.1109/TIP.2020.2965294 10.1109/CVPR.2014.349 10.1109/TMM.2015.2457678 10.1109/TMM.2017.2781371 10.1109/ICCV.2011.6126278 10.1109/ICCV.2019.00325 10.1109/CVPR.2012.6247952 10.1109/TPAMI.2016.2604816 10.1109/CVPR.2016.207 10.1109/TPAMI.2020.2968521 10.1109/CVPRW.2017.150 10.1109/34.276126 10.1109/TIP.2015.2439041 10.1007/978-3-030-58595-2_30 10.1109/CVPR.2016.186 10.1109/CVPR.2005.160 10.1109/CVPR42600.2020.00354 10.1109/ICIP.2007.4378954 10.1007/s11263-008-0197-6 10.1109/TIP.2007.901238 10.1109/TLA.2017.7959343 10.1109/ICOEI48184.2020.9142982 10.1109/ICIP.2017.8296572 10.1109/TIP.2017.2662206 10.1007/s11263-015-0816-y 10.1109/CVPR.2019.01132 10.1109/TPAMI.2012.58 10.1109/CVPR.2018.00182 10.1016/j.neunet.2019.12.024 10.1109/TMM.2016.2638624  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TMM.2021.3079697 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1941-0077 | 
    
| EndPage | 2377 | 
    
| ExternalDocumentID | 10_1109_TMM_2021_3079697 9437640  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Department of Education of Guangdong Province grantid: 2020KQNCX040 funderid: 10.13039/501100010226 – fundername: National Natural Science Foundation of China grantid: 61602540 funderid: 10.13039/501100001809 – fundername: University of Macau grantid: MYRG2019-00006-FST  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c291t-f4d6caabc047fd9434dbf5574e92b1a8d116aa94680918f6b609cd5ff241e5ea3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1520-9210 | 
    
| IngestDate | Mon Jun 30 03:30:25 EDT 2025 Wed Oct 01 02:36:17 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Wed Aug 27 02:37:58 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-f4d6caabc047fd9434dbf5574e92b1a8d116aa94680918f6b609cd5ff241e5ea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6876-8153 0000-0001-6264-9006 0000-0001-5628-6237  | 
    
| PQID | 2662095047 | 
    
| PQPubID | 75737 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TMM_2021_3079697 proquest_journals_2662095047 crossref_primary_10_1109_TMM_2021_3079697 ieee_primary_9437640  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on multimedia | 
    
| PublicationTitleAbbrev | TMM | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 Zhang (ref57) 2011; 20 ref17 ref16 ref19 ref18 Zhang (ref41) 2018 ref51 ref50 ref46 ref45 ref47 Yus (ref25) ref42 ref44 Dwarampudi (ref38) 2019 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Haque (ref48) ref24 ref23 ref26 ref20 ref63 ref22 Kingma (ref60) ref21 ref28 ref27 ref29 Xu (ref58) ref62 ref61  | 
    
| References_xml | – ident: ref32 doi: 10.1137/120874989 – ident: ref35 doi: 10.1109/TPAMI.2021.3096255 – ident: ref59 doi: 10.1109/CVPR.2017.294 – ident: ref10 doi: 10.1109/TMM.2016.2609419 – ident: ref34 doi: 10.1109/TMM.2019.2960588 – ident: ref14 doi: 10.1109/TIP.2018.2839891 – ident: ref22 doi: 10.1109/CVPR.2018.00333 – ident: ref2 doi: 10.1109/CVPR.2014.366 – ident: ref44 doi: 10.1109/VCIP47243.2019.8965754 – ident: ref8 doi: 10.1109/TPAMI.2016.2596743 – ident: ref42 doi: 10.1109/CVPR.2019.00326 – ident: ref50 doi: 10.1109/ICCV.2001.937655 – ident: ref63 doi: 10.1109/CVPR.2018.00068 – ident: ref47 doi: 10.1007/s10916-019-1371-9 – ident: ref19 doi: 10.1109/ICCV.2017.125 – volume-title: Effects of Padding on LSTMs and CNNs year: 2019 ident: ref38 – volume-title: Image Denoising and Restoration With CNN-LSTM Encoder Decoder With Direct Attention ident: ref48 – ident: ref13 doi: 10.1109/CVPR.2017.300 – ident: ref17 doi: 10.1109/ICCV.2001.937555 – ident: ref23 doi: 10.1109/CVPR.2019.00181 – ident: ref36 doi: 10.1109/CVPR.2018.00259 – ident: ref45 doi: 10.1007/s11263-023-01843-5 – ident: ref21 doi: 10.1007/978-3-030-01237-3_2 – ident: ref20 doi: 10.1109/TIP.2018.2811546 – ident: ref49 doi: 10.1109/CVPR.2018.00889 – ident: ref52 doi: 10.1109/CVPR.2011.5995413 – ident: ref29 doi: 10.1109/TNNLS.2020.3048031 – ident: ref27 doi: 10.1016/j.neunet.2019.08.022 – ident: ref28 doi: 10.1109/TIP.2020.2965294 – volume: 20, start-page: 1 issue: 2 year: 2011 ident: ref57 article-title: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding publication-title: J. Electron. Imag. – ident: ref5 doi: 10.1109/CVPR.2014.349 – issue: abs/1805.08318 volume-title: Self-Attention Generative Adversarial Networks year: 2018 ident: ref41 – ident: ref6 doi: 10.1109/TMM.2015.2457678 – ident: ref11 doi: 10.1109/TMM.2017.2781371 – ident: ref4 doi: 10.1109/ICCV.2011.6126278 – ident: ref24 doi: 10.1109/ICCV.2019.00325 – ident: ref3 doi: 10.1109/CVPR.2012.6247952 – ident: ref33 doi: 10.1109/TPAMI.2016.2604816 – ident: ref40 doi: 10.1109/CVPR.2016.207 – ident: ref15 doi: 10.1109/TPAMI.2020.2968521 – ident: ref51 doi: 10.1109/CVPRW.2017.150 – ident: ref16 doi: 10.1109/34.276126 – ident: ref62 doi: 10.1109/TIP.2015.2439041 – ident: ref31 doi: 10.1007/978-3-030-58595-2_30 – ident: ref43 doi: 10.1109/CVPR.2016.186 – ident: ref54 doi: 10.1109/CVPR.2005.160 – ident: ref30 doi: 10.1109/CVPR42600.2020.00354 – ident: ref9 doi: 10.1109/ICIP.2007.4378954 – ident: ref55 doi: 10.1007/s11263-008-0197-6 – ident: ref1 doi: 10.1109/TIP.2007.901238 – volume-title: Adam: A Method for Stochastic Optimization ident: ref60 – ident: ref61 doi: 10.1109/TLA.2017.7959343 – ident: ref46 doi: 10.1109/ICOEI48184.2020.9142982 – ident: ref37 doi: 10.1109/ICIP.2017.8296572 – ident: ref12 doi: 10.1109/TIP.2017.2662206 – ident: ref56 doi: 10.1007/s11263-015-0816-y – ident: ref58 article-title: Real-world noisy image denoising: A new benchmark – ident: ref39 doi: 10.1109/CVPR.2019.01132 – ident: ref18 doi: 10.1109/TPAMI.2012.58 – ident: ref53 doi: 10.1109/CVPR.2018.00182 – start-page: 1690 volume-title: Proc. IEEE Conf. Neural Inf. Process. Syst. ident: ref25 article-title: Variational denoising network: Toward blind noise modeling and removal – ident: ref26 doi: 10.1016/j.neunet.2019.12.024 – ident: ref7 doi: 10.1109/TMM.2016.2638624  | 
    
| SSID | ssj0014507 | 
    
| Score | 2.5050693 | 
    
| Snippet | With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance.... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2366 | 
    
| SubjectTerms | Adaptation models Algorithms Controllers Deep learning Feature extraction Feedback control Image denoising Image enhancement Image quality LSTM Machine learning Neural networks Noise measurement Noise reduction PID Controller Process control Proportional integral derivative Real-world Noisy Image Robustness  | 
    
| Title | Towards Fast and Robust Real Image Denoising With Attentive Neural Network and PID Controller | 
    
| URI | https://ieeexplore.ieee.org/document/9437640 https://www.proquest.com/docview/2662095047  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTnAolA91C0U-cKlEdpOs7Y2PCLqCSosqtAguKPLHWEXQbMVme-DXM3aSFQJU9ZaDLTl6_njPnnkDcGgJ5JzgTGyKJFBG0iaFHYrEGe_50AZHqiAUJxfy7Ir_uBE3K3C0zIVBxBh8hv3wGd_y3cwuwlXZQHFaDpwE-odRIZtcreWLARcxNZqOozRRpGO6J8lUDaaTCQnBPOvTfFYy2Du9OIJiTZU3G3E8XcYbMOnG1QSV3PcXtenbp1eWjf878E342NJMdtzMi0-wgtUWbHQlHFi7ordg_YUf4TbcTmMQ7ZyN9bxmunLscmYW9HlJdJKd_6a9h51iNbsLFwzs-q7-xY7rOsQb_UUWbD6o1UUTVx57_zw_ZSdNLPwDPu7A1fj79OQsaesvJDZXWZ147qTV2tiUj7wLRnKEoBAjjgRvpguXZVJrxWVBpKPw0shUWSe8J1aAAvVwF1arWYWfgeUGvXRuqBwRMK0yZUgnKSO8ckIjpj0YdJCUtjUnDzUyHsooUlJVEohlALFsQezBt2WPP40xxz_abgdMlu1aOHqw36Fetit3XhJhyYl20i9_eb_XHqzlIQUiXsPsw2r9uMCvRExqcxBn5DNcGN7S | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7QE4tNCCCC3gAxckNtnd2E58rFqiBLoRqlLRC1r5Yyyqtpuq2XDg1zP27kYVIMRtD7bk1fPHe_bMG4B3lkDOCc7EpkgCZSRtMrZDkTjjPR_a4EgVhGIxl9ML_ulSXG7Bh00uDCLG4DPsh8_4lu-Wdh2uygaK03LgJNB3BOdcNNlamzcDLmJyNB1IaaJIyXSPkqkaLIqCpGCe9WlGKxkMnh4cQrGqyh9bcTxfJntQdCNrwkqu--va9O3P30wb_3foT2G3JZrsuJkZz2ALq33Y64o4sHZN78OTB46EB_BtEcNoV2yiVzXTlWPnS7Omz3MilGx2S7sPO8VqeRWuGNjXq_o7O67rEHH0A1kw-qBW8yayPPb-MjtlJ000_A3eP4eLycfFyTRpKzAkNldZnXjupNXa2JSPvAtWcoShECOOBHCmxy7LpNaKyzHRjrGXRqbKOuE98QIUqIcvYLtaVvgSWG7QS-eGyhEF0ypThpSSMsIrJzRi2oNBB0lpW3vyUCXjpowyJVUlgVgGEMsWxB683_S4a6w5_tH2IGCyadfC0YOjDvWyXburkihLTsSTfvnV33u9hUfTRXFWns3mnw_hcR4SIuKlzBFs1_drfE00pTZv4uz8BS6L4h8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Fast+and+Robust+Real+Image+Denoising+With+Attentive+Neural+Network+and+PID+Controller&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Ma%2C+Ruijun&rft.au=Li%2C+Shuyi&rft.au=Zhang%2C+Bob&rft.au=Li%2C+Zhengming&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=2366&rft.epage=2377&rft_id=info:doi/10.1109%2FTMM.2021.3079697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3079697 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |