Towards Fast and Robust Real Image Denoising With Attentive Neural Network and PID Controller

With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 24; pp. 2366 - 2377
Main Authors Ma, Ruijun, Li, Shuyi, Zhang, Bob, Li, Zhengming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2021.3079697

Cover

Abstract With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this problem, we propose a robust and efficient denoiser, called a hierarchical-based PID-attention denoising network (HPDNet), to flexibly deal with the sophisticated noise. The core of our algorithm is the PID-attentive recurrent network (PAR-Net) whose framework mainly consists of the LSTM network and PID controller. PAR-Net inherits the advantages of both the attentive recurrent network and control action, which can encourage more discriminatory feature representations. This learning procedure is implemented within a feedback control system, allowing a faster and more robust means to enhance feature discriminability. Furthermore, by decomposing the noisy image and stacking the PAR-Nets, our PAR-Net can work on a progressively hierarchical framework, and hence obtain multi-scale features and manageable successive refinements. On several widely used datasets, the proposed HPDNet demonstrates high efficiency, while delivering a better perceptually appealing image quality over state-of-the-art image denoising methods.
AbstractList With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance. However, a common limitation for existing approaches is the imbalanced trade-off between denoising accuracy and efficiency. To address this problem, we propose a robust and efficient denoiser, called a hierarchical-based PID-attention denoising network (HPDNet), to flexibly deal with the sophisticated noise. The core of our algorithm is the PID-attentive recurrent network (PAR-Net) whose framework mainly consists of the LSTM network and PID controller. PAR-Net inherits the advantages of both the attentive recurrent network and control action, which can encourage more discriminatory feature representations. This learning procedure is implemented within a feedback control system, allowing a faster and more robust means to enhance feature discriminability. Furthermore, by decomposing the noisy image and stacking the PAR-Nets, our PAR-Net can work on a progressively hierarchical framework, and hence obtain multi-scale features and manageable successive refinements. On several widely used datasets, the proposed HPDNet demonstrates high efficiency, while delivering a better perceptually appealing image quality over state-of-the-art image denoising methods.
Author Zhang, Bob
Ma, Ruijun
Li, Shuyi
Li, Zhengming
Author_xml – sequence: 1
  givenname: Ruijun
  orcidid: 0000-0001-6876-8153
  surname: Ma
  fullname: Ma, Ruijun
  email: yb97442@um.edu.mo
  organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China
– sequence: 2
  givenname: Shuyi
  orcidid: 0000-0001-6264-9006
  surname: Li
  fullname: Li, Shuyi
  email: yb97443@um.edu.mo
  organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China
– sequence: 3
  givenname: Bob
  orcidid: 0000-0001-5628-6237
  surname: Zhang
  fullname: Zhang, Bob
  email: bobzhang@um.edu.mo
  organization: PAMI Research Group, Dept. of Computer and Information Science, University of Macau, Macau, China
– sequence: 4
  givenname: Zhengming
  surname: Li
  fullname: Li, Zhengming
  email: gslzm@gpnu.edu.cn
  organization: Guangdong Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou, China
BookMark eNp9kDFPwzAUhC0EEi2wI7FYYk55dh2nHlGhUIkWVBUxochJXsAQ4mI7VPx7XIoYGJjeDffd6V2f7La2RUKOGQwYA3W2nM0GHDgbDCFTUmU7pMeUYAlAlu1GnXJIFGewT_revwAwkULWI49Lu9au8nSifaC6rejCFl2UC9QNnb7pJ6QX2FrjTftEH0x4puchYBvMB9I5di665hjW1r1-03fTCzq2bXC2adAdkr1aNx6Pfu4BuZ9cLsfXyc3t1XR8fpOUXLGQ1KKSpdZFCSKrKyWGoirqNM0EKl4wPaoYk1orIUeg2KiWhQRVVmldc8EwRT08IKfb3JWz7x36kL_YzrWxMudSclBpTI4u2LpKZ713WOcrZ960-8wZ5JsR8zhivhkx_xkxIvIPUpqgg9l8qE3zH3iyBQ0i_vbE1zIpYPgFmiSAgg
CODEN ITMUF8
CitedBy_id crossref_primary_10_1016_j_isatra_2022_04_003
crossref_primary_10_1007_s42853_022_00166_6
crossref_primary_10_1109_TMM_2022_3233247
crossref_primary_10_1016_j_biosystemseng_2022_12_012
crossref_primary_10_1109_TCYB_2022_3170472
crossref_primary_10_1016_j_neunet_2024_106218
crossref_primary_10_1109_TSMC_2023_3289873
crossref_primary_10_1016_j_compag_2023_108100
crossref_primary_10_1155_2022_9322534
crossref_primary_10_3390_electronics12245019
crossref_primary_10_1007_s11760_022_02471_1
crossref_primary_10_1109_TCSVT_2022_3172998
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1007_s11760_023_02521_2
crossref_primary_10_1016_j_dsp_2023_104052
crossref_primary_10_3390_buildings14051463
crossref_primary_10_1109_TMM_2024_3407656
crossref_primary_10_1109_TIP_2024_3404253
crossref_primary_10_1007_s11227_023_05150_1
crossref_primary_10_3390_agronomy14092074
crossref_primary_10_3390_sym17030424
crossref_primary_10_1109_TMM_2022_3214375
crossref_primary_10_1109_TMM_2022_3233398
crossref_primary_10_1016_j_neucom_2024_128316
crossref_primary_10_1109_TIP_2022_3150294
crossref_primary_10_1007_s11042_023_14872_6
crossref_primary_10_3390_electronics14050871
crossref_primary_10_1016_j_compag_2024_108772
crossref_primary_10_1016_j_cviu_2025_104302
Cites_doi 10.1137/120874989
10.1109/TPAMI.2021.3096255
10.1109/CVPR.2017.294
10.1109/TMM.2016.2609419
10.1109/TMM.2019.2960588
10.1109/TIP.2018.2839891
10.1109/CVPR.2018.00333
10.1109/CVPR.2014.366
10.1109/VCIP47243.2019.8965754
10.1109/TPAMI.2016.2596743
10.1109/CVPR.2019.00326
10.1109/ICCV.2001.937655
10.1109/CVPR.2018.00068
10.1007/s10916-019-1371-9
10.1109/ICCV.2017.125
10.1109/CVPR.2017.300
10.1109/ICCV.2001.937555
10.1109/CVPR.2019.00181
10.1109/CVPR.2018.00259
10.1007/s11263-023-01843-5
10.1007/978-3-030-01237-3_2
10.1109/TIP.2018.2811546
10.1109/CVPR.2018.00889
10.1109/CVPR.2011.5995413
10.1109/TNNLS.2020.3048031
10.1016/j.neunet.2019.08.022
10.1109/TIP.2020.2965294
10.1109/CVPR.2014.349
10.1109/TMM.2015.2457678
10.1109/TMM.2017.2781371
10.1109/ICCV.2011.6126278
10.1109/ICCV.2019.00325
10.1109/CVPR.2012.6247952
10.1109/TPAMI.2016.2604816
10.1109/CVPR.2016.207
10.1109/TPAMI.2020.2968521
10.1109/CVPRW.2017.150
10.1109/34.276126
10.1109/TIP.2015.2439041
10.1007/978-3-030-58595-2_30
10.1109/CVPR.2016.186
10.1109/CVPR.2005.160
10.1109/CVPR42600.2020.00354
10.1109/ICIP.2007.4378954
10.1007/s11263-008-0197-6
10.1109/TIP.2007.901238
10.1109/TLA.2017.7959343
10.1109/ICOEI48184.2020.9142982
10.1109/ICIP.2017.8296572
10.1109/TIP.2017.2662206
10.1007/s11263-015-0816-y
10.1109/CVPR.2019.01132
10.1109/TPAMI.2012.58
10.1109/CVPR.2018.00182
10.1016/j.neunet.2019.12.024
10.1109/TMM.2016.2638624
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2021.3079697
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 2377
ExternalDocumentID 10_1109_TMM_2021_3079697
9437640
Genre orig-research
GrantInformation_xml – fundername: Department of Education of Guangdong Province
  grantid: 2020KQNCX040
  funderid: 10.13039/501100010226
– fundername: National Natural Science Foundation of China
  grantid: 61602540
  funderid: 10.13039/501100001809
– fundername: University of Macau
  grantid: MYRG2019-00006-FST
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f4d6caabc047fd9434dbf5574e92b1a8d116aa94680918f6b609cd5ff241e5ea3
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 03:30:25 EDT 2025
Wed Oct 01 02:36:17 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Wed Aug 27 02:37:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f4d6caabc047fd9434dbf5574e92b1a8d116aa94680918f6b609cd5ff241e5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6876-8153
0000-0001-6264-9006
0000-0001-5628-6237
PQID 2662095047
PQPubID 75737
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMM_2021_3079697
proquest_journals_2662095047
crossref_primary_10_1109_TMM_2021_3079697
ieee_primary_9437640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
Zhang (ref57) 2011; 20
ref17
ref16
ref19
ref18
Zhang (ref41) 2018
ref51
ref50
ref46
ref45
ref47
Yus (ref25)
ref42
ref44
Dwarampudi (ref38) 2019
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Haque (ref48)
ref24
ref23
ref26
ref20
ref63
ref22
Kingma (ref60)
ref21
ref28
ref27
ref29
Xu (ref58)
ref62
ref61
References_xml – ident: ref32
  doi: 10.1137/120874989
– ident: ref35
  doi: 10.1109/TPAMI.2021.3096255
– ident: ref59
  doi: 10.1109/CVPR.2017.294
– ident: ref10
  doi: 10.1109/TMM.2016.2609419
– ident: ref34
  doi: 10.1109/TMM.2019.2960588
– ident: ref14
  doi: 10.1109/TIP.2018.2839891
– ident: ref22
  doi: 10.1109/CVPR.2018.00333
– ident: ref2
  doi: 10.1109/CVPR.2014.366
– ident: ref44
  doi: 10.1109/VCIP47243.2019.8965754
– ident: ref8
  doi: 10.1109/TPAMI.2016.2596743
– ident: ref42
  doi: 10.1109/CVPR.2019.00326
– ident: ref50
  doi: 10.1109/ICCV.2001.937655
– ident: ref63
  doi: 10.1109/CVPR.2018.00068
– ident: ref47
  doi: 10.1007/s10916-019-1371-9
– ident: ref19
  doi: 10.1109/ICCV.2017.125
– volume-title: Effects of Padding on LSTMs and CNNs
  year: 2019
  ident: ref38
– volume-title: Image Denoising and Restoration With CNN-LSTM Encoder Decoder With Direct Attention
  ident: ref48
– ident: ref13
  doi: 10.1109/CVPR.2017.300
– ident: ref17
  doi: 10.1109/ICCV.2001.937555
– ident: ref23
  doi: 10.1109/CVPR.2019.00181
– ident: ref36
  doi: 10.1109/CVPR.2018.00259
– ident: ref45
  doi: 10.1007/s11263-023-01843-5
– ident: ref21
  doi: 10.1007/978-3-030-01237-3_2
– ident: ref20
  doi: 10.1109/TIP.2018.2811546
– ident: ref49
  doi: 10.1109/CVPR.2018.00889
– ident: ref52
  doi: 10.1109/CVPR.2011.5995413
– ident: ref29
  doi: 10.1109/TNNLS.2020.3048031
– ident: ref27
  doi: 10.1016/j.neunet.2019.08.022
– ident: ref28
  doi: 10.1109/TIP.2020.2965294
– volume: 20,
  start-page: 1
  issue: 2
  year: 2011
  ident: ref57
  article-title: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding
  publication-title: J. Electron. Imag.
– ident: ref5
  doi: 10.1109/CVPR.2014.349
– issue: abs/1805.08318
  volume-title: Self-Attention Generative Adversarial Networks
  year: 2018
  ident: ref41
– ident: ref6
  doi: 10.1109/TMM.2015.2457678
– ident: ref11
  doi: 10.1109/TMM.2017.2781371
– ident: ref4
  doi: 10.1109/ICCV.2011.6126278
– ident: ref24
  doi: 10.1109/ICCV.2019.00325
– ident: ref3
  doi: 10.1109/CVPR.2012.6247952
– ident: ref33
  doi: 10.1109/TPAMI.2016.2604816
– ident: ref40
  doi: 10.1109/CVPR.2016.207
– ident: ref15
  doi: 10.1109/TPAMI.2020.2968521
– ident: ref51
  doi: 10.1109/CVPRW.2017.150
– ident: ref16
  doi: 10.1109/34.276126
– ident: ref62
  doi: 10.1109/TIP.2015.2439041
– ident: ref31
  doi: 10.1007/978-3-030-58595-2_30
– ident: ref43
  doi: 10.1109/CVPR.2016.186
– ident: ref54
  doi: 10.1109/CVPR.2005.160
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00354
– ident: ref9
  doi: 10.1109/ICIP.2007.4378954
– ident: ref55
  doi: 10.1007/s11263-008-0197-6
– ident: ref1
  doi: 10.1109/TIP.2007.901238
– volume-title: Adam: A Method for Stochastic Optimization
  ident: ref60
– ident: ref61
  doi: 10.1109/TLA.2017.7959343
– ident: ref46
  doi: 10.1109/ICOEI48184.2020.9142982
– ident: ref37
  doi: 10.1109/ICIP.2017.8296572
– ident: ref12
  doi: 10.1109/TIP.2017.2662206
– ident: ref56
  doi: 10.1007/s11263-015-0816-y
– ident: ref58
  article-title: Real-world noisy image denoising: A new benchmark
– ident: ref39
  doi: 10.1109/CVPR.2019.01132
– ident: ref18
  doi: 10.1109/TPAMI.2012.58
– ident: ref53
  doi: 10.1109/CVPR.2018.00182
– start-page: 1690
  volume-title: Proc. IEEE Conf. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Variational denoising network: Toward blind noise modeling and removal
– ident: ref26
  doi: 10.1016/j.neunet.2019.12.024
– ident: ref7
  doi: 10.1109/TMM.2016.2638624
SSID ssj0014507
Score 2.5050693
Snippet With the development of deep learning technologies, recent research on real-world noisy image denoising has achieved a considerable improvement in performance....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2366
SubjectTerms Adaptation models
Algorithms
Controllers
Deep learning
Feature extraction
Feedback control
Image denoising
Image enhancement
Image quality
LSTM
Machine learning
Neural networks
Noise measurement
Noise reduction
PID Controller
Process control
Proportional integral derivative
Real-world Noisy Image
Robustness
Title Towards Fast and Robust Real Image Denoising With Attentive Neural Network and PID Controller
URI https://ieeexplore.ieee.org/document/9437640
https://www.proquest.com/docview/2662095047
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTnAolA91C0U-cKlEdpOs7Y2PCLqCSosqtAguKPLHWEXQbMVme-DXM3aSFQJU9ZaDLTl6_njPnnkDcGgJ5JzgTGyKJFBG0iaFHYrEGe_50AZHqiAUJxfy7Ir_uBE3K3C0zIVBxBh8hv3wGd_y3cwuwlXZQHFaDpwE-odRIZtcreWLARcxNZqOozRRpGO6J8lUDaaTCQnBPOvTfFYy2Du9OIJiTZU3G3E8XcYbMOnG1QSV3PcXtenbp1eWjf878E342NJMdtzMi0-wgtUWbHQlHFi7ordg_YUf4TbcTmMQ7ZyN9bxmunLscmYW9HlJdJKd_6a9h51iNbsLFwzs-q7-xY7rOsQb_UUWbD6o1UUTVx57_zw_ZSdNLPwDPu7A1fj79OQsaesvJDZXWZ147qTV2tiUj7wLRnKEoBAjjgRvpguXZVJrxWVBpKPw0shUWSe8J1aAAvVwF1arWYWfgeUGvXRuqBwRMK0yZUgnKSO8ckIjpj0YdJCUtjUnDzUyHsooUlJVEohlALFsQezBt2WPP40xxz_abgdMlu1aOHqw36Fetit3XhJhyYl20i9_eb_XHqzlIQUiXsPsw2r9uMCvRExqcxBn5DNcGN7S
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7QE4tNCCCC3gAxckNtnd2E58rFqiBLoRqlLRC1r5Yyyqtpuq2XDg1zP27kYVIMRtD7bk1fPHe_bMG4B3lkDOCc7EpkgCZSRtMrZDkTjjPR_a4EgVhGIxl9ML_ulSXG7Bh00uDCLG4DPsh8_4lu-Wdh2uygaK03LgJNB3BOdcNNlamzcDLmJyNB1IaaJIyXSPkqkaLIqCpGCe9WlGKxkMnh4cQrGqyh9bcTxfJntQdCNrwkqu--va9O3P30wb_3foT2G3JZrsuJkZz2ALq33Y64o4sHZN78OTB46EB_BtEcNoV2yiVzXTlWPnS7Omz3MilGx2S7sPO8VqeRWuGNjXq_o7O67rEHH0A1kw-qBW8yayPPb-MjtlJ000_A3eP4eLycfFyTRpKzAkNldZnXjupNXa2JSPvAtWcoShECOOBHCmxy7LpNaKyzHRjrGXRqbKOuE98QIUqIcvYLtaVvgSWG7QS-eGyhEF0ypThpSSMsIrJzRi2oNBB0lpW3vyUCXjpowyJVUlgVgGEMsWxB683_S4a6w5_tH2IGCyadfC0YOjDvWyXburkihLTsSTfvnV33u9hUfTRXFWns3mnw_hcR4SIuKlzBFs1_drfE00pTZv4uz8BS6L4h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Fast+and+Robust+Real+Image+Denoising+With+Attentive+Neural+Network+and+PID+Controller&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Ma%2C+Ruijun&rft.au=Li%2C+Shuyi&rft.au=Zhang%2C+Bob&rft.au=Li%2C+Zhengming&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=2366&rft.epage=2377&rft_id=info:doi/10.1109%2FTMM.2021.3079697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3079697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon