Full-View Area Coverage in Camera Sensor Networks: Dimension Reduction and Near-Optimal Solutions
We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain h...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 65; no. 9; pp. 7448 - 7461 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2015.2498281 |
Cover
Abstract | We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain has to be considered. To tackle this challenge, we first study the intrinsic geometric relationship between the full-view area coverage and the full-view point coverage and prove that the full-view area coverage can be guaranteed, as long as a selected full-view ensuring set of points is full-view covered. This leads to a significant dimension reduction for the full-view area coverage problem. Next, we prove that the minimum-number full-view point coverage is NP-hard and propose two approximation algorithms to solve it from two different perspectives, respectively: 1) By introducing a full-view coverage ratio function, we quantify the "contribution" of each camera sensor to the full-view coverage through which we transform the full-view point coverage into a submodular set cover problem and propose a greedy algorithm (GA); and 2) by studying the geometric relationship between the full-view coverage and the traditional coverage, we propose a set-cover-based algorithm (SCA). We analyze the performance of these two approximation algorithms and characterize their approximation ratios. Furthermore, we devise two distributed algorithms that obtain the same approximation ratios as GA and SCA, respectively. Finally, we provide extensive simulation results to validate our analysis. |
---|---|
AbstractList | We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain has to be considered. To tackle this challenge, we first study the intrinsic geometric relationship between the full-view area coverage and the full-view point coverage and prove that the full-view area coverage can be guaranteed, as long as a selected full-view ensuring set of points is full-view covered. This leads to a significant dimension reduction for the full-view area coverage problem. Next, we prove that the minimum-number full-view point coverage is NP-hard and propose two approximation algorithms to solve it from two different perspectives, respectively: 1) By introducing a full-view coverage ratio function, we quantify the "contribution" of each camera sensor to the full-view coverage through which we transform the full-view point coverage into a submodular set cover problem and propose a greedy algorithm (GA); and 2) by studying the geometric relationship between the full-view coverage and the traditional coverage, we propose a set-cover-based algorithm (SCA). We analyze the performance of these two approximation algorithms and characterize their approximation ratios. Furthermore, we devise two distributed algorithms that obtain the same approximation ratios as GA and SCA, respectively. Finally, we provide extensive simulation results to validate our analysis. |
Author | Youxian Sun Shibo He Dong-Hoon Shin Junshan Zhang Jiming Chen |
Author_xml | – sequence: 1 givenname: Shibo surname: He fullname: He, Shibo – sequence: 2 givenname: Dong-Hoon surname: Shin fullname: Shin, Dong-Hoon – sequence: 3 givenname: Junshan surname: Zhang fullname: Zhang, Junshan – sequence: 4 givenname: Jiming surname: Chen fullname: Chen, Jiming – sequence: 5 givenname: Youxian surname: Sun fullname: Sun, Youxian |
BookMark | eNp9kMFPwjAUxhujiYDeTbw08TzsW7uxeiMoakIkEeS6lO7NFMeK7Sbxv7cLxIMHT33t-32v3_v65LS2NRJyBWwIwOTtcrUcxgySYSxkFmdwQnoguYwkT-Qp6TEGWSQTkZyTvvebcBVCQo-oaVtV0crgno4dKjqxX-jUO1JT04nahpousPbW0Rds9tZ9-Dt6b7bhydiavmLR6qarVF0EQrlovmvMVlV0Yau26_gLclaqyuPl8RyQt-nDcvIUzeaPz5PxLNKxhCYqucbgCQA1LxWPU2BYrnXM9bpMuASeFbEQSSrkaK2E0mVgWSFHupBapUrxAbk5zN05-9mib_KNbV0dvswh40ymMoEkUOmB0s5677DMtWlUZ7RxylQ5sLyLMw9x5l2c-THOIGR_hDsXFnXf_0muDxKDiL_4iMfABOM_ogGCdA |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_ACCESS_2017_2678512 crossref_primary_10_1080_13658816_2024_2358045 crossref_primary_10_1109_TMC_2022_3212902 crossref_primary_10_1109_TVT_2017_2751594 crossref_primary_10_1049_iet_cta_2016_1405 crossref_primary_10_1109_JIOT_2023_3311466 crossref_primary_10_1109_LCOMM_2017_2739727 crossref_primary_10_1016_j_adhoc_2019_101973 crossref_primary_10_1007_s12083_016_0534_4 crossref_primary_10_1109_TVT_2017_2740218 crossref_primary_10_1007_s12083_016_0475_y crossref_primary_10_1109_LCOMM_2017_2699174 crossref_primary_10_1016_j_comnet_2018_06_012 crossref_primary_10_1109_ACCESS_2016_2611863 crossref_primary_10_1109_TNET_2020_2974923 crossref_primary_10_1007_s10878_024_01227_6 crossref_primary_10_1109_TETC_2017_2675911 crossref_primary_10_1007_s11276_020_02370_8 crossref_primary_10_1109_TVT_2018_2869755 crossref_primary_10_3390_s22155467 crossref_primary_10_1016_j_comnet_2016_11_014 crossref_primary_10_1177_1550147716670646 crossref_primary_10_1016_j_adhoc_2022_102964 crossref_primary_10_1016_j_comnet_2018_05_025 crossref_primary_10_1109_TSUSC_2017_2702589 crossref_primary_10_1109_JIOT_2018_2847243 crossref_primary_10_1007_s12083_018_0656_y crossref_primary_10_1016_j_comnet_2018_01_003 crossref_primary_10_1109_TVT_2017_2746740 crossref_primary_10_1109_JSYST_2016_2635153 crossref_primary_10_1109_JIOT_2018_2836144 crossref_primary_10_1109_TETC_2017_2671843 crossref_primary_10_1016_j_compeleceng_2017_06_010 crossref_primary_10_1109_TVT_2022_3176909 crossref_primary_10_1109_JIOT_2016_2582540 crossref_primary_10_1049_iet_com_2018_5166 crossref_primary_10_1109_JIOT_2019_2939431 crossref_primary_10_1109_ACCESS_2018_2884697 crossref_primary_10_1109_TIE_2016_2645138 crossref_primary_10_1109_JIOT_2022_3182652 crossref_primary_10_1109_TSMC_2017_2660883 crossref_primary_10_1016_j_eswa_2024_125804 crossref_primary_10_1109_TVT_2017_2773635 crossref_primary_10_1109_ACCESS_2021_3095063 crossref_primary_10_1145_3055515 crossref_primary_10_1109_JIOT_2017_2783258 crossref_primary_10_1109_TVT_2016_2643665 crossref_primary_10_1002_dac_3330 crossref_primary_10_1109_JIOT_2017_2783374 crossref_primary_10_1007_s12083_018_0657_x crossref_primary_10_1155_2016_6907231 crossref_primary_10_3390_sym10110594 crossref_primary_10_1109_TIM_2019_2894048 crossref_primary_10_1109_TR_2020_3046556 crossref_primary_10_1109_TMC_2024_3355526 crossref_primary_10_1109_TVT_2016_2630300 crossref_primary_10_3390_s17061303 crossref_primary_10_1016_j_comnet_2018_02_021 crossref_primary_10_1364_OE_510515 crossref_primary_10_3390_s21041148 crossref_primary_10_1016_j_jnca_2016_02_018 crossref_primary_10_1016_j_comnet_2020_107551 crossref_primary_10_1145_3070721 crossref_primary_10_3390_s17061418 crossref_primary_10_1016_j_jnca_2016_07_007 crossref_primary_10_1007_s12083_018_0653_1 crossref_primary_10_3390_s17040724 crossref_primary_10_1016_j_adhoc_2021_102626 crossref_primary_10_1109_JIOT_2021_3126653 crossref_primary_10_1109_TMC_2020_3012791 crossref_primary_10_1109_ACCESS_2018_2849995 crossref_primary_10_1002_dac_3775 crossref_primary_10_3390_sym9110269 crossref_primary_10_1109_ACCESS_2021_3116113 crossref_primary_10_1007_s12083_017_0565_5 crossref_primary_10_1016_j_ijinfomgt_2019_04_017 crossref_primary_10_1016_j_ins_2017_09_036 crossref_primary_10_1109_JSEN_2018_2823908 crossref_primary_10_1145_3649314 crossref_primary_10_1007_s12083_021_01188_1 crossref_primary_10_3390_s20226542 crossref_primary_10_1109_ACCESS_2016_2588278 crossref_primary_10_1016_j_comnet_2019_107028 crossref_primary_10_1109_TMC_2017_2751040 crossref_primary_10_1016_j_simpat_2022_102627 crossref_primary_10_1145_3126684 crossref_primary_10_1007_s12083_018_0647_z crossref_primary_10_1109_ACCESS_2017_2785393 crossref_primary_10_3390_app11051998 crossref_primary_10_1109_ACCESS_2016_2611602 crossref_primary_10_1109_JIOT_2020_3018304 crossref_primary_10_1109_JIOT_2018_2869110 crossref_primary_10_1109_MCOM_2018_1701195 crossref_primary_10_1109_TMC_2023_3294391 crossref_primary_10_1007_s12555_020_0343_7 crossref_primary_10_1016_j_future_2017_05_029 crossref_primary_10_1109_COMST_2022_3187138 crossref_primary_10_3390_s17040900 crossref_primary_10_1007_s12083_016_0486_8 crossref_primary_10_1007_s12083_019_00762_y crossref_primary_10_1109_TVT_2017_2706662 crossref_primary_10_1177_1550147717713642 crossref_primary_10_1016_j_jss_2018_09_002 crossref_primary_10_1109_JSYST_2018_2794508 |
Cites_doi | 10.1109/INFCOM.2012.6195602 10.1109/TNET.2015.2425146 10.1109/MNET.2015.7166192 10.1109/ICDCS.2012.9 10.1109/TVT.2015.2472289 10.1109/TCOMM.2013.020413.120198 10.1109/TWC.2014.2320950 10.1145/1860093.1860096 10.1016/j.compeleceng.2014.04.001 10.1109/TMC.2013.129 10.1145/1077391.1077394 10.1109/TPDS.2011.242 10.1007/s12083-013-0238-y 10.1109/INFCOM.2005.1498475 10.1109/INFCOM.2009.5061914 10.1109/INFCOM.2009.5062002 10.1109/TWC.2015.2439688 10.1109/TPDS.2011.191 10.1109/INFOCOM.2014.6848126 10.1109/ACCESS.2015.2426794 10.1109/TII.2015.2475215 10.1145/1132905.1132921 10.1145/2107502.2107518 10.1016/j.ins.2012.12.037 10.1109/JSAC.2013.130811 10.1109/TWC.2015.2466621 10.1109/TRO.2007.900628 10.1109/TMC.2013.118 10.1201/9780203323687.ch28 10.1145/1614320.1614339 10.1109/ICDCS.2008.81 10.1109/MASS.2013.60 10.1109/TMC.2011.210 10.1007/s10776-006-0036-z 10.1109/WASA.2007.21 10.1109/ICNP.2007.4375835 10.1109/WCL.2014.012914.130840 10.1007/BF02579435 10.1145/1544012.1544038 10.1109/TW.2013.121813.130953 10.1109/TCST.2015.2462741 10.1007/s11277-014-2164-6 10.1109/INFCOM.2011.5934977 10.1109/TMC.2013.62 10.1109/TWC.2013.121813.130198 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2015.2498281 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 7461 |
ExternalDocumentID | 4223717731 10_1109_TVT_2015_2498281 7321040 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CNS-1457278; CNS-1422277; ECCS-1408409 funderid: 10.13039/100000001 – fundername: Fundamental Research Funds for the Central Universities grantid: 2015FZA5011 – fundername: NSFC grantid: 61402405; 61528105 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-f3ce14411ec3fa32610efbc23cbf539138d24456497ba4acf4410d97cd9ca6aa3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:08:48 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Tue Jul 01 01:04:29 EDT 2025 Tue Aug 26 16:41:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-f3ce14411ec3fa32610efbc23cbf539138d24456497ba4acf4410d97cd9ca6aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1830969515 |
PQPubID | 85454 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TVT_2015_2498281 crossref_primary_10_1109_TVT_2015_2498281 proquest_journals_1830969515 ieee_primary_7321040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. 2016-9-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref18 hochbaum (ref46) 1996 li (ref29) 2013; 18 sun (ref19) 2015 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref13 doi: 10.1109/INFCOM.2012.6195602 – ident: ref24 doi: 10.1109/TNET.2015.2425146 – ident: ref25 doi: 10.1109/MNET.2015.7166192 – ident: ref2 doi: 10.1109/ICDCS.2012.9 – ident: ref26 doi: 10.1109/TVT.2015.2472289 – ident: ref39 doi: 10.1109/TCOMM.2013.020413.120198 – ident: ref42 doi: 10.1109/TWC.2014.2320950 – ident: ref12 doi: 10.1145/1860093.1860096 – ident: ref8 doi: 10.1016/j.compeleceng.2014.04.001 – ident: ref23 doi: 10.1109/TMC.2013.129 – ident: ref4 doi: 10.1145/1077391.1077394 – ident: ref5 doi: 10.1109/TPDS.2011.242 – ident: ref32 doi: 10.1007/s12083-013-0238-y – ident: ref7 doi: 10.1109/INFCOM.2005.1498475 – ident: ref10 doi: 10.1109/INFCOM.2009.5061914 – ident: ref11 doi: 10.1109/INFCOM.2009.5062002 – ident: ref15 doi: 10.1109/TWC.2015.2439688 – ident: ref31 doi: 10.1109/TPDS.2011.191 – ident: ref36 doi: 10.1109/INFOCOM.2014.6848126 – year: 2015 ident: ref19 article-title: Securefind: Secure and privacy-preserving object finding via mobile crowdsourcing publication-title: CoRR – ident: ref18 doi: 10.1109/ACCESS.2015.2426794 – ident: ref22 doi: 10.1109/TII.2015.2475215 – ident: ref14 doi: 10.1145/1132905.1132921 – ident: ref1 doi: 10.1145/2107502.2107518 – ident: ref30 doi: 10.1016/j.ins.2012.12.037 – ident: ref41 doi: 10.1109/JSAC.2013.130811 – ident: ref43 doi: 10.1109/TWC.2015.2466621 – ident: ref34 doi: 10.1109/TRO.2007.900628 – ident: ref35 doi: 10.1109/TMC.2013.118 – ident: ref3 doi: 10.1201/9780203323687.ch28 – volume: 18 start-page: 261 year: 2013 ident: ref29 article-title: Activated swarm fault tolerance in wireless sensor networks under massive correlated failure publication-title: Ad Hoc Sensor Wireless Netw – ident: ref47 doi: 10.1145/1614320.1614339 – ident: ref21 doi: 10.1109/ICDCS.2008.81 – ident: ref33 doi: 10.1109/MASS.2013.60 – ident: ref20 doi: 10.1109/TMC.2011.210 – ident: ref9 doi: 10.1007/s10776-006-0036-z – year: 1996 ident: ref46 publication-title: Approximation Algorithms for NP-Hard Problems – ident: ref28 doi: 10.1109/WASA.2007.21 – ident: ref6 doi: 10.1109/ICNP.2007.4375835 – ident: ref44 doi: 10.1109/WCL.2014.012914.130840 – ident: ref48 doi: 10.1007/BF02579435 – ident: ref16 doi: 10.1145/1544012.1544038 – ident: ref45 doi: 10.1109/TW.2013.121813.130953 – ident: ref27 doi: 10.1109/TCST.2015.2462741 – ident: ref37 doi: 10.1007/s11277-014-2164-6 – ident: ref38 doi: 10.1109/INFCOM.2011.5934977 – ident: ref40 doi: 10.1109/TMC.2013.62 – ident: ref17 doi: 10.1109/TWC.2013.121813.130198 |
SSID | ssj0014491 |
Score | 2.56199 |
Snippet | We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7448 |
SubjectTerms | Algorithm design and analysis Algorithms Approximation algorithms Approximation methods Camera sensor network Cameras distributed algorithms full-view area coverage full-view point coverage Mammography Sensors Silicon Surveillance |
Title | Full-View Area Coverage in Camera Sensor Networks: Dimension Reduction and Near-Optimal Solutions |
URI | https://ieeexplore.ieee.org/document/7321040 https://www.proquest.com/docview/1830969515 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBLPd7Wa3jTepliK0graltyWZZKGoW-kDwV_vZF_4QrztYbIbdpLJ981MZgg55zHojic109AKGEcOwTqhjhkHX0vOAQmZjegOhmF_zO-mwbRCLsu7MMaYNPnMOPYxjeXrOaytq6zZthdOOBL0DVxm2V2tMmLAed4dz8MNjLCgCEm6ojmajGwOV-Ag1UCC4X05gtKeKj8McXq69HbIoJhXllTy5KxXyoH3byUb_zvxXbKdw0x6na2LPVIxyT7Z-lR8sEakZZ9sMjNvKGYk7dpkTrQudJbQrrS-KvqIHHe-oMMsVXx5RW9sLwDrX6MPtuSrVSqViUYJuWD3aH1e8KOlp-2AjHu3o26f5Q0XGLSEt2KxD8YSLM-AH0sEdp5rYgUtH1Qc-MLzOxrRQBBy0VaSS4hR1tWiDVqADKX0D0k1mSfmiFANQSA5cKF8gxzMVW6oEMy7IBSCOmXqpFnoIIK8GrltivEcpazEFRFqLbJai3Kt1clFOeI1q8Txh2zNKqGUy_9_nTQKNUf5Vl1GaNOQxiHQDI5_H3VCNvHdYZZY1iDV1WJtThGJrNRZugQ_ABV22kA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK7NDt0Me6YVlfOuwyYErsWHKi3oq0QdolGbA5QW6GRMlAsdYp0gQD9utL2Y6xR1H05gMFCaZEfR9JkQCfRIa2F2rLLXYkF8QheC-2GRcYWS0EEiHzEd3xJB5OxfVczrfgS_0WxjlXJJ-5lv8sYvl2gWvvKmt3_YMTQQT9lSRW0Stfa9UxAyGq_nghHWECBpugZKDaySzxWVyyRWSDKEb41yVUdFX5zxQX98tgF8ablZVpJT9b65Vp4e9_ija-dOl7sFMBTXZe7ox92HL5W3jzR_nBA9Cef_LZjftFYk6zvk_nJPvCbnLW195bxX4Qy10s2aRMFn84Yxe-G4D3sLHvvuirVyvTuSUJveTfyP7c0aS1r-0dTAeXSX_Iq5YLHDsqXPEsQucpVugwyjRBuzBwmcFOhCaTkQqjniU8IGOhukYLjRnJBlZ10SrUsdbRe2jki9x9AGZRSi1QKBM5YmGBCWJDcD5AZQjWGdeE9kYHKVb1yH1bjNu04CWBSklrqddaWmmtCZ_rEfdlLY5nZA-8Emq56v834Wij5rQ6rA8pWTUicgQ15cenR53C9jAZj9LR1eTrIbymeeIyzewIGqvl2h0TLlmZk2I7PgK7Ad2T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-View+Area+Coverage+in+Camera+Sensor+Networks%3A+Dimension+Reduction+and+Near-Optimal+Solutions&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Shibo+He&rft.au=Dong-Hoon+Shin&rft.au=Junshan+Zhang&rft.au=Jiming+Chen&rft.date=2016-09-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=65&rft.issue=9&rft.spage=7448&rft.epage=7461&rft_id=info:doi/10.1109%2FTVT.2015.2498281&rft.externalDocID=7321040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |