Full-View Area Coverage in Camera Sensor Networks: Dimension Reduction and Near-Optimal Solutions

We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 65; no. 9; pp. 7448 - 7461
Main Authors He, Shibo, Shin, Dong-Hoon, Zhang, Junshan, Chen, Jiming, Sun, Youxian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2015.2498281

Cover

Abstract We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain has to be considered. To tackle this challenge, we first study the intrinsic geometric relationship between the full-view area coverage and the full-view point coverage and prove that the full-view area coverage can be guaranteed, as long as a selected full-view ensuring set of points is full-view covered. This leads to a significant dimension reduction for the full-view area coverage problem. Next, we prove that the minimum-number full-view point coverage is NP-hard and propose two approximation algorithms to solve it from two different perspectives, respectively: 1) By introducing a full-view coverage ratio function, we quantify the "contribution" of each camera sensor to the full-view coverage through which we transform the full-view point coverage into a submodular set cover problem and propose a greedy algorithm (GA); and 2) by studying the geometric relationship between the full-view coverage and the traditional coverage, we propose a set-cover-based algorithm (SCA). We analyze the performance of these two approximation algorithms and characterize their approximation ratios. Furthermore, we devise two distributed algorithms that obtain the same approximation ratios as GA and SCA, respectively. Finally, we provide extensive simulation results to validate our analysis.
AbstractList We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee the full-view coverage of a given region. Full-view area coverage is challenging because the full-view coverage of a 2-D continuous domain has to be considered. To tackle this challenge, we first study the intrinsic geometric relationship between the full-view area coverage and the full-view point coverage and prove that the full-view area coverage can be guaranteed, as long as a selected full-view ensuring set of points is full-view covered. This leads to a significant dimension reduction for the full-view area coverage problem. Next, we prove that the minimum-number full-view point coverage is NP-hard and propose two approximation algorithms to solve it from two different perspectives, respectively: 1) By introducing a full-view coverage ratio function, we quantify the "contribution" of each camera sensor to the full-view coverage through which we transform the full-view point coverage into a submodular set cover problem and propose a greedy algorithm (GA); and 2) by studying the geometric relationship between the full-view coverage and the traditional coverage, we propose a set-cover-based algorithm (SCA). We analyze the performance of these two approximation algorithms and characterize their approximation ratios. Furthermore, we devise two distributed algorithms that obtain the same approximation ratios as GA and SCA, respectively. Finally, we provide extensive simulation results to validate our analysis.
Author Youxian Sun
Shibo He
Dong-Hoon Shin
Junshan Zhang
Jiming Chen
Author_xml – sequence: 1
  givenname: Shibo
  surname: He
  fullname: He, Shibo
– sequence: 2
  givenname: Dong-Hoon
  surname: Shin
  fullname: Shin, Dong-Hoon
– sequence: 3
  givenname: Junshan
  surname: Zhang
  fullname: Zhang, Junshan
– sequence: 4
  givenname: Jiming
  surname: Chen
  fullname: Chen, Jiming
– sequence: 5
  givenname: Youxian
  surname: Sun
  fullname: Sun, Youxian
BookMark eNp9kMFPwjAUxhujiYDeTbw08TzsW7uxeiMoakIkEeS6lO7NFMeK7Sbxv7cLxIMHT33t-32v3_v65LS2NRJyBWwIwOTtcrUcxgySYSxkFmdwQnoguYwkT-Qp6TEGWSQTkZyTvvebcBVCQo-oaVtV0crgno4dKjqxX-jUO1JT04nahpousPbW0Rds9tZ9-Dt6b7bhydiavmLR6qarVF0EQrlovmvMVlV0Yau26_gLclaqyuPl8RyQt-nDcvIUzeaPz5PxLNKxhCYqucbgCQA1LxWPU2BYrnXM9bpMuASeFbEQSSrkaK2E0mVgWSFHupBapUrxAbk5zN05-9mib_KNbV0dvswh40ymMoEkUOmB0s5677DMtWlUZ7RxylQ5sLyLMw9x5l2c-THOIGR_hDsXFnXf_0muDxKDiL_4iMfABOM_ogGCdA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_ACCESS_2017_2678512
crossref_primary_10_1080_13658816_2024_2358045
crossref_primary_10_1109_TMC_2022_3212902
crossref_primary_10_1109_TVT_2017_2751594
crossref_primary_10_1049_iet_cta_2016_1405
crossref_primary_10_1109_JIOT_2023_3311466
crossref_primary_10_1109_LCOMM_2017_2739727
crossref_primary_10_1016_j_adhoc_2019_101973
crossref_primary_10_1007_s12083_016_0534_4
crossref_primary_10_1109_TVT_2017_2740218
crossref_primary_10_1007_s12083_016_0475_y
crossref_primary_10_1109_LCOMM_2017_2699174
crossref_primary_10_1016_j_comnet_2018_06_012
crossref_primary_10_1109_ACCESS_2016_2611863
crossref_primary_10_1109_TNET_2020_2974923
crossref_primary_10_1007_s10878_024_01227_6
crossref_primary_10_1109_TETC_2017_2675911
crossref_primary_10_1007_s11276_020_02370_8
crossref_primary_10_1109_TVT_2018_2869755
crossref_primary_10_3390_s22155467
crossref_primary_10_1016_j_comnet_2016_11_014
crossref_primary_10_1177_1550147716670646
crossref_primary_10_1016_j_adhoc_2022_102964
crossref_primary_10_1016_j_comnet_2018_05_025
crossref_primary_10_1109_TSUSC_2017_2702589
crossref_primary_10_1109_JIOT_2018_2847243
crossref_primary_10_1007_s12083_018_0656_y
crossref_primary_10_1016_j_comnet_2018_01_003
crossref_primary_10_1109_TVT_2017_2746740
crossref_primary_10_1109_JSYST_2016_2635153
crossref_primary_10_1109_JIOT_2018_2836144
crossref_primary_10_1109_TETC_2017_2671843
crossref_primary_10_1016_j_compeleceng_2017_06_010
crossref_primary_10_1109_TVT_2022_3176909
crossref_primary_10_1109_JIOT_2016_2582540
crossref_primary_10_1049_iet_com_2018_5166
crossref_primary_10_1109_JIOT_2019_2939431
crossref_primary_10_1109_ACCESS_2018_2884697
crossref_primary_10_1109_TIE_2016_2645138
crossref_primary_10_1109_JIOT_2022_3182652
crossref_primary_10_1109_TSMC_2017_2660883
crossref_primary_10_1016_j_eswa_2024_125804
crossref_primary_10_1109_TVT_2017_2773635
crossref_primary_10_1109_ACCESS_2021_3095063
crossref_primary_10_1145_3055515
crossref_primary_10_1109_JIOT_2017_2783258
crossref_primary_10_1109_TVT_2016_2643665
crossref_primary_10_1002_dac_3330
crossref_primary_10_1109_JIOT_2017_2783374
crossref_primary_10_1007_s12083_018_0657_x
crossref_primary_10_1155_2016_6907231
crossref_primary_10_3390_sym10110594
crossref_primary_10_1109_TIM_2019_2894048
crossref_primary_10_1109_TR_2020_3046556
crossref_primary_10_1109_TMC_2024_3355526
crossref_primary_10_1109_TVT_2016_2630300
crossref_primary_10_3390_s17061303
crossref_primary_10_1016_j_comnet_2018_02_021
crossref_primary_10_1364_OE_510515
crossref_primary_10_3390_s21041148
crossref_primary_10_1016_j_jnca_2016_02_018
crossref_primary_10_1016_j_comnet_2020_107551
crossref_primary_10_1145_3070721
crossref_primary_10_3390_s17061418
crossref_primary_10_1016_j_jnca_2016_07_007
crossref_primary_10_1007_s12083_018_0653_1
crossref_primary_10_3390_s17040724
crossref_primary_10_1016_j_adhoc_2021_102626
crossref_primary_10_1109_JIOT_2021_3126653
crossref_primary_10_1109_TMC_2020_3012791
crossref_primary_10_1109_ACCESS_2018_2849995
crossref_primary_10_1002_dac_3775
crossref_primary_10_3390_sym9110269
crossref_primary_10_1109_ACCESS_2021_3116113
crossref_primary_10_1007_s12083_017_0565_5
crossref_primary_10_1016_j_ijinfomgt_2019_04_017
crossref_primary_10_1016_j_ins_2017_09_036
crossref_primary_10_1109_JSEN_2018_2823908
crossref_primary_10_1145_3649314
crossref_primary_10_1007_s12083_021_01188_1
crossref_primary_10_3390_s20226542
crossref_primary_10_1109_ACCESS_2016_2588278
crossref_primary_10_1016_j_comnet_2019_107028
crossref_primary_10_1109_TMC_2017_2751040
crossref_primary_10_1016_j_simpat_2022_102627
crossref_primary_10_1145_3126684
crossref_primary_10_1007_s12083_018_0647_z
crossref_primary_10_1109_ACCESS_2017_2785393
crossref_primary_10_3390_app11051998
crossref_primary_10_1109_ACCESS_2016_2611602
crossref_primary_10_1109_JIOT_2020_3018304
crossref_primary_10_1109_JIOT_2018_2869110
crossref_primary_10_1109_MCOM_2018_1701195
crossref_primary_10_1109_TMC_2023_3294391
crossref_primary_10_1007_s12555_020_0343_7
crossref_primary_10_1016_j_future_2017_05_029
crossref_primary_10_1109_COMST_2022_3187138
crossref_primary_10_3390_s17040900
crossref_primary_10_1007_s12083_016_0486_8
crossref_primary_10_1007_s12083_019_00762_y
crossref_primary_10_1109_TVT_2017_2706662
crossref_primary_10_1177_1550147717713642
crossref_primary_10_1016_j_jss_2018_09_002
crossref_primary_10_1109_JSYST_2018_2794508
Cites_doi 10.1109/INFCOM.2012.6195602
10.1109/TNET.2015.2425146
10.1109/MNET.2015.7166192
10.1109/ICDCS.2012.9
10.1109/TVT.2015.2472289
10.1109/TCOMM.2013.020413.120198
10.1109/TWC.2014.2320950
10.1145/1860093.1860096
10.1016/j.compeleceng.2014.04.001
10.1109/TMC.2013.129
10.1145/1077391.1077394
10.1109/TPDS.2011.242
10.1007/s12083-013-0238-y
10.1109/INFCOM.2005.1498475
10.1109/INFCOM.2009.5061914
10.1109/INFCOM.2009.5062002
10.1109/TWC.2015.2439688
10.1109/TPDS.2011.191
10.1109/INFOCOM.2014.6848126
10.1109/ACCESS.2015.2426794
10.1109/TII.2015.2475215
10.1145/1132905.1132921
10.1145/2107502.2107518
10.1016/j.ins.2012.12.037
10.1109/JSAC.2013.130811
10.1109/TWC.2015.2466621
10.1109/TRO.2007.900628
10.1109/TMC.2013.118
10.1201/9780203323687.ch28
10.1145/1614320.1614339
10.1109/ICDCS.2008.81
10.1109/MASS.2013.60
10.1109/TMC.2011.210
10.1007/s10776-006-0036-z
10.1109/WASA.2007.21
10.1109/ICNP.2007.4375835
10.1109/WCL.2014.012914.130840
10.1007/BF02579435
10.1145/1544012.1544038
10.1109/TW.2013.121813.130953
10.1109/TCST.2015.2462741
10.1007/s11277-014-2164-6
10.1109/INFCOM.2011.5934977
10.1109/TMC.2013.62
10.1109/TWC.2013.121813.130198
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2015.2498281
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 7461
ExternalDocumentID 4223717731
10_1109_TVT_2015_2498281
7321040
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CNS-1457278; CNS-1422277; ECCS-1408409
  funderid: 10.13039/100000001
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2015FZA5011
– fundername: NSFC
  grantid: 61402405; 61528105
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-f3ce14411ec3fa32610efbc23cbf539138d24456497ba4acf4410d97cd9ca6aa3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:08:48 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Tue Jul 01 01:04:29 EDT 2025
Tue Aug 26 16:41:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f3ce14411ec3fa32610efbc23cbf539138d24456497ba4acf4410d97cd9ca6aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1830969515
PQPubID 85454
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TVT_2015_2498281
crossref_primary_10_1109_TVT_2015_2498281
proquest_journals_1830969515
ieee_primary_7321040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
hochbaum (ref46) 1996
li (ref29) 2013; 18
sun (ref19) 2015
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref13
  doi: 10.1109/INFCOM.2012.6195602
– ident: ref24
  doi: 10.1109/TNET.2015.2425146
– ident: ref25
  doi: 10.1109/MNET.2015.7166192
– ident: ref2
  doi: 10.1109/ICDCS.2012.9
– ident: ref26
  doi: 10.1109/TVT.2015.2472289
– ident: ref39
  doi: 10.1109/TCOMM.2013.020413.120198
– ident: ref42
  doi: 10.1109/TWC.2014.2320950
– ident: ref12
  doi: 10.1145/1860093.1860096
– ident: ref8
  doi: 10.1016/j.compeleceng.2014.04.001
– ident: ref23
  doi: 10.1109/TMC.2013.129
– ident: ref4
  doi: 10.1145/1077391.1077394
– ident: ref5
  doi: 10.1109/TPDS.2011.242
– ident: ref32
  doi: 10.1007/s12083-013-0238-y
– ident: ref7
  doi: 10.1109/INFCOM.2005.1498475
– ident: ref10
  doi: 10.1109/INFCOM.2009.5061914
– ident: ref11
  doi: 10.1109/INFCOM.2009.5062002
– ident: ref15
  doi: 10.1109/TWC.2015.2439688
– ident: ref31
  doi: 10.1109/TPDS.2011.191
– ident: ref36
  doi: 10.1109/INFOCOM.2014.6848126
– year: 2015
  ident: ref19
  article-title: Securefind: Secure and privacy-preserving object finding via mobile crowdsourcing
  publication-title: CoRR
– ident: ref18
  doi: 10.1109/ACCESS.2015.2426794
– ident: ref22
  doi: 10.1109/TII.2015.2475215
– ident: ref14
  doi: 10.1145/1132905.1132921
– ident: ref1
  doi: 10.1145/2107502.2107518
– ident: ref30
  doi: 10.1016/j.ins.2012.12.037
– ident: ref41
  doi: 10.1109/JSAC.2013.130811
– ident: ref43
  doi: 10.1109/TWC.2015.2466621
– ident: ref34
  doi: 10.1109/TRO.2007.900628
– ident: ref35
  doi: 10.1109/TMC.2013.118
– ident: ref3
  doi: 10.1201/9780203323687.ch28
– volume: 18
  start-page: 261
  year: 2013
  ident: ref29
  article-title: Activated swarm fault tolerance in wireless sensor networks under massive correlated failure
  publication-title: Ad Hoc Sensor Wireless Netw
– ident: ref47
  doi: 10.1145/1614320.1614339
– ident: ref21
  doi: 10.1109/ICDCS.2008.81
– ident: ref33
  doi: 10.1109/MASS.2013.60
– ident: ref20
  doi: 10.1109/TMC.2011.210
– ident: ref9
  doi: 10.1007/s10776-006-0036-z
– year: 1996
  ident: ref46
  publication-title: Approximation Algorithms for NP-Hard Problems
– ident: ref28
  doi: 10.1109/WASA.2007.21
– ident: ref6
  doi: 10.1109/ICNP.2007.4375835
– ident: ref44
  doi: 10.1109/WCL.2014.012914.130840
– ident: ref48
  doi: 10.1007/BF02579435
– ident: ref16
  doi: 10.1145/1544012.1544038
– ident: ref45
  doi: 10.1109/TW.2013.121813.130953
– ident: ref27
  doi: 10.1109/TCST.2015.2462741
– ident: ref37
  doi: 10.1007/s11277-014-2164-6
– ident: ref38
  doi: 10.1109/INFCOM.2011.5934977
– ident: ref40
  doi: 10.1109/TMC.2013.62
– ident: ref17
  doi: 10.1109/TWC.2013.121813.130198
SSID ssj0014491
Score 2.56199
Snippet We study the problem of minimum-number full-view area coverage in camera sensor networks, i.e., how to select the minimum number of camera sensors to guarantee...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7448
SubjectTerms Algorithm design and analysis
Algorithms
Approximation algorithms
Approximation methods
Camera sensor network
Cameras
distributed algorithms
full-view area coverage
full-view point coverage
Mammography
Sensors
Silicon
Surveillance
Title Full-View Area Coverage in Camera Sensor Networks: Dimension Reduction and Near-Optimal Solutions
URI https://ieeexplore.ieee.org/document/7321040
https://www.proquest.com/docview/1830969515
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBLPd7Wa3jTepliK0graltyWZZKGoW-kDwV_vZF_4QrztYbIbdpLJ981MZgg55zHojic109AKGEcOwTqhjhkHX0vOAQmZjegOhmF_zO-mwbRCLsu7MMaYNPnMOPYxjeXrOaytq6zZthdOOBL0DVxm2V2tMmLAed4dz8MNjLCgCEm6ojmajGwOV-Ag1UCC4X05gtKeKj8McXq69HbIoJhXllTy5KxXyoH3byUb_zvxXbKdw0x6na2LPVIxyT7Z-lR8sEakZZ9sMjNvKGYk7dpkTrQudJbQrrS-KvqIHHe-oMMsVXx5RW9sLwDrX6MPtuSrVSqViUYJuWD3aH1e8KOlp-2AjHu3o26f5Q0XGLSEt2KxD8YSLM-AH0sEdp5rYgUtH1Qc-MLzOxrRQBBy0VaSS4hR1tWiDVqADKX0D0k1mSfmiFANQSA5cKF8gxzMVW6oEMy7IBSCOmXqpFnoIIK8GrltivEcpazEFRFqLbJai3Kt1clFOeI1q8Txh2zNKqGUy_9_nTQKNUf5Vl1GaNOQxiHQDI5_H3VCNvHdYZZY1iDV1WJtThGJrNRZugQ_ABV22kA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK7NDt0Me6YVlfOuwyYErsWHKi3oq0QdolGbA5QW6GRMlAsdYp0gQD9utL2Y6xR1H05gMFCaZEfR9JkQCfRIa2F2rLLXYkF8QheC-2GRcYWS0EEiHzEd3xJB5OxfVczrfgS_0WxjlXJJ-5lv8sYvl2gWvvKmt3_YMTQQT9lSRW0Stfa9UxAyGq_nghHWECBpugZKDaySzxWVyyRWSDKEb41yVUdFX5zxQX98tgF8ablZVpJT9b65Vp4e9_ija-dOl7sFMBTXZe7ox92HL5W3jzR_nBA9Cef_LZjftFYk6zvk_nJPvCbnLW195bxX4Qy10s2aRMFn84Yxe-G4D3sLHvvuirVyvTuSUJveTfyP7c0aS1r-0dTAeXSX_Iq5YLHDsqXPEsQucpVugwyjRBuzBwmcFOhCaTkQqjniU8IGOhukYLjRnJBlZ10SrUsdbRe2jki9x9AGZRSi1QKBM5YmGBCWJDcD5AZQjWGdeE9kYHKVb1yH1bjNu04CWBSklrqddaWmmtCZ_rEfdlLY5nZA-8Emq56v834Wij5rQ6rA8pWTUicgQ15cenR53C9jAZj9LR1eTrIbymeeIyzewIGqvl2h0TLlmZk2I7PgK7Ad2T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-View+Area+Coverage+in+Camera+Sensor+Networks%3A+Dimension+Reduction+and+Near-Optimal+Solutions&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Shibo+He&rft.au=Dong-Hoon+Shin&rft.au=Junshan+Zhang&rft.au=Jiming+Chen&rft.date=2016-09-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=65&rft.issue=9&rft.spage=7448&rft.epage=7461&rft_id=info:doi/10.1109%2FTVT.2015.2498281&rft.externalDocID=7321040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon