Path-Following Control of A Quadrotor UAV With A Cable-Suspended Payload Under Wind Disturbances

A path-following controller based on an uncertainty and disturbance estimator (UDE) for a quadrotor with a cable-suspended payload is proposed in this paper. The quadrotor and the payload are subject to unknown wind disturbances. The controller resembles a cascade architecture. For the outer loop, a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 67; no. 3; pp. 2021 - 2029
Main Authors Qian, Longhao, Liu, Hugh H.T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2019.2905811

Cover

More Information
Summary:A path-following controller based on an uncertainty and disturbance estimator (UDE) for a quadrotor with a cable-suspended payload is proposed in this paper. The quadrotor and the payload are subject to unknown wind disturbances. The controller resembles a cascade architecture. For the outer loop, a UDE-based translational control law is proposed. The controller asymptotically stabilizes the quadrotor along a given path and estimates the lumped disturbances with a low-pass filter. For the inner loop, an attitude tracking controller is used to control the direction of the lift vector so that the actual lift force can asymptotically follow the reference force generated by the translational controller. The stability of the system with the translational controller and the attitude tracking controller has been shown to be asymptotically stable using the reduction theorem. With the help of the reduction theorem, the design of the translational and the attitude control can be decoupled, providing the flexibility of implementing different attitude controllers without redoing the stability analysis. As shown in the simulation, the control law can stabilize the quadrotor on the desired path under different wind disturbances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2905811