Optimal Compression for Two-Field Entries in Fixed-Width Memories

Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 64; no. 6; pp. 4309 - 4322
Main Authors Rottenstreich, Ori, Cassuto, Yuval
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2018.2820688

Cover

Abstract Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms.
AbstractList Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in L bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width L. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms.
Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms.
Author Rottenstreich, Ori
Cassuto, Yuval
Author_xml – sequence: 1
  givenname: Ori
  orcidid: 0000-0002-4064-1238
  surname: Rottenstreich
  fullname: Rottenstreich, Ori
  email: ori.rot@gmail.com
  organization: Viterbi Department of Electrical Engineering and the Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
– sequence: 2
  givenname: Yuval
  orcidid: 0000-0001-6369-6699
  surname: Cassuto
  fullname: Cassuto, Yuval
  email: ycassuto@ee.technion.ac.il
  organization: Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
BookMark eNp9kMFLwzAUh4NMcJveBS8Fz515adMkxzE2HUx2qXgMaZtgRtfMJKL-92ZsePDgKby83_ce75ug0eAGjdAt4BkAFg_1up4RDHxGOMEV5xdoDJSyXFS0HKExTq1clCW_QpMQdqksKZAxmm8P0e5Vny3c_uB1CNYNmXE-qz9dvrK677LlEL3VIbNDtrJfustfbRffsme9d8f_a3RpVB_0zfmdopfVsl485Zvt43ox3-QtERBzrRRWimksjOhYg1veNcBMC7oB0JjRChg1HRgDpMNFUxDgDVCCqWIFUbiYovvT3IN37x86RLlzH35IKyUBVlIsqkqkVHVKtd6F4LWRrY0qpquiV7aXgOVRl0y65FGXPOtKIP4DHnwS47__Q-5OiNVa_8Z5QRivcPEDXHR2cg
CODEN IETTAW
CitedBy_id crossref_primary_10_1088_1742_6596_2114_1_012080
Cites_doi 10.1109/TNET.2010.2047868
10.1109/TNET.2016.2571300
10.1109/TIT.2006.881728
10.1109/JSAC.2014.140113
10.1137/0203008
10.1109/ITW.2017.8278034
10.1109/TIT.1968.1054147
10.1109/TNET.2014.2357051
10.1109/INFCOM.1999.749256
10.1109/TNET.2014.2382031
10.1109/TNET.2016.2611482
10.1137/0122024
10.1109/TIT.1978.1055959
10.1109/JRPROC.1952.273898
10.1109/TIT.1981.1056322
10.1145/79147.79150
10.1109/ISIT.2013.6620652
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2018.2820688
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4322
ExternalDocumentID 10_1109_TIT_2018_2820688
8327860
Genre orig-research
GrantInformation_xml – fundername: Intel Center for Computing Intelligence
– fundername: Israel Science Foundation
  funderid: 10.13039/501100003977
– fundername: U.S.-Israel Binational Science Foundation
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-eaa0aa7e09f9d7b0c8db17fc1eb11e0756175fd1ff12d03b3218b15205a732a03
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 04:40:06 EDT 2025
Wed Oct 01 02:55:15 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Aug 27 02:50:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-eaa0aa7e09f9d7b0c8db17fc1eb11e0756175fd1ff12d03b3218b15205a732a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6369-6699
0000-0002-4064-1238
PQID 2174509669
PQPubID 36024
PageCount 14
ParticipantIDs proquest_journals_2174509669
ieee_primary_8327860
crossref_citationtrail_10_1109_TIT_2018_2820688
crossref_primary_10_1109_TIT_2018_2820688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References tunstall (ref11) 1967
ref13
ref12
cover (ref16) 2006
ref14
ref20
ref10
ref21
ref2
ref1
ref17
ref19
ref18
ref8
ref7
abramson (ref15) 1963
ref4
ref3
ref6
ref5
abrahams (ref9) 1997
References_xml – year: 2006
  ident: ref16
  publication-title: Elements of Information Theory
– year: 1967
  ident: ref11
  article-title: Synthesis of noiseless compression codes
– ident: ref4
  doi: 10.1109/TNET.2010.2047868
– ident: ref2
  doi: 10.1109/TNET.2016.2571300
– ident: ref10
  doi: 10.1109/TIT.2006.881728
– ident: ref14
  doi: 10.1109/JSAC.2014.140113
– ident: ref6
  doi: 10.1137/0203008
– ident: ref21
  doi: 10.1109/ITW.2017.8278034
– ident: ref12
  doi: 10.1109/TIT.1968.1054147
– ident: ref19
  doi: 10.1109/TNET.2014.2357051
– ident: ref17
  doi: 10.1109/INFCOM.1999.749256
– ident: ref18
  doi: 10.1109/TNET.2014.2382031
– start-page: 145
  year: 1997
  ident: ref9
  article-title: Code and parse trees for lossless source encoding
  publication-title: Proc IEEE Compress Complex Sequences
– ident: ref20
  doi: 10.1109/TNET.2016.2611482
– ident: ref5
  doi: 10.1137/0122024
– ident: ref7
  doi: 10.1109/TIT.1978.1055959
– year: 1963
  ident: ref15
  publication-title: Information Theory and Coding
– ident: ref3
  doi: 10.1109/JRPROC.1952.273898
– ident: ref13
  doi: 10.1109/TIT.1981.1056322
– ident: ref8
  doi: 10.1145/79147.79150
– ident: ref1
  doi: 10.1109/ISIT.2013.6620652
SSID ssj0014512
Score 2.265115
Snippet Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4309
SubjectTerms Algorithms
Codes
Compression algorithms
Data compression
Decoding
Dictionaries
fixed-width memories
Heuristic algorithms
Huffman coding
Machine learning
network switches and routers
Optimization
Random access memory
Routers
Switches
table compression
Tables
Title Optimal Compression for Two-Field Entries in Fixed-Width Memories
URI https://ieeexplore.ieee.org/document/8327860
https://www.proquest.com/docview/2174509669
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mnvTB6aY4nZIHXwS7Nf3O45CNKUxfOthbSZsUh9qJ61D8673rxxQV8akhJKXNJbm73C-_AzgPpPAcnsaGZ6WW4WgsCaFjQ_q2Q-woqNPovGN6601mzs3cnTfgcnMXRmtdgM90n4pFLF8tkzUdlQ1w9vmBhw76Fj7Ku1qbiIHj8pIZnOMCRp-jDkmaYhBeh4ThCvoWkZUXOVY-VVCRU-XHRlxol3ELpvV3laCSh_46j_vJ-zfKxv9--B7sVmYmG5bzYh8aOmtDq07hwKoV3YadL3yEHRje4QbyhP2oYQmQzRhatSx8XRpjwrqxUUYZuFZskbHx4k0T4Fbl92xKgF2sP4DZeBReTYwqx4KRWILnhpbSlNLXpkiF8mMzCVTM_TThuIdzjfYEWjhuqniackuZdmyjSRCjzjddlKYlTfsQmtky00fAXEdRFDKwtbId7SjJE43eDNYIaeHfd2FQD3uUVATklAfjMSocEVNEKKiIBBVVgurCxabHc0m-8UfbDo37pl015F3o1ZKNqtW5isgNI9obTxz_3usEtundJSSsB838Za1P0fjI47Ni1n0A08LTqg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADr4EYzxy4INGtadNHjggxDdjGpUi7VWmTCgR0CDqB-PXYfQwECHGLokRN4yS24y-fAY5CJX3Bs8TyncyxhMGSlCaxVOAKYkdBnUb3HcOR378Rl2NvPAcns7cwxpgSfGY6VCxj-XqSTumqrIurLwh9dNAXPCGEV73WmsUMhMcrbnCOWxi9jiYoactudBERiivsOERXXmZZ-VRCZVaVH0dxqV96qzBsRlbBSu470yLppO_fSBv_O_Q1WKkNTXZarYx1mDP5Bqw2SRxYvac3YPkLI2ELTq_xCHnEftSwgsjmDO1aFr1OrB6h3dh5Tjm4Xthdznp3b4Ygt7q4ZUOC7GL9Jtz0zqOzvlVnWbBSR_LCMkrZSgXGlpnUQWKnoU54kKUcT3Fu0KJAG8fLNM8y7mjbTVw0ChLU-raH8nSU7W7BfD7JzTYwT2iKQ4au0a4wQiueGvRnsEYqB_--Dd1m2uO0piCnTBgPcemK2DJGQcUkqLgWVBuOZz2eKvqNP9q2aN5n7eopb8NeI9m43p8vMTliRHzjy53fex3CYj8aDuLBxehqF5boOxVAbA_mi-ep2UdTpEgOyhX4ARTP1vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Compression+for+Two-Field+Entries+in+Fixed-Width+Memories&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Rottenstreich%2C+Ori&rft.au=Cassuto%2C+Yuval&rft.date=2018-06-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=6&rft.spage=4309&rft.epage=4322&rft_id=info:doi/10.1109%2FTIT.2018.2820688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2018_2820688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon