Optimal Compression for Two-Field Entries in Fixed-Width Memories
Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known di...
        Saved in:
      
    
          | Published in | IEEE transactions on information theory Vol. 64; no. 6; pp. 4309 - 4322 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.06.2018
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9448 1557-9654  | 
| DOI | 10.1109/TIT.2018.2820688 | 
Cover
| Abstract | Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms. | 
    
|---|---|
| AbstractList | Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in L bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width L. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms. Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to memory words of small fixed widths. This new setup is the subject of this paper. In the problem we consider, we have two sources with known discrete distributions, and we wish to find codes that maximize the success probability that the two source outputs are represented in <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> bits or less. A good practical use for this problem is a table with two-field entries that is stored in a memory of a fixed width <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. Such tables of very large sizes are common in network switches/routers and in data-intensive machine-learning applications. After defining the problem formally, we solve it optimally with an efficient code-design algorithm. We also solve the problem in the more constrained case where a single code is used in both fields (to save space for storing code dictionaries). For both code-design problems we find decompositions that yield efficient dynamic-programming algorithms. With the help of an empirical study we show the success probabilities of the optimal codes for different distributions and memory widths. In particular, this paper demonstrates the superiority of the new codes over existing compression algorithms.  | 
    
| Author | Rottenstreich, Ori Cassuto, Yuval  | 
    
| Author_xml | – sequence: 1 givenname: Ori orcidid: 0000-0002-4064-1238 surname: Rottenstreich fullname: Rottenstreich, Ori email: ori.rot@gmail.com organization: Viterbi Department of Electrical Engineering and the Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel – sequence: 2 givenname: Yuval orcidid: 0000-0001-6369-6699 surname: Cassuto fullname: Cassuto, Yuval email: ycassuto@ee.technion.ac.il organization: Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel  | 
    
| BookMark | eNp9kMFLwzAUh4NMcJveBS8Fz515adMkxzE2HUx2qXgMaZtgRtfMJKL-92ZsePDgKby83_ce75ug0eAGjdAt4BkAFg_1up4RDHxGOMEV5xdoDJSyXFS0HKExTq1clCW_QpMQdqksKZAxmm8P0e5Vny3c_uB1CNYNmXE-qz9dvrK677LlEL3VIbNDtrJfustfbRffsme9d8f_a3RpVB_0zfmdopfVsl485Zvt43ox3-QtERBzrRRWimksjOhYg1veNcBMC7oB0JjRChg1HRgDpMNFUxDgDVCCqWIFUbiYovvT3IN37x86RLlzH35IKyUBVlIsqkqkVHVKtd6F4LWRrY0qpquiV7aXgOVRl0y65FGXPOtKIP4DHnwS47__Q-5OiNVa_8Z5QRivcPEDXHR2cg | 
    
| CODEN | IETTAW | 
    
| CitedBy_id | crossref_primary_10_1088_1742_6596_2114_1_012080 | 
    
| Cites_doi | 10.1109/TNET.2010.2047868 10.1109/TNET.2016.2571300 10.1109/TIT.2006.881728 10.1109/JSAC.2014.140113 10.1137/0203008 10.1109/ITW.2017.8278034 10.1109/TIT.1968.1054147 10.1109/TNET.2014.2357051 10.1109/INFCOM.1999.749256 10.1109/TNET.2014.2382031 10.1109/TNET.2016.2611482 10.1137/0122024 10.1109/TIT.1978.1055959 10.1109/JRPROC.1952.273898 10.1109/TIT.1981.1056322 10.1145/79147.79150 10.1109/ISIT.2013.6620652  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TIT.2018.2820688 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1557-9654 | 
    
| EndPage | 4322 | 
    
| ExternalDocumentID | 10_1109_TIT_2018_2820688 8327860  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Intel Center for Computing Intelligence – fundername: Israel Science Foundation funderid: 10.13039/501100003977 – fundername: U.S.-Israel Binational Science Foundation  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG  | 
    
| ID | FETCH-LOGICAL-c291t-eaa0aa7e09f9d7b0c8db17fc1eb11e0756175fd1ff12d03b3218b15205a732a03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9448 | 
    
| IngestDate | Mon Jun 30 04:40:06 EDT 2025 Wed Oct 01 02:55:15 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Wed Aug 27 02:50:26 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-eaa0aa7e09f9d7b0c8db17fc1eb11e0756175fd1ff12d03b3218b15205a732a03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6369-6699 0000-0002-4064-1238  | 
    
| PQID | 2174509669 | 
    
| PQPubID | 36024 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2174509669 ieee_primary_8327860 crossref_citationtrail_10_1109_TIT_2018_2820688 crossref_primary_10_1109_TIT_2018_2820688  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-06-01 | 
    
| PublicationDateYYYYMMDD | 2018-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on information theory | 
    
| PublicationTitleAbbrev | TIT | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | tunstall (ref11) 1967 ref13 ref12 cover (ref16) 2006 ref14 ref20 ref10 ref21 ref2 ref1 ref17 ref19 ref18 ref8 ref7 abramson (ref15) 1963 ref4 ref3 ref6 ref5 abrahams (ref9) 1997  | 
    
| References_xml | – year: 2006 ident: ref16 publication-title: Elements of Information Theory – year: 1967 ident: ref11 article-title: Synthesis of noiseless compression codes – ident: ref4 doi: 10.1109/TNET.2010.2047868 – ident: ref2 doi: 10.1109/TNET.2016.2571300 – ident: ref10 doi: 10.1109/TIT.2006.881728 – ident: ref14 doi: 10.1109/JSAC.2014.140113 – ident: ref6 doi: 10.1137/0203008 – ident: ref21 doi: 10.1109/ITW.2017.8278034 – ident: ref12 doi: 10.1109/TIT.1968.1054147 – ident: ref19 doi: 10.1109/TNET.2014.2357051 – ident: ref17 doi: 10.1109/INFCOM.1999.749256 – ident: ref18 doi: 10.1109/TNET.2014.2382031 – start-page: 145 year: 1997 ident: ref9 article-title: Code and parse trees for lossless source encoding publication-title: Proc IEEE Compress Complex Sequences – ident: ref20 doi: 10.1109/TNET.2016.2611482 – ident: ref5 doi: 10.1137/0122024 – ident: ref7 doi: 10.1109/TIT.1978.1055959 – year: 1963 ident: ref15 publication-title: Information Theory and Coding – ident: ref3 doi: 10.1109/JRPROC.1952.273898 – ident: ref13 doi: 10.1109/TIT.1981.1056322 – ident: ref8 doi: 10.1145/79147.79150 – ident: ref1 doi: 10.1109/ISIT.2013.6620652  | 
    
| SSID | ssj0014512 | 
    
| Score | 2.265115 | 
    
| Snippet | Data compression is a well-studied (and well-solved) problem in the setup of long coding blocks. But important emerging applications need to compress data to... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4309 | 
    
| SubjectTerms | Algorithms Codes Compression algorithms Data compression Decoding Dictionaries fixed-width memories Heuristic algorithms Huffman coding Machine learning network switches and routers Optimization Random access memory Routers Switches table compression Tables  | 
    
| Title | Optimal Compression for Two-Field Entries in Fixed-Width Memories | 
    
| URI | https://ieeexplore.ieee.org/document/8327860 https://www.proquest.com/docview/2174509669  | 
    
| Volume | 64 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mnvTB6aY4nZIHXwS7Nf3O45CNKUxfOthbSZsUh9qJ61D8673rxxQV8akhJKXNJbm73C-_AzgPpPAcnsaGZ6WW4WgsCaFjQ_q2Q-woqNPovGN6601mzs3cnTfgcnMXRmtdgM90n4pFLF8tkzUdlQ1w9vmBhw76Fj7Ku1qbiIHj8pIZnOMCRp-jDkmaYhBeh4ThCvoWkZUXOVY-VVCRU-XHRlxol3ELpvV3laCSh_46j_vJ-zfKxv9--B7sVmYmG5bzYh8aOmtDq07hwKoV3YadL3yEHRje4QbyhP2oYQmQzRhatSx8XRpjwrqxUUYZuFZskbHx4k0T4Fbl92xKgF2sP4DZeBReTYwqx4KRWILnhpbSlNLXpkiF8mMzCVTM_TThuIdzjfYEWjhuqniackuZdmyjSRCjzjddlKYlTfsQmtky00fAXEdRFDKwtbId7SjJE43eDNYIaeHfd2FQD3uUVATklAfjMSocEVNEKKiIBBVVgurCxabHc0m-8UfbDo37pl015F3o1ZKNqtW5isgNI9obTxz_3usEtundJSSsB838Za1P0fjI47Ni1n0A08LTqg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADr4EYzxy4INGtadNHjggxDdjGpUi7VWmTCgR0CDqB-PXYfQwECHGLokRN4yS24y-fAY5CJX3Bs8TyncyxhMGSlCaxVOAKYkdBnUb3HcOR378Rl2NvPAcns7cwxpgSfGY6VCxj-XqSTumqrIurLwh9dNAXPCGEV73WmsUMhMcrbnCOWxi9jiYoactudBERiivsOERXXmZZ-VRCZVaVH0dxqV96qzBsRlbBSu470yLppO_fSBv_O_Q1WKkNTXZarYx1mDP5Bqw2SRxYvac3YPkLI2ELTq_xCHnEftSwgsjmDO1aFr1OrB6h3dh5Tjm4Xthdznp3b4Ygt7q4ZUOC7GL9Jtz0zqOzvlVnWbBSR_LCMkrZSgXGlpnUQWKnoU54kKUcT3Fu0KJAG8fLNM8y7mjbTVw0ChLU-raH8nSU7W7BfD7JzTYwT2iKQ4au0a4wQiueGvRnsEYqB_--Dd1m2uO0piCnTBgPcemK2DJGQcUkqLgWVBuOZz2eKvqNP9q2aN5n7eopb8NeI9m43p8vMTliRHzjy53fex3CYj8aDuLBxehqF5boOxVAbA_mi-ep2UdTpEgOyhX4ARTP1vc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Compression+for+Two-Field+Entries+in+Fixed-Width+Memories&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Rottenstreich%2C+Ori&rft.au=Cassuto%2C+Yuval&rft.date=2018-06-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=6&rft.spage=4309&rft.epage=4322&rft_id=info:doi/10.1109%2FTIT.2018.2820688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2018_2820688 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |