An Online Data-Driven Method for Microgrid Secondary Voltage and Frequency Control With Ensemble Koopman Modeling

Low inertia, nonlinearity and a high level of uncertainty (varying topologies and operating conditions) pose challenges to microgrid (MG) systemwide operation. This paper proposes an online adaptive Koopman operator optimal control (AKOOC) method for MG secondary voltage and frequency control. Unlik...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 14; no. 1; pp. 68 - 81
Main Authors Gong, Xun, Wang, Xiaozhe, Joos, Geza
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3053
1949-3061
DOI10.1109/TSG.2022.3190237

Cover

Abstract Low inertia, nonlinearity and a high level of uncertainty (varying topologies and operating conditions) pose challenges to microgrid (MG) systemwide operation. This paper proposes an online adaptive Koopman operator optimal control (AKOOC) method for MG secondary voltage and frequency control. Unlike typical data-driven methods that are data-hungry and lack guaranteed stability, the proposed AKOOC requires no warm-up training yet with guaranteed bounded-input-bounded-output (BIBO) stability and even asymptotical stability under some mild conditions. The proposed AKOOC is developed based on an ensemble Koopman state space modeling with full basis functions that combines both linear and nonlinear bases without the need of event detection or switching. An iterative learning method is also developed to exploit model parameters, ensuring the effectiveness and the adaptiveness of the designed control. Simulation studies in the 4-bus (with detailed inner-loop control) MG system and the 34-bus MG system showed improved modeling accuracy and control, verifying the effectiveness of the proposed method subject to various changes of operating conditions even with time delay, measurement noise, and missing measurements.
AbstractList Low inertia, nonlinearity and a high level of uncertainty (varying topologies and operating conditions) pose challenges to microgrid (MG) systemwide operation. This paper proposes an online adaptive Koopman operator optimal control (AKOOC) method for MG secondary voltage and frequency control. Unlike typical data-driven methods that are data-hungry and lack guaranteed stability, the proposed AKOOC requires no warm-up training yet with guaranteed bounded-input-bounded-output (BIBO) stability and even asymptotical stability under some mild conditions. The proposed AKOOC is developed based on an ensemble Koopman state space modeling with full basis functions that combines both linear and nonlinear bases without the need of event detection or switching. An iterative learning method is also developed to exploit model parameters, ensuring the effectiveness and the adaptiveness of the designed control. Simulation studies in the 4-bus (with detailed inner-loop control) MG system and the 34-bus MG system showed improved modeling accuracy and control, verifying the effectiveness of the proposed method subject to various changes of operating conditions even with time delay, measurement noise, and missing measurements.
Author Wang, Xiaozhe
Gong, Xun
Joos, Geza
Author_xml – sequence: 1
  givenname: Xun
  orcidid: 0000-0001-9073-1410
  surname: Gong
  fullname: Gong, Xun
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
– sequence: 2
  givenname: Xiaozhe
  orcidid: 0000-0002-1887-0990
  surname: Wang
  fullname: Wang, Xiaozhe
  email: xiaozhe.wang2@mcgill.ca
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
– sequence: 3
  givenname: Geza
  orcidid: 0000-0003-2939-5360
  surname: Joos
  fullname: Joos, Geza
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
BookMark eNp9ULlOAzEQtRBIhKNHorFEvcFX7LhEgQAClCIc5crrHQejjR28Bom_x1GiFBRMM1O8Y947QvshBkDojJIhpURfPs9vh4wwNuRUE8bVHhpQLXTFiaT7u3vED9Fp33-QMpxzyfQAfV4FPAudD4CvTTbVdfLfEPAT5PfYYhcTfvI2xUXyLZ6DjaE16Qe_xi6bBWATWjxN8PkFwf7gSQw5xQ6_-fyOb0IPy6YD_BDjammKZGyh-CxO0IEzXQ-n232MXqY3z5O76nF2ez-5eqws0zRXoC0D5UTTOC5ta5wSTghnrDVAJRVaS2MJgIWmFY3STDXgxo4L6aSUTvNjdLHRXaVYHuxz_RG_UiiWNVMjRZXWnBYU2aBKyL5P4OpV8suSsaakXndbl27rdbf1tttCkX8o1meT_Tq98d1_xPMN0QPAzkePmRJjxn8BH-SJ9w
CODEN ITSGBQ
CitedBy_id crossref_primary_10_3390_math12243944
crossref_primary_10_1049_gtd2_13071
crossref_primary_10_1016_j_ifacol_2023_12_094
crossref_primary_10_1109_TSG_2024_3402315
crossref_primary_10_1016_j_oceaneng_2024_118227
crossref_primary_10_1080_15567036_2022_2156637
crossref_primary_10_1109_TII_2023_3347005
crossref_primary_10_1109_TPWRS_2023_3305404
crossref_primary_10_1109_TSTE_2024_3424731
crossref_primary_10_1109_TII_2024_3431584
crossref_primary_10_1109_TSG_2023_3314749
crossref_primary_10_1109_TSG_2024_3399076
Cites_doi 10.1109/TPWRS.2013.2247071
10.23919/ACC.2019.8815339
10.1016/j.ifacol.2018.11.718
10.1109/TSG.2015.2495233
10.1109/LCSYS.2020.3047586
10.1109/TSG.2019.2947651
10.1109/MCS.2014.2350571
10.1109/TPWRS.2022.3189602
10.1109/TIE.2015.2436879
10.1016/j.conengprac.2012.04.006
10.1109/TPWRS.2019.2925703
10.1109/TPEL.2013.2279206
10.1109/TSG.2020.3001607
10.1109/TETCI.2017.2739838
10.1109/EPE.2015.7309457
10.1109/TSG.2015.2461190
10.1109/TPEC.2018.8312064
10.1109/TPWRS.2018.2859742
10.1109/ACCESS.2019.2915509
10.1109/JETCAS.2015.2462093
10.1371/journal.pone.0150171
10.1109/TPWRS.2021.3058642
10.3182/20120914-2-US-4030.00055
10.1109/TSG.2017.2680445
10.1109/TSG.2020.3023307
10.1109/TSG.2015.2500269
10.1080/00207721.2011.555012
10.1088/2632-2153/abf0f5
10.1109/TPWRS.2020.3012917
10.1109/TPEL.2018.2868722
10.1109/PESGM41954.2020.9281825
10.1109/CACSD.1996.555199
10.1109/TPWRS.2005.851911
10.1137/16M1062296
10.3182/20080706-5-KR-1001.01483
10.1016/j.automatica.2018.03.046
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2022.3190237
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 81
ExternalDocumentID 10_1109_TSG_2022_3190237
9827482
Genre orig-research
GrantInformation_xml – fundername: Fonds de Recherche du Quebec-Nature et technologies
  grantid: FRQ-NT PR-298827; FRQ-NT 2023-NOVA-314338
  funderid: 10.13039/501100020951
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-e9c2e7f4bbf36cdaf74f44faccae1614996ac0eecebd4b7927bef8f346f666f93
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Mon Jun 30 09:45:09 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Wed Oct 01 03:11:16 EDT 2025
Wed Aug 27 02:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e9c2e7f4bbf36cdaf74f44faccae1614996ac0eecebd4b7927bef8f346f666f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9073-1410
0000-0002-1887-0990
0000-0003-2939-5360
PQID 2757179931
PQPubID 2040408
PageCount 14
ParticipantIDs crossref_primary_10_1109_TSG_2022_3190237
ieee_primary_9827482
proquest_journals_2757179931
crossref_citationtrail_10_1109_TSG_2022_3190237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref21
younesi (ref22) 2019; 15
ref28
rong (ref36) 2014
ref27
ref29
ref8
ref7
bidram (ref9) 2014; 34
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TPWRS.2013.2247071
– ident: ref25
  doi: 10.23919/ACC.2019.8815339
– ident: ref13
  doi: 10.1016/j.ifacol.2018.11.718
– ident: ref3
  doi: 10.1109/TSG.2015.2495233
– ident: ref24
  doi: 10.1109/LCSYS.2020.3047586
– ident: ref6
  doi: 10.1109/TSG.2019.2947651
– volume: 34
  start-page: 56
  year: 2014
  ident: ref9
  article-title: Distributed control systems for small-scale power networks: Using multiagent cooperative control theory
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2014.2350571
– ident: ref26
  doi: 10.1109/TPWRS.2022.3189602
– ident: ref15
  doi: 10.1109/TIE.2015.2436879
– year: 2014
  ident: ref36
  article-title: Cooperative equilibrium: A solution predicting cooperative play
  publication-title: arXiv 1412 6722
– ident: ref8
  doi: 10.1016/j.conengprac.2012.04.006
– ident: ref2
  doi: 10.1109/TPWRS.2019.2925703
– ident: ref4
  doi: 10.1109/TPEL.2013.2279206
– ident: ref11
  doi: 10.1109/TSG.2020.3001607
– ident: ref33
  doi: 10.1109/TETCI.2017.2739838
– ident: ref17
  doi: 10.1109/EPE.2015.7309457
– ident: ref16
  doi: 10.1109/TSG.2015.2461190
– ident: ref20
  doi: 10.1109/TPEC.2018.8312064
– ident: ref1
  doi: 10.1109/TPWRS.2018.2859742
– ident: ref21
  doi: 10.1109/ACCESS.2019.2915509
– volume: 15
  start-page: 126
  year: 2019
  ident: ref22
  article-title: Q-learning based supervisory PID controller for damping frequency oscillations in a hybrid mini/micro-grid
  publication-title: Iran J Electr Electron Eng
– ident: ref18
  doi: 10.1109/JETCAS.2015.2462093
– ident: ref28
  doi: 10.1371/journal.pone.0150171
– ident: ref34
  doi: 10.1109/TPWRS.2021.3058642
– ident: ref30
  doi: 10.3182/20120914-2-US-4030.00055
– ident: ref19
  doi: 10.1109/TSG.2017.2680445
– ident: ref7
  doi: 10.1109/TSG.2020.3023307
– ident: ref14
  doi: 10.1109/TSG.2015.2500269
– ident: ref38
  doi: 10.1080/00207721.2011.555012
– ident: ref27
  doi: 10.1088/2632-2153/abf0f5
– ident: ref12
  doi: 10.1109/TPWRS.2020.3012917
– ident: ref5
  doi: 10.1109/TPEL.2018.2868722
– ident: ref35
  doi: 10.1109/PESGM41954.2020.9281825
– ident: ref37
  doi: 10.1109/CACSD.1996.555199
– ident: ref32
  doi: 10.1109/TPWRS.2005.851911
– ident: ref23
  doi: 10.1137/16M1062296
– ident: ref31
  doi: 10.3182/20080706-5-KR-1001.01483
– ident: ref29
  doi: 10.1016/j.automatica.2018.03.046
SSID ssj0000333629
Score 2.4699879
Snippet Low inertia, nonlinearity and a high level of uncertainty (varying topologies and operating conditions) pose challenges to microgrid (MG) systemwide operation....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Adaptation models
Adaptive control
Adaptive Koopman operator optimal control
Asymptotic stability
Basis functions
data-driven control
Distributed generation
Effectiveness
Electric potential
Frequency control
Iterative methods
Koopman-based ensemble learning
Load modeling
measurement-based estimation
microgrid secondary control
Model accuracy
Modelling
Noise measurement
Nonlinearity
Optimal control
PMU
Power system stability
Stability criteria
State space models
Topology
Voltage
Voltage control
Title An Online Data-Driven Method for Microgrid Secondary Voltage and Frequency Control With Ensemble Koopman Modeling
URI https://ieeexplore.ieee.org/document/9827482
https://www.proquest.com/docview/2757179931
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAExyg5SGW0soHLpXIbtZx4viIgC0q2l543iI_xrDqNoGQPdBf37GTXRVaIW45OJGlz5mZzzPzDSEHknOlWSwjJYSLOADzkrdxhJ5vyFNrMh7Ensc_srMr_v02vV0ih4teGAAIxWfQ948hl28rM_NXZQOZI4fK0eAuizxre7UW9ylxkqAtliGJzH06P03mWclYDi4vviEXZAwpqkQvJV54oTBW5R9bHBzMaIOM51tr60p-9meN7pvfr1Qb37v3D2S9izTpUXs0PpIlKDfJ2l_6g1vk8aikrdYoPVGNik5qb_voOEyVphjO0rGv17urJ5ZeeOZsVf1Mr6tpg1aIqtLSUd2WYj_T47bmnd5Mmnt6Wj7BLz0Fel5Vvr2B-pFrvvF9m1yNTi-Pz6JuBkNkmBw2EUjDQDiutUsyY5UT3HHuFAIPGCwiX8qUiQEMaMu1kExocLlLeOaQGDmZ7JCVsiphl1AkO9oOQViDnC-NjVYyzWXqMOazDD_SI4M5JoXpBMr9nIxpEYhKLAtEsfAoFh2KPfJ18cZDK87xxtotD8piXYdHj-zPYS-6v_epYCIVXikvGe79_61PZNWPnW-vYvbJSlPP4DMGJ43-Ek7lH4Jt4SA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAO5VEQC6X4wAWJ7GYdO14fq7bLQpteuoXeIj_GULFNIM0e2l_fsZNdlYcQtxycyNLnzMznmfmGkLeKc21YqhItpU84AAuSt2mCnm_MhbM5j2LPxUk-O-OfzsX5Bnm_7oUBgFh8BsPwGHP5rrbLcFU2UhPkUBM0uPcE51x03VrrG5U0y9Aaq5hG5iGhL7JVXjJVo_npB2SDjCFJVein5C9-KA5W-cMaRxczfUSK1ea6ypLvw2VrhvbmN93G_939Y7LVx5p0rzscT8gGVE_JwzsKhNvk515FO7VReqBbnRw0wfrRIs6VphjQ0iJU7H1tLhw9DdzZ6eaafq4XLdohqitHp01XjH1N97uqd_rlov1GD6sruDQLoEd1HRocaBi6Flrfn5Gz6eF8f5b0UxgSy9S4TUBZBtJzY3yWW6e95J5zrxF6wHARGVOubQpgwThupGLSgJ_4jOceqZFX2XOyWdUVvCAU6Y5xY5DOIusTqTVaiYkSHqM-x_AjAzJaYVLaXqI8TMpYlJGqpKpEFMuAYtmjOCDv1m_86OQ5_rF2O4CyXtfjMSA7K9jL_v-9KpkUMmjlZeOXf3_rDbk_mxfH5fHHk6NX5EEYQt9dzOyQzbZZwmsMVVqzG0_oLXEy5G0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Online+Data-Driven+Method+for+Microgrid+Secondary+Voltage+and+Frequency+Control+With+Ensemble+Koopman+Modeling&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Gong%2C+Xun&rft.au=Wang%2C+Xiaozhe&rft.au=Joos%2C+Geza&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=14&rft.issue=1&rft.spage=68&rft.epage=81&rft_id=info:doi/10.1109%2FTSG.2022.3190237&rft.externalDocID=9827482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon