Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current
Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which...
Saved in:
| Published in | IEEE transactions on industry applications Vol. 54; no. 4; pp. 3782 - 3792 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0093-9994 1939-9367 |
| DOI | 10.1109/TIA.2018.2821099 |
Cover
| Abstract | Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated. |
|---|---|
| AbstractList | Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated. |
| Author | Xu, Dianguo Yang, Ming Chai, Na Ni, Qinan |
| Author_xml | – sequence: 1 givenname: Na orcidid: 0000-0002-3522-6048 surname: Chai fullname: Chai, Na email: chaina_hit@163.com organization: Department of Electrical Engineering, Harbin Insinuate of Technology, Harbin, China – sequence: 2 givenname: Ming orcidid: 0000-0003-0462-6046 surname: Yang fullname: Yang, Ming email: yangming_hit@163.com organization: Department of Electrical Engineering, Harbin Insinuate of Technology, Harbin, China – sequence: 3 givenname: Qinan surname: Ni fullname: Ni, Qinan email: niqn_hit@163.com organization: Department of Electrical Engineering, Harbin Insinuate of Technology, Harbin, China – sequence: 4 givenname: Dianguo orcidid: 0000-0002-1594-8625 surname: Xu fullname: Xu, Dianguo email: xudiang@hit.edu.cn organization: Department of Electrical Engineering, Harbin Insinuate of Technology, Harbin, China |
| BookMark | eNp9kE1LAzEQhoMoWKt3wUvA89Z8bHY3R21tFRRF63mZTWdLpN2sSfagv96UigcPnoZhnudleE_IYec6JOScswnnTF8t768ngvFqIiqRdn1ARlxLnWlZlIdkxJiWmdY6PyYnIbwzxnPF8xEJCwRP5zBsIp1ZWHcu2EBvIOCKuo7OBtjQZ_CwxYiePvXRbu1Xur1gcB10BrM9-9qDD0hf7bpLxgyN2_YpKtoU4lr66KLzdDp4j108JUctbAKe_cwxeZvfLqd32cPT4n56_ZAZoXnMUEtEYE3DsCm5WfESFDYgdKVzrYpWN-1KGGW4alAVlWxyhXkBCkyjSpCVHJPLfW7v3ceAIdbvbvDpv1ALzktWMF6wRBV7yngXgse2NjbC7vHowW5qzupdwXUquN4VXP8UnET2R-y93YL__E-52CsWEX_xSoqyKoT8BuE9iUM |
| CODEN | ITIACR |
| CitedBy_id | crossref_primary_10_1016_j_apacoust_2024_110525 crossref_primary_10_1016_j_measurement_2022_111697 crossref_primary_10_3390_act11100277 crossref_primary_10_1016_j_isatra_2020_12_016 crossref_primary_10_1016_j_ymssp_2020_106861 crossref_primary_10_1088_1361_6501_ac0741 crossref_primary_10_1109_TIE_2022_3206754 crossref_primary_10_1016_j_measurement_2021_109565 crossref_primary_10_1109_ACCESS_2021_3104281 crossref_primary_10_1177_09544089231172029 crossref_primary_10_1177_1729881420915032 crossref_primary_10_1177_09544062211070160 crossref_primary_10_1109_ACCESS_2021_3122922 crossref_primary_10_1016_j_epsr_2021_107682 crossref_primary_10_3390_en12112117 crossref_primary_10_3390_s21051868 crossref_primary_10_1109_TIE_2020_2973894 crossref_primary_10_1016_j_isatra_2022_10_001 crossref_primary_10_23919_PCMP_2023_000241 crossref_primary_10_1016_j_measurement_2019_05_074 crossref_primary_10_4236_jcc_2024_1211016 crossref_primary_10_3390_machines12120918 crossref_primary_10_1016_j_asoc_2024_112033 crossref_primary_10_1109_TIM_2023_3285999 crossref_primary_10_1177_10775463241288058 crossref_primary_10_1007_s42835_022_01207_y crossref_primary_10_3390_en17133228 crossref_primary_10_1109_ACCESS_2020_2972381 crossref_primary_10_3390_app9020224 crossref_primary_10_3390_app10155053 |
| Cites_doi | 10.1007/s12206-015-0715-8 10.1109/TIE.2012.2194950 10.1109/TIE.2006.878303 10.1007/s10898-007-9149-x 10.1109/ICElMach.2012.6350079 10.1109/TSP.2009.2020756 10.1109/TIM.2012.2183402 10.1016/j.eswa.2009.06.060 10.1016/j.ymssp.2004.07.006 10.1109/IAS.2016.7731964 10.1016/j.ymssp.2014.10.016 10.1016/j.ymssp.2013.06.035 10.1109/TSP.2011.2143711 10.1016/j.ymssp.2012.11.004 10.1016/j.ymssp.2014.04.006 10.1016/j.measurement.2016.04.036 10.1016/j.jsv.2005.04.020 10.1784/insi.2014.56.6.326 10.1115/1.2893829 10.1016/j.eswa.2015.09.039 10.1016/j.mechmachtheory.2015.03.013 10.1115/DSCC2012-MOVIC2012-8609 10.1109/TIE.2015.2410254 10.1016/j.sigpro.2010.10.018 10.1016/j.ymssp.2016.07.007 10.1109/TIE.2015.2422112 10.1016/j.ymssp.2005.08.032 10.1109/TIA.2006.882636 10.1109/TIA.2009.2023503 10.1109/TIE.2014.2360068 10.1016/j.ymssp.2004.09.002 10.1016/j.jsv.2007.08.023 10.1016/j.epsr.2012.08.002 10.1109/IAS.2017.8101764 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIA.2018.2821099 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9367 |
| EndPage | 3792 |
| ExternalDocumentID | 10_1109_TIA_2018_2821099 8327862 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51677037; 51690182 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383 |
| IEDL.DBID | RIE |
| ISSN | 0093-9994 |
| IngestDate | Mon Jun 30 06:17:46 EDT 2025 Wed Oct 01 03:52:32 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Wed Aug 27 08:33:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1594-8625 0000-0002-3522-6048 0000-0003-0462-6046 |
| PQID | 2117060160 |
| PQPubID | 85463 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_8327862 crossref_citationtrail_10_1109_TIA_2018_2821099 crossref_primary_10_1109_TIA_2018_2821099 proquest_journals_2117060160 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-July-Aug. 2018-7-00 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-July-Aug. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industry applications |
| PublicationTitleAbbrev | TIA |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 kar (ref4) 2006; 290 ref24 kar (ref12) 2008; 311 ref23 ref26 ref25 ref20 ref22 ref21 ref28 he (ref27) 0 ref29 ref7 aherwar (ref8) 2012; 3 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref34 doi: 10.1007/s12206-015-0715-8 – ident: ref19 doi: 10.1109/TIE.2012.2194950 – ident: ref17 doi: 10.1109/TIE.2006.878303 – ident: ref36 doi: 10.1007/s10898-007-9149-x – ident: ref11 doi: 10.1109/ICElMach.2012.6350079 – ident: ref32 doi: 10.1109/TSP.2009.2020756 – ident: ref3 doi: 10.1109/TIM.2012.2183402 – ident: ref2 doi: 10.1016/j.eswa.2009.06.060 – ident: ref22 doi: 10.1016/j.ymssp.2004.07.006 – start-page: 541 year: 0 ident: ref27 article-title: Adaptive tunable Q-factor wavelet transform for fault feature extraction of gearbox based on vibration signals publication-title: Proc MFPT 2014 Conf Technol Sol Affordable Sustainment – ident: ref10 doi: 10.1109/IAS.2016.7731964 – ident: ref5 doi: 10.1016/j.ymssp.2014.10.016 – ident: ref26 doi: 10.1016/j.ymssp.2013.06.035 – ident: ref33 doi: 10.1109/TSP.2011.2143711 – ident: ref14 doi: 10.1016/j.ymssp.2012.11.004 – ident: ref28 doi: 10.1016/j.ymssp.2014.04.006 – ident: ref7 doi: 10.1016/j.measurement.2016.04.036 – volume: 290 start-page: 337 year: 2006 ident: ref4 article-title: Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.04.020 – ident: ref24 doi: 10.1784/insi.2014.56.6.326 – ident: ref31 doi: 10.1115/1.2893829 – ident: ref29 doi: 10.1016/j.eswa.2015.09.039 – ident: ref9 doi: 10.1016/j.mechmachtheory.2015.03.013 – ident: ref20 doi: 10.1115/DSCC2012-MOVIC2012-8609 – ident: ref21 doi: 10.1109/TIE.2015.2410254 – ident: ref25 doi: 10.1016/j.sigpro.2010.10.018 – ident: ref6 doi: 10.1016/j.ymssp.2016.07.007 – ident: ref1 doi: 10.1109/TIE.2015.2422112 – ident: ref23 doi: 10.1016/j.ymssp.2005.08.032 – ident: ref15 doi: 10.1109/TIA.2006.882636 – ident: ref16 doi: 10.1109/TIA.2009.2023503 – ident: ref13 doi: 10.1109/TIE.2014.2360068 – ident: ref35 doi: 10.1016/j.ymssp.2004.09.002 – volume: 311 start-page: 109 year: 2008 ident: ref12 article-title: Vibration and current transient monitoring for gearbox fault detection using multiresolution Fourier transform publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.08.023 – ident: ref18 doi: 10.1016/j.epsr.2012.08.002 – volume: 3 start-page: 4 year: 2012 ident: ref8 article-title: Vibration analysis techniques for gearbox diagnostic: A review publication-title: International Journal of Advanced Engineering Technology – ident: ref30 doi: 10.1109/IAS.2017.8101764 |
| SSID | ssj0014514 |
| Score | 2.4260275 |
| Snippet | Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3782 |
| SubjectTerms | Decomposition Decomposition level Fault diagnosis Feature extraction gear fault detection Gears Kurtosis Meshing motor current signature analysis (MCSA) Nondestructive testing parameter optimization Parameters Permanent magnet motors Permanent magnets Q-factor resonance-based sparse signal decomposition (RSSD) Resonant frequency Search algorithms Signature analysis Swarm intelligence Synchronous motors Torque Vibrations Wavelet transforms |
| Title | Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current |
| URI | https://ieeexplore.ieee.org/document/8327862 https://www.proquest.com/docview/2117060160 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014514 issn: 0093-9994 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExzYEWWTD1yQSJs0dpYjUMoiFZAAiVvkZYIqoEE0ufD1zCRuxSbEKZFiJ1ae7ZnxPD8zto8-sLCpCD2RpF1PBNrimMt9L7d5jBZBx1rRgv7gKjq_F5cP8mGGHU73wgBATT6DNt3WuXxbmIqWyjrY--KEJtxZvDR7taYZA-F0vDFC99DpEZOUpJ927i6OiMOVtDG8oETQFxNUn6nyYyKurUt_iQ0m7WpIJU_tqtRt8_5NsvG_DV9mi87N5EdNv1hhMzBaZQufxAfX2PgMOznvq-q55L2GcDcc82O0apYXI96rsP6NIu4W_np-jVPLy_Adn9GCP6l0gNeUvX3F2Bj47fCRvtgDIqk7Jhgvcj4oMKrnTgZqnd33T-9Ozj13BINnumlQepCGAMrX2gcdB8YGsZKA8JFsO0ZWeapz2zXSBFKDjJJQCwkiUlIZLWOF0e8GmxsVI9hkPJEqNQrdAR1YgX6h0hCZxMjQhJbcrhbrTFDJjNMnp2MynrM6TvHTDHHMCMfM4dhiB9Mar402xx9l1wiWaTmHSIvtTIDP3OAdZ92g1hQKIn_r91rbbJ7e3bB2d9hc-VbBLvompd6rO-UHu5_gtg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5VA4FEpBBFq6By5IOLHjXT-OpSFNHylITaXerH2MUdQSV8S-9NczY28iHhXqzZJ3tZa_2Z2ZnW-_BfhAMbB0uYwDmeXDQEbG0Zwrw6B0ZUoewaRG84b-9CKZXMnTa3W9AZ_WZ2EQsSWfYZ8f21q-q2zDW2UDsr404wX3iZJSqu601rpmIL2SN-XoAYU9clWUDPPB7OSQWVxZnxIMLgX94YTaW1X-WYpb_zJ-DtPVl3W0kpt-U5u-vf9LtPGxn_4Ctn2gKQ47y9iBDVy8hGe_yQ_uwvKYzFyMdXNbi1FHuZsvxWfya05UCzFqqP83zewt-vniKy0uP-b39I63_FmnA4Ou7eUdZccoLuffecQRMk3dc8FEVYppRXm98EJQr-Bq_GV2NAn8JQyBHeZRHWAeI-rQmBBNGlkXpVohAcjC7ZRblbkp3dAqGymDKsliIxXKRCttjUo15b-vYXNRLfANiEzp3GoKCEzkJEWG2mBiM6tiGzsOvHowWKFSWK9Qzhdl3BZtphLmBeFYMI6Fx7EHH9c97jp1jv-03WVY1u08Ij3YWwFf-Om7LIZRqyoUJeHbh3sdwNZkNj0vzk8uzt7BUx6n4_DuwWb9s8F9ilRq87410F-lReQD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gear+Fault+Diagnosis+Based+on+Dual+Parameter+Optimized+Resonance-Based+Sparse+Signal+Decomposition+of+Motor+Current&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Chai%2C+Na&rft.au=Yang%2C+Ming&rft.au=Ni%2C+Qinan&rft.au=Xu%2C+Dianguo&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=54&rft.issue=4&rft.spage=3782&rft_id=info:doi/10.1109%2FTIA.2018.2821099&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |