Application of a Partial Discharge Diagnosis Method Based on the Novel Multispectral Array Sensor and GMM in Different Insulating Gases

Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11
Main Authors Zang, Yiming, Qian, Yong, Zhou, Xiaoli, Xu, Antian, Sheng, Gehao, Jiang, Xiuchen
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3156996

Cover

Abstract Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF 6 . Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C 4 F 7 N/CO 2 gas mixture and SF 6 . This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C 4 F 7 N/CO 2 gas mixture and pure SF 6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C 4 F 7 N/CO 2 gas mixture and SF 6 . According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF 6 . This result shows that the method can well diagnose the PD in both SF 6 and C 4 F 7 N/CO 2 power equipment, which has a wide range of application prospects.
AbstractList Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF6. Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C4F7N/CO2 gas mixture and SF6. This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C4F7N/CO2 gas mixture and pure SF6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C4F7N/CO2 gas mixture and SF6. According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF6. This result shows that the method can well diagnose the PD in both SF6 and C4F7N/CO2 power equipment, which has a wide range of application prospects.
Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF 6 . Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C 4 F 7 N/CO 2 gas mixture and SF 6 . This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C 4 F 7 N/CO 2 gas mixture and pure SF 6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C 4 F 7 N/CO 2 gas mixture and SF 6 . According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF 6 . This result shows that the method can well diagnose the PD in both SF 6 and C 4 F 7 N/CO 2 power equipment, which has a wide range of application prospects.
Author Xu, Antian
Qian, Yong
Zang, Yiming
Zhou, Xiaoli
Sheng, Gehao
Jiang, Xiuchen
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0002-1370-8820
  surname: Zang
  fullname: Zang, Yiming
  email: zangyiming@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-6046-7110
  surname: Qian
  fullname: Qian, Yong
  email: qian_yong@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Xiaoli
  orcidid: 0000-0001-8659-7482
  surname: Zhou
  fullname: Zhou, Xiaoli
  email: zhouxl@fudan.edu.cn
  organization: Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, Yangpu, China
– sequence: 4
  givenname: Antian
  orcidid: 0000-0003-2422-4677
  surname: Xu
  fullname: Xu, Antian
  email: xuantian1996@163.com
  organization: Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, Yangpu, China
– sequence: 5
  givenname: Gehao
  orcidid: 0000-0002-9454-5284
  surname: Sheng
  fullname: Sheng, Gehao
  email: shenghe@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Xiuchen
  orcidid: 0000-0001-5439-6942
  surname: Jiang
  fullname: Jiang, Xiuchen
  email: xcjiang@sjtu.edu.cn
  organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kE1P3DAQhq0KpC7Qe6VeLHHO1l9x4uMW2u1KBJCg58hxxrtGqR1sbyV-AX-7pot64MBp5vA-72ieE3TkgweEPlOypJSor_ebbskIY0tOa6mU_IAWtK6bSknJjtCCENpWStTyIzpJ6YEQ0kjRLNDzap4nZ3R2weNgsca3OmanJ3zpktnpuIWy6a0PySXcQd6FEX_TCUZcgLwDfB3-wIS7_ZRdmsHkWNhVjPoJ34FPIWLtR7zuOux8abIWIviMNz7tp3LVb_G6tKUzdGz1lODT6zxFv358v7_4WV3drDcXq6vKMEVzBTUMvJacKcPAgpRa0FYIaw21hnMuR27poIdB1ZaChLbl7SAUH5uB2IFRforOD71zDI97SLl_CPvoy8meSUEEZ6JuSkoeUiaGlCLY3rj8z1F5z009Jf2L9L5I71-k96_SC0jegHN0v3V8eg_5ckAcAPyPq4Ypxhv-F98wj_g
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2023_3268485
crossref_primary_10_1109_TIM_2025_3548215
crossref_primary_10_1021_acsanm_4c05243
Cites_doi 10.1109/ACCESS.2020.3040421
10.1109/MEI.2019.8735667
10.1049/hve2.12071
10.1063/1.5115588
10.1109/TEI.1986.348921
10.1016/j.ijepes.2020.105945
10.1109/MPE.2016.2542645
10.1109/JSEN.2019.2925848
10.1109/ACCESS.2020.3014371
10.1016/j.nima.2003.11.085
10.1109/TDEI.2018.006746
10.1109/CEIDP47102.2019.9009875
10.1109/TIM.2021.3097856
10.1109/ICEEI47359.2019.8988895
10.1109/TPWRD.2018.2880244
10.1088/1361-6463/aae458
10.1109/TPWRD.2020.3045281
10.1109/TDEI.2018.007127
10.1109/TDEI.2018.006930
10.3390/s17010177
10.1109/TPWRD.2019.2909830
10.1016/j.vibspec.2020.103114
10.1016/S0304-3886(01)00215-7
10.1109/TIM.2019.2926688
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3156996
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2022_3156996
9729237
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62075045
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-e5eb356329c2efe66a41844ffc1fc3336d3f1babb95f1e6e8838b493d7b0fb213
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:20:21 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Wed Oct 01 03:46:34 EDT 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e5eb356329c2efe66a41844ffc1fc3336d3f1babb95f1e6e8838b493d7b0fb213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9454-5284
0000-0002-1370-8820
0000-0001-6046-7110
0000-0001-5439-6942
0000-0001-8659-7482
0000-0003-2422-4677
PQID 2640432457
PQPubID 85462
PageCount 11
ParticipantIDs proquest_journals_2640432457
crossref_primary_10_1109_TIM_2022_3156996
crossref_citationtrail_10_1109_TIM_2022_3156996
ieee_primary_9729237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref24
ref23
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
Dobrea (ref18) 2014; 66
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/ACCESS.2020.3040421
– ident: ref1
  doi: 10.1109/MEI.2019.8735667
– ident: ref20
  doi: 10.1049/hve2.12071
– ident: ref17
  doi: 10.1063/1.5115588
– ident: ref16
  doi: 10.1109/TEI.1986.348921
– volume: 66
  start-page: 1147
  issue: 4
  volume-title: Rom. Rep. Phys.
  year: 2014
  ident: ref18
  article-title: Optical and mass spectrometry diagnosis of a CO₂ microwave plasma discharge
– ident: ref7
  doi: 10.1016/j.ijepes.2020.105945
– ident: ref10
  doi: 10.1109/MPE.2016.2542645
– ident: ref5
  doi: 10.1109/JSEN.2019.2925848
– ident: ref8
  doi: 10.1109/ACCESS.2020.3014371
– ident: ref19
  doi: 10.1016/j.nima.2003.11.085
– ident: ref25
  doi: 10.1109/TDEI.2018.006746
– ident: ref14
  doi: 10.1109/CEIDP47102.2019.9009875
– ident: ref4
  doi: 10.1109/TIM.2021.3097856
– ident: ref23
  doi: 10.1109/ICEEI47359.2019.8988895
– ident: ref3
  doi: 10.1109/TPWRD.2018.2880244
– ident: ref12
  doi: 10.1088/1361-6463/aae458
– ident: ref11
  doi: 10.1109/TPWRD.2020.3045281
– ident: ref21
  doi: 10.1109/TDEI.2018.007127
– ident: ref9
  doi: 10.1109/TDEI.2018.006930
– ident: ref24
  doi: 10.3390/s17010177
– ident: ref6
  doi: 10.1109/TPWRD.2019.2909830
– ident: ref13
  doi: 10.1016/j.vibspec.2020.103114
– ident: ref15
  doi: 10.1016/S0304-3886(01)00215-7
– ident: ref2
  doi: 10.1109/TIM.2019.2926688
SSID ssj0007647
Score 2.3688066
Snippet Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Carbon dioxide
Cluster analysis
Clustering
C₄F₇N/CO₂ gas mixture
Defects
Diagnosis
Discharge
Discharges (electric)
Energy distribution
Gas mixtures
Gases
Gaussian mixture model (GMM)
Insulation
multispectral array
Optical arrays
Optical communication
optical detection
Optical fibers
Optical filters
Optical reflection
partial discharge (PD) diagnosis
Partial discharges
Phase distribution
Photomultiplier tubes
Probabilistic models
Sensor arrays
Title Application of a Partial Discharge Diagnosis Method Based on the Novel Multispectral Array Sensor and GMM in Different Insulating Gases
URI https://ieeexplore.ieee.org/document/9729237
https://www.proquest.com/docview/2640432457
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB7agqAPVlvF0yp58EVw726T3WTz2Kr9IWwRbKFvS5KdwNGyK7d7gv0H-m87ye6dRUV8y0MmCcwkmS-Z-Qbgba4LLOrUJ45zlWRaYmLRm0Ryq2ttBfdDlO-5PL3MPl_lV1vwfpMLg4gx-AynoRn_8uvWrcJT2UyTJ8iF2oZtVcghV2tz6iqZDfyYKW1g8grWX5JzPbs4KwkIck74NJc60PPfu4JiTZU_DuJ4uxzvQrle1xBUcj1d9Xbqbn-jbPzfhT-Bx6ObyQ4Hu3gKW9jswaN75IN78CAGf7puH-4Of_1is9Yzw74EgyL5j4suUikhtWJI3qJjZaw5zY7o-qsZCZAHyc7b73jDYjJvTN1cxrmX5gf7SjC5XTLT1OykLNmioZGGkiw9Owtx8CbEXbMTGq17BpfHny4-nCZjgQbSrE77BHOC4rkUXDuOHqU0GQHGzHuXeieEkLXwqTXW6tynKLEoRGEzLWpl597yVDyHnaZt8AUwQqVKovR5YOTzRhlh0IeaHJ4gFndqArO1zio3speHIho3VUQxc12Rlqug5WrU8gTebSS-Dcwd_-i7H5S26TfqawIHa7Ooxq3dVeRBRhrDXL38u9QreBjGHt5pDmCnX67wNXkuvX0TTfYnlTnqvQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tixBw4LELorCAD1yQSNvYsRMfl8duC5sKia60t8hOxlLFKkFNigR_gL_N2EnLChDi5oPHtjRjez575huAF1JnmFWxi0rO0yjRCiOLzkSKW11pK7jro3wXanaevL-QF3vwapcLg4gh-AzHvhn-8qum3PinsokmT5CL9Bpcl0mSyD5ba3fupirpGTJj2sLkF2w_Jad6spznBAU5J4QqlfYE_VcuoVBV5Y-jONwvJ3ch366sDyv5PN50dlx-_4208X-Xfg_uDI4mO-4t4z7sYX0At6_QDx7AjRD-WbaH8OP41z82axwz7KM3KZJ_u2oDmRJSKwTlrVqWh6rT7DVdgBUjAfIh2aL5ipcspPOG5M11mHttvrFPBJSbNTN1xU7znK1qGqkvytKxuY-ENz7ymp3SaO0DOD95t3wzi4YSDaRbHXcRSgLjUgmuS44OlTIJQcbEuTJ2pRBCVcLF1lirpYtRYZaJzCZaVKmdOstj8RD266bGR8AIl6YKlZOek8-Z1AiDzlflcASyeJmOYLLVWVEO_OW-jMZlEXDMVBek5cJruRi0PIKXO4kvPXfHP_oeeqXt-g36GsHR1iyKYXO3BfmQgchQpo__LvUcbs6W-VlxNl98eAK3_Dz9q80R7HfrDT4lP6azz4L5_gQEkO4K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Partial+Discharge+Diagnosis+Method+Based+on+the+Novel+Multispectral+Array+Sensor+and+GMM+in+Different+Insulating+Gases&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zang%2C+Yiming&rft.au=Qian%2C+Yong&rft.au=Zhou%2C+Xiaoli&rft.au=Xu%2C+Antian&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3156996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3156996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon