Application of a Partial Discharge Diagnosis Method Based on the Novel Multispectral Array Sensor and GMM in Different Insulating Gases
Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2022.3156996 |
Cover
| Abstract | Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF 6 . Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C 4 F 7 N/CO 2 gas mixture and SF 6 . This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C 4 F 7 N/CO 2 gas mixture and pure SF 6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C 4 F 7 N/CO 2 gas mixture and SF 6 . According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF 6 . This result shows that the method can well diagnose the PD in both SF 6 and C 4 F 7 N/CO 2 power equipment, which has a wide range of application prospects. |
|---|---|
| AbstractList | Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF6. Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C4F7N/CO2 gas mixture and SF6. This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C4F7N/CO2 gas mixture and pure SF6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C4F7N/CO2 gas mixture and SF6. According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF6. This result shows that the method can well diagnose the PD in both SF6 and C4F7N/CO2 power equipment, which has a wide range of application prospects. Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is either unable to perform simultaneous detection of multispectral features or it can only be applied under laboratory conditions. Moreover, the PD of different gases will correspond to different multispectral characteristic distributions, but the current research is only aimed at the study of SF 6 . Therefore, this article proposes a gas-insulated equipment PD detection method based on the multispectral array sensor and Gaussian mixture model (GMM) clustering algorithm in C 4 F 7 N/CO 2 gas mixture and SF 6 . This method adopts the silicon photomultiplier (SiPM) array and multispectral grid to realize the collection of PD optical signals of different wavelength bands, which has a high degree of integration and can be applied in actual equipment. Then through the GMM model, cluster analysis of different multispectral features can effectively diagnose different types of PD defects. In the experiment, four kinds of PD defects under the conditions of five various ratios C 4 F 7 N/CO 2 gas mixture and pure SF 6 gas are used for test. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and radar chart distribution are studied, which compares the PD multispectral characteristics in C 4 F 7 N/CO 2 gas mixture and SF 6 . According to the experiment result, the diagnosis accuracy in different gases is generally higher than 84%, and the highest can reach 95% in SF 6 . This result shows that the method can well diagnose the PD in both SF 6 and C 4 F 7 N/CO 2 power equipment, which has a wide range of application prospects. |
| Author | Xu, Antian Qian, Yong Zang, Yiming Zhou, Xiaoli Sheng, Gehao Jiang, Xiuchen |
| Author_xml | – sequence: 1 givenname: Yiming orcidid: 0000-0002-1370-8820 surname: Zang fullname: Zang, Yiming email: zangyiming@sjtu.edu.cn organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Yong orcidid: 0000-0001-6046-7110 surname: Qian fullname: Qian, Yong email: qian_yong@sjtu.edu.cn organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Xiaoli orcidid: 0000-0001-8659-7482 surname: Zhou fullname: Zhou, Xiaoli email: zhouxl@fudan.edu.cn organization: Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, Yangpu, China – sequence: 4 givenname: Antian orcidid: 0000-0003-2422-4677 surname: Xu fullname: Xu, Antian email: xuantian1996@163.com organization: Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai, Yangpu, China – sequence: 5 givenname: Gehao orcidid: 0000-0002-9454-5284 surname: Sheng fullname: Sheng, Gehao email: shenghe@sjtu.edu.cn organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Xiuchen orcidid: 0000-0001-5439-6942 surname: Jiang fullname: Jiang, Xiuchen email: xcjiang@sjtu.edu.cn organization: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNp9kE1P3DAQhq0KpC7Qe6VeLHHO1l9x4uMW2u1KBJCg58hxxrtGqR1sbyV-AX-7pot64MBp5vA-72ieE3TkgweEPlOypJSor_ebbskIY0tOa6mU_IAWtK6bSknJjtCCENpWStTyIzpJ6YEQ0kjRLNDzap4nZ3R2weNgsca3OmanJ3zpktnpuIWy6a0PySXcQd6FEX_TCUZcgLwDfB3-wIS7_ZRdmsHkWNhVjPoJ34FPIWLtR7zuOux8abIWIviMNz7tp3LVb_G6tKUzdGz1lODT6zxFv358v7_4WV3drDcXq6vKMEVzBTUMvJacKcPAgpRa0FYIaw21hnMuR27poIdB1ZaChLbl7SAUH5uB2IFRforOD71zDI97SLl_CPvoy8meSUEEZ6JuSkoeUiaGlCLY3rj8z1F5z009Jf2L9L5I71-k96_SC0jegHN0v3V8eg_5ckAcAPyPq4Ypxhv-F98wj_g |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3268485 crossref_primary_10_1109_TIM_2025_3548215 crossref_primary_10_1021_acsanm_4c05243 |
| Cites_doi | 10.1109/ACCESS.2020.3040421 10.1109/MEI.2019.8735667 10.1049/hve2.12071 10.1063/1.5115588 10.1109/TEI.1986.348921 10.1016/j.ijepes.2020.105945 10.1109/MPE.2016.2542645 10.1109/JSEN.2019.2925848 10.1109/ACCESS.2020.3014371 10.1016/j.nima.2003.11.085 10.1109/TDEI.2018.006746 10.1109/CEIDP47102.2019.9009875 10.1109/TIM.2021.3097856 10.1109/ICEEI47359.2019.8988895 10.1109/TPWRD.2018.2880244 10.1088/1361-6463/aae458 10.1109/TPWRD.2020.3045281 10.1109/TDEI.2018.007127 10.1109/TDEI.2018.006930 10.3390/s17010177 10.1109/TPWRD.2019.2909830 10.1016/j.vibspec.2020.103114 10.1016/S0304-3886(01)00215-7 10.1109/TIM.2019.2926688 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2022.3156996 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TIM_2022_3156996 9729237 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62075045 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-e5eb356329c2efe66a41844ffc1fc3336d3f1babb95f1e6e8838b493d7b0fb213 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:20:21 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Wed Oct 01 03:46:34 EDT 2025 Wed Aug 27 02:48:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-e5eb356329c2efe66a41844ffc1fc3336d3f1babb95f1e6e8838b493d7b0fb213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9454-5284 0000-0002-1370-8820 0000-0001-6046-7110 0000-0001-5439-6942 0000-0001-8659-7482 0000-0003-2422-4677 |
| PQID | 2640432457 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2640432457 crossref_primary_10_1109_TIM_2022_3156996 crossref_citationtrail_10_1109_TIM_2022_3156996 ieee_primary_9729237 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref24 ref23 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 Dobrea (ref18) 2014; 66 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1109/ACCESS.2020.3040421 – ident: ref1 doi: 10.1109/MEI.2019.8735667 – ident: ref20 doi: 10.1049/hve2.12071 – ident: ref17 doi: 10.1063/1.5115588 – ident: ref16 doi: 10.1109/TEI.1986.348921 – volume: 66 start-page: 1147 issue: 4 volume-title: Rom. Rep. Phys. year: 2014 ident: ref18 article-title: Optical and mass spectrometry diagnosis of a CO₂ microwave plasma discharge – ident: ref7 doi: 10.1016/j.ijepes.2020.105945 – ident: ref10 doi: 10.1109/MPE.2016.2542645 – ident: ref5 doi: 10.1109/JSEN.2019.2925848 – ident: ref8 doi: 10.1109/ACCESS.2020.3014371 – ident: ref19 doi: 10.1016/j.nima.2003.11.085 – ident: ref25 doi: 10.1109/TDEI.2018.006746 – ident: ref14 doi: 10.1109/CEIDP47102.2019.9009875 – ident: ref4 doi: 10.1109/TIM.2021.3097856 – ident: ref23 doi: 10.1109/ICEEI47359.2019.8988895 – ident: ref3 doi: 10.1109/TPWRD.2018.2880244 – ident: ref12 doi: 10.1088/1361-6463/aae458 – ident: ref11 doi: 10.1109/TPWRD.2020.3045281 – ident: ref21 doi: 10.1109/TDEI.2018.007127 – ident: ref9 doi: 10.1109/TDEI.2018.006930 – ident: ref24 doi: 10.3390/s17010177 – ident: ref6 doi: 10.1109/TPWRD.2019.2909830 – ident: ref13 doi: 10.1016/j.vibspec.2020.103114 – ident: ref15 doi: 10.1016/S0304-3886(01)00215-7 – ident: ref2 doi: 10.1109/TIM.2019.2926688 |
| SSID | ssj0007647 |
| Score | 2.3688066 |
| Snippet | Optical detection of partial discharge (PD) is an important means to diagnosis the insulation status of equipment. However, the current optical detection is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Carbon dioxide Cluster analysis Clustering C₄F₇N/CO₂ gas mixture Defects Diagnosis Discharge Discharges (electric) Energy distribution Gas mixtures Gases Gaussian mixture model (GMM) Insulation multispectral array Optical arrays Optical communication optical detection Optical fibers Optical filters Optical reflection partial discharge (PD) diagnosis Partial discharges Phase distribution Photomultiplier tubes Probabilistic models Sensor arrays |
| Title | Application of a Partial Discharge Diagnosis Method Based on the Novel Multispectral Array Sensor and GMM in Different Insulating Gases |
| URI | https://ieeexplore.ieee.org/document/9729237 https://www.proquest.com/docview/2640432457 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB7agqAPVlvF0yp58EVw726T3WTz2Kr9IWwRbKFvS5KdwNGyK7d7gv0H-m87ye6dRUV8y0MmCcwkmS-Z-Qbgba4LLOrUJ45zlWRaYmLRm0Ryq2ttBfdDlO-5PL3MPl_lV1vwfpMLg4gx-AynoRn_8uvWrcJT2UyTJ8iF2oZtVcghV2tz6iqZDfyYKW1g8grWX5JzPbs4KwkIck74NJc60PPfu4JiTZU_DuJ4uxzvQrle1xBUcj1d9Xbqbn-jbPzfhT-Bx6ObyQ4Hu3gKW9jswaN75IN78CAGf7puH-4Of_1is9Yzw74EgyL5j4suUikhtWJI3qJjZaw5zY7o-qsZCZAHyc7b73jDYjJvTN1cxrmX5gf7SjC5XTLT1OykLNmioZGGkiw9Owtx8CbEXbMTGq17BpfHny4-nCZjgQbSrE77BHOC4rkUXDuOHqU0GQHGzHuXeieEkLXwqTXW6tynKLEoRGEzLWpl597yVDyHnaZt8AUwQqVKovR5YOTzRhlh0IeaHJ4gFndqArO1zio3speHIho3VUQxc12Rlqug5WrU8gTebSS-Dcwd_-i7H5S26TfqawIHa7Ooxq3dVeRBRhrDXL38u9QreBjGHt5pDmCnX67wNXkuvX0TTfYnlTnqvQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tixBw4LELorCAD1yQSNvYsRMfl8duC5sKia60t8hOxlLFKkFNigR_gL_N2EnLChDi5oPHtjRjez575huAF1JnmFWxi0rO0yjRCiOLzkSKW11pK7jro3wXanaevL-QF3vwapcLg4gh-AzHvhn-8qum3PinsokmT5CL9Bpcl0mSyD5ba3fupirpGTJj2sLkF2w_Jad6spznBAU5J4QqlfYE_VcuoVBV5Y-jONwvJ3ch366sDyv5PN50dlx-_4208X-Xfg_uDI4mO-4t4z7sYX0At6_QDx7AjRD-WbaH8OP41z82axwz7KM3KZJ_u2oDmRJSKwTlrVqWh6rT7DVdgBUjAfIh2aL5ipcspPOG5M11mHttvrFPBJSbNTN1xU7znK1qGqkvytKxuY-ENz7ymp3SaO0DOD95t3wzi4YSDaRbHXcRSgLjUgmuS44OlTIJQcbEuTJ2pRBCVcLF1lirpYtRYZaJzCZaVKmdOstj8RD266bGR8AIl6YKlZOek8-Z1AiDzlflcASyeJmOYLLVWVEO_OW-jMZlEXDMVBek5cJruRi0PIKXO4kvPXfHP_oeeqXt-g36GsHR1iyKYXO3BfmQgchQpo__LvUcbs6W-VlxNl98eAK3_Dz9q80R7HfrDT4lP6azz4L5_gQEkO4K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Partial+Discharge+Diagnosis+Method+Based+on+the+Novel+Multispectral+Array+Sensor+and+GMM+in+Different+Insulating+Gases&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zang%2C+Yiming&rft.au=Qian%2C+Yong&rft.au=Zhou%2C+Xiaoli&rft.au=Xu%2C+Antian&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3156996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3156996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |