Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning
Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 67; no. 1; pp. 185 - 195 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2017.2759418 |
Cover
| Abstract | Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and diagnostic expertise, and limited capacity for learning complex relationships in fault signals. Furthermore, following the increase in condition data, how to promptly process the massive fault data and automatically provide accurate diagnosis has become an urgent need to solve. Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines. In this paper, a nonlinear projection is applied to achieve the compressed acquisition, which not only reduces the amount of measured data that contained all the information of faults but also realizes the automatic feature extraction in transform domain. For exploring the discrimination hidden in the acquired data, a stacked sparse autoencoders-based deep neural network is established and performed with an unsupervised learning procedure followed by a supervised fine-tuning process. We studied the significance of compressed acquisition and provided the effects of key factors and comparison with traditional methods. The effectiveness of the proposed method is validated using data sets from rolling element bearings and the analysis shows that it is able to obtain high diagnotic accuracies and is superior to the existing methods. The proposed method reduces the need of human labor and expertise and provides new strategy to handle the massive data more easily. |
|---|---|
| AbstractList | Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and diagnostic expertise, and limited capacity for learning complex relationships in fault signals. Furthermore, following the increase in condition data, how to promptly process the massive fault data and automatically provide accurate diagnosis has become an urgent need to solve. Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines. In this paper, a nonlinear projection is applied to achieve the compressed acquisition, which not only reduces the amount of measured data that contained all the information of faults but also realizes the automatic feature extraction in transform domain. For exploring the discrimination hidden in the acquired data, a stacked sparse autoencoders-based deep neural network is established and performed with an unsupervised learning procedure followed by a supervised fine-tuning process. We studied the significance of compressed acquisition and provided the effects of key factors and comparison with traditional methods. The effectiveness of the proposed method is validated using data sets from rolling element bearings and the analysis shows that it is able to obtain high diagnotic accuracies and is superior to the existing methods. The proposed method reduces the need of human labor and expertise and provides new strategy to handle the massive data more easily. |
| Author | Changhong Yan Jiedi Sun Jiangtao Wen |
| Author_xml | – sequence: 1 givenname: Jiedi orcidid: 0000-0001-8725-6305 surname: Sun fullname: Sun, Jiedi – sequence: 2 givenname: Changhong surname: Yan fullname: Yan, Changhong – sequence: 3 givenname: Jiangtao surname: Wen fullname: Wen, Jiangtao |
| BookMark | eNp9kDFPwzAQRi1UJFpgR2KxxJxydhK7HktLoVIRC8yR61yKUeq0tjPw73FUxMDAdKfTe3enb0JGrnNIyA2DKWOg7t_WL1MOTE65LFXBZmdkzMpSZkoIPiJjADbLVFGKCzIJ4RMApCjkmGzXLmLb2h26SB9Qe-t2dKX7NtKl1TvXBRvoC8aPrqaLbr-1bgBSd_AYAtZ0qaOmc3PsbbDRdo5ql4aIB7pJ2wb6ipw3ug14_VMvyfvq8W3xnG1en9aL-SYzXLGY1U3OFRptpNTKmFIz4FCwGuomfdtIIaXksxq2teaFLgXmuTKqqHOAbVIxvyR3p70H3x17DLH67Hrv0smKc87yEkCIRIkTZXwXgsemMjbq4fPotW0rBtWQZ5XyrIY8q588kwh_xIO3e-2__lNuT4pFxF98BkoWTOTfZBqCkg |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1155_2021_9927151 crossref_primary_10_1007_s00521_021_06205_1 crossref_primary_10_1109_TSMC_2019_2932000 crossref_primary_10_1109_TIE_2018_2856193 crossref_primary_10_1109_TIM_2022_3214490 crossref_primary_10_1080_21642583_2024_2437157 crossref_primary_10_1109_ACCESS_2020_2972859 crossref_primary_10_1109_TIM_2020_2995441 crossref_primary_10_1007_s40430_020_02776_7 crossref_primary_10_1109_JIOT_2022_3151051 crossref_primary_10_1109_ACCESS_2019_2903295 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_3390_machines10121204 crossref_primary_10_1109_TIM_2022_3160533 crossref_primary_10_1109_TIM_2025_3545721 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1109_ACCESS_2024_3399670 crossref_primary_10_1109_JESTPE_2019_2930306 crossref_primary_10_1016_j_jsv_2024_118785 crossref_primary_10_1109_TIM_2019_2925247 crossref_primary_10_1016_j_engappai_2022_105540 crossref_primary_10_1088_1361_6501_abb38c crossref_primary_10_1109_TIM_2020_3035385 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_1109_ACCESS_2021_3089698 crossref_primary_10_1109_TIM_2023_3301895 crossref_primary_10_1016_j_knosys_2020_105971 crossref_primary_10_3390_s24072079 crossref_primary_10_1080_14484846_2023_2249144 crossref_primary_10_1109_ACCESS_2021_3108972 crossref_primary_10_1016_j_ymssp_2023_110338 crossref_primary_10_3390_machines10040249 crossref_primary_10_1109_ACCESS_2020_2992692 crossref_primary_10_1177_09596518241226461 crossref_primary_10_1109_ACCESS_2018_2886343 crossref_primary_10_1109_TIM_2020_2983233 crossref_primary_10_1049_rpg2_12383 crossref_primary_10_1109_TIM_2019_2917982 crossref_primary_10_1109_TIA_2020_2979383 crossref_primary_10_1109_TIM_2019_2962562 crossref_primary_10_1049_ipr2_70033 crossref_primary_10_1109_TMECH_2022_3223358 crossref_primary_10_1109_TIM_2020_2994012 crossref_primary_10_1007_s00500_018_3178_x crossref_primary_10_1088_1361_6501_abcad4 crossref_primary_10_1088_1361_6501_ab3678 crossref_primary_10_1109_TIM_2019_2923829 crossref_primary_10_3390_app11146452 crossref_primary_10_1109_ACCESS_2021_3058993 crossref_primary_10_1109_TIM_2020_2964911 crossref_primary_10_1016_j_procs_2021_01_345 crossref_primary_10_1080_15325008_2022_2136291 crossref_primary_10_1109_TIM_2021_3094619 crossref_primary_10_1080_17686733_2018_1539895 crossref_primary_10_1109_TIM_2021_3115207 crossref_primary_10_1109_TIM_2019_2902003 crossref_primary_10_1007_s43684_022_00031_5 crossref_primary_10_1109_TIM_2025_3527622 crossref_primary_10_1016_j_conengprac_2020_104358 crossref_primary_10_1088_1361_6501_acad1f crossref_primary_10_1109_TIM_2019_2956332 crossref_primary_10_3390_s21165532 crossref_primary_10_21595_jve_2023_23391 crossref_primary_10_1155_2021_9790053 crossref_primary_10_1108_RIA_03_2023_0035 crossref_primary_10_1109_TIM_2018_2868519 crossref_primary_10_1109_TIM_2018_2838178 crossref_primary_10_1002_cjce_25562 crossref_primary_10_1016_j_rinp_2022_105781 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_1016_j_apacoust_2023_109573 crossref_primary_10_1016_j_eswa_2023_119551 crossref_primary_10_1007_s43926_024_00055_8 crossref_primary_10_1109_TIM_2020_2998233 crossref_primary_10_1109_TIM_2019_2933342 crossref_primary_10_1109_TIM_2021_3112800 crossref_primary_10_1109_JIOT_2024_3363216 crossref_primary_10_3934_mbe_2021086 crossref_primary_10_1109_TTE_2021_3110318 crossref_primary_10_3390_en14185967 crossref_primary_10_1007_s12652_020_02239_w crossref_primary_10_1109_JSEN_2024_3496736 crossref_primary_10_1109_ACCESS_2019_2909756 crossref_primary_10_1109_TIM_2019_2913057 crossref_primary_10_1080_03772063_2020_1816223 crossref_primary_10_1109_MIM_2020_9200875 crossref_primary_10_1177_1748006X20965016 crossref_primary_10_34133_research_0176 crossref_primary_10_1109_TIM_2022_3203440 crossref_primary_10_1016_j_measurement_2022_111304 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1016_j_ymssp_2022_109886 crossref_primary_10_1080_08982112_2024_2385920 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1109_TIM_2021_3051948 crossref_primary_10_1007_s11760_024_03129_w crossref_primary_10_1109_TIE_2019_2912763 crossref_primary_10_1109_TII_2021_3073755 crossref_primary_10_1155_2021_1205473 crossref_primary_10_1109_ACCESS_2023_3244795 crossref_primary_10_1007_s13198_022_01843_7 crossref_primary_10_1007_s11761_024_00418_7 crossref_primary_10_3390_e23020162 crossref_primary_10_1109_TIM_2021_3122742 crossref_primary_10_1109_TIM_2023_3308256 crossref_primary_10_3390_app11062761 crossref_primary_10_1109_TIM_2020_3031198 crossref_primary_10_1080_21693277_2024_2305358 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_ACCESS_2021_3065195 crossref_primary_10_1109_TIM_2018_2885608 crossref_primary_10_1088_1361_6501_abf176 crossref_primary_10_3390_s22113997 crossref_primary_10_3934_mbe_2023242 crossref_primary_10_1016_j_iot_2024_101164 crossref_primary_10_1155_2021_3083190 crossref_primary_10_1109_TII_2022_3166790 crossref_primary_10_1109_TIM_2020_3023212 crossref_primary_10_1016_j_isatra_2020_11_005 crossref_primary_10_1109_ACCESS_2020_2987324 crossref_primary_10_1109_TIM_2024_3350143 crossref_primary_10_3390_s20205907 crossref_primary_10_1109_JSEN_2021_3086677 crossref_primary_10_3390_en13153834 crossref_primary_10_1016_j_measurement_2022_111203 crossref_primary_10_1109_ACCESS_2020_3021007 crossref_primary_10_1520_SSMS20190023 crossref_primary_10_1109_JSEN_2020_3021918 crossref_primary_10_3390_machines10050376 crossref_primary_10_1109_TIM_2021_3076575 crossref_primary_10_1109_TR_2022_3180273 crossref_primary_10_1007_s00170_021_07385_9 crossref_primary_10_1177_0959651820936969 crossref_primary_10_1093_jcde_qwac006 crossref_primary_10_3390_s21196579 crossref_primary_10_1109_TIM_2021_3096283 crossref_primary_10_21595_jve_2022_22796 crossref_primary_10_1007_s10462_022_10293_3 crossref_primary_10_1109_TIM_2023_3273686 crossref_primary_10_1134_S1061830923600016 crossref_primary_10_3390_s23188013 crossref_primary_10_1109_JIOT_2023_3307127 crossref_primary_10_1016_j_aei_2022_101708 crossref_primary_10_1016_j_measurement_2022_111597 crossref_primary_10_1109_ACCESS_2021_3083646 crossref_primary_10_1587_elex_21_20240633 crossref_primary_10_1109_JIOT_2024_3419251 crossref_primary_10_1088_1361_6501_ac8d20 crossref_primary_10_1016_j_asoc_2022_109335 crossref_primary_10_1109_JSEN_2019_2961942 crossref_primary_10_3390_s19081826 crossref_primary_10_1109_TIM_2019_2953436 crossref_primary_10_1007_s42417_022_00484_1 crossref_primary_10_1109_TIE_2019_2897510 crossref_primary_10_1007_s11760_025_03848_8 crossref_primary_10_1109_ACCESS_2018_2890566 crossref_primary_10_1016_j_isatra_2022_02_048 crossref_primary_10_1016_j_procir_2021_09_046 crossref_primary_10_1088_1361_6501_ab3a59 crossref_primary_10_1109_JSEN_2021_3131722 crossref_primary_10_1016_j_measurement_2019_06_029 crossref_primary_10_1109_TIM_2024_3502781 crossref_primary_10_1109_ACCESS_2018_2824352 crossref_primary_10_1109_TIM_2019_2932162 crossref_primary_10_1007_s12206_020_0306_1 crossref_primary_10_1088_1755_1315_1189_1_012011 crossref_primary_10_1109_JSEN_2023_3264870 crossref_primary_10_3390_app12199670 crossref_primary_10_1016_j_asej_2022_101945 crossref_primary_10_1016_j_measurement_2020_108500 crossref_primary_10_1016_j_isatra_2019_05_021 crossref_primary_10_1088_1742_6596_2146_1_012012 crossref_primary_10_1109_JSEN_2024_3419118 crossref_primary_10_1088_1361_6501_ac471d crossref_primary_10_1109_ACCESS_2024_3350785 crossref_primary_10_3390_s20143949 crossref_primary_10_1177_14759217221139642 crossref_primary_10_1109_TIM_2018_2872610 crossref_primary_10_3390_en16083429 crossref_primary_10_3390_s22072641 crossref_primary_10_1016_j_engappai_2022_105498 crossref_primary_10_3390_app12041878 crossref_primary_10_1016_j_measurement_2021_109452 crossref_primary_10_1109_TIM_2021_3071232 crossref_primary_10_1016_j_eswa_2021_115087 crossref_primary_10_1109_TIM_2020_3025396 crossref_primary_10_1109_JSEN_2019_2939360 crossref_primary_10_1007_s12206_019_0504_x crossref_primary_10_1177_09544062241283331 crossref_primary_10_1088_1757_899X_790_1_012066 crossref_primary_10_1007_s00500_022_06755_z crossref_primary_10_3390_s22093314 crossref_primary_10_1016_j_future_2020_02_032 crossref_primary_10_1109_TIM_2019_2929669 crossref_primary_10_1109_ACCESS_2019_2951409 crossref_primary_10_1007_s00521_022_07657_9 crossref_primary_10_3390_app12042158 crossref_primary_10_3390_app10051680 crossref_primary_10_1088_1361_6501_ac3627 crossref_primary_10_1016_j_asoc_2024_112033 crossref_primary_10_1109_JSEN_2023_3264853 crossref_primary_10_3390_e25121648 crossref_primary_10_1109_TIM_2023_3311062 crossref_primary_10_1109_TIM_2019_2933119 crossref_primary_10_1109_TIM_2020_3045798 crossref_primary_10_1109_TIM_2019_2895495 crossref_primary_10_3390_s20061774 crossref_primary_10_1109_JSEN_2020_2976523 crossref_primary_10_1007_s42791_019_0016_y crossref_primary_10_1016_j_asoc_2023_110870 crossref_primary_10_1109_TIM_2020_3028402 crossref_primary_10_1109_TIM_2024_3451601 crossref_primary_10_3390_en17153723 crossref_primary_10_1109_JSEN_2022_3163425 crossref_primary_10_1016_j_measurement_2021_110213 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1109_TIM_2022_3216593 crossref_primary_10_1007_s00500_023_09068_x crossref_primary_10_1109_TTE_2022_3225312 crossref_primary_10_3390_en14217017 crossref_primary_10_1016_j_measurement_2023_113062 crossref_primary_10_1016_j_ymssp_2024_111331 crossref_primary_10_1016_j_measurement_2018_08_002 crossref_primary_10_1109_TDEI_2023_3339114 crossref_primary_10_1016_j_asoc_2021_108207 crossref_primary_10_1088_1361_6501_abf30b crossref_primary_10_1109_ACCESS_2021_3059221 crossref_primary_10_3390_s19235222 crossref_primary_10_1109_TIM_2020_2998888 crossref_primary_10_1109_TIM_2019_2890933 crossref_primary_10_1109_TIM_2018_2884450 crossref_primary_10_1109_TIM_2020_3011874 crossref_primary_10_3390_s24030941 crossref_primary_10_1016_j_autcon_2021_103823 crossref_primary_10_1109_TIM_2022_3212542 crossref_primary_10_1002_adts_202301090 crossref_primary_10_1016_j_ress_2022_108900 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_1016_j_measurement_2020_108786 crossref_primary_10_1016_j_measurement_2024_114382 crossref_primary_10_1109_ACCESS_2019_2954170 crossref_primary_10_1007_s10845_023_02176_3 crossref_primary_10_1109_TII_2020_3030967 crossref_primary_10_1016_j_engappai_2023_106181 crossref_primary_10_3390_mi14010154 crossref_primary_10_1109_TIM_2022_3222494 crossref_primary_10_1109_TIM_2023_3269122 crossref_primary_10_1109_TII_2023_3264111 crossref_primary_10_1109_TIM_2020_3009341 crossref_primary_10_1002_stc_2714 crossref_primary_10_1109_TIM_2021_3055821 crossref_primary_10_1109_TIM_2024_3385039 crossref_primary_10_1109_TCYB_2022_3178116 crossref_primary_10_36306_konjes_1049489 crossref_primary_10_1109_TIM_2019_2896370 crossref_primary_10_1007_s11071_023_08877_x crossref_primary_10_1016_j_ress_2023_109705 crossref_primary_10_1515_mt_2023_0334 crossref_primary_10_1016_j_measurement_2021_109127 crossref_primary_10_1109_TIM_2021_3067218 crossref_primary_10_1109_TIM_2024_3352702 crossref_primary_10_1109_TMECH_2022_3179289 crossref_primary_10_3390_app112411732 crossref_primary_10_1109_TIM_2023_3269112 crossref_primary_10_1109_ACCESS_2019_2916461 crossref_primary_10_1109_JSEN_2022_3173446 crossref_primary_10_1049_iet_gtd_2019_0743 crossref_primary_10_1016_j_engappai_2023_107126 crossref_primary_10_1109_JSEN_2020_3004515 crossref_primary_10_2478_amns_2025_0339 crossref_primary_10_1115_1_4046337 crossref_primary_10_1177_14759217221075241 crossref_primary_10_1016_j_compchemeng_2023_108391 crossref_primary_10_1016_j_eswa_2021_116197 crossref_primary_10_1109_TIM_2024_3457938 crossref_primary_10_1016_j_jsv_2023_117604 crossref_primary_10_1109_TSMC_2020_3005433 crossref_primary_10_3390_sym16050512 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_3390_s22239037 crossref_primary_10_1109_TIM_2022_3216366 |
| Cites_doi | 10.1109/TASL.2011.2134090 10.1016/j.eswa.2011.08.004 10.1016/j.asoc.2016.05.015 10.1016/j.ymssp.2013.07.006 10.1109/TPEL.2014.2358494 10.1162/neco.2006.18.7.1527 10.1016/j.chaos.2015.06.018 10.1109/TIM.2014.2330494 10.1016/j.measurement.2015.02.046 10.1016/j.engappai.2016.08.011 10.1109/TIM.2013.2245180 10.1016/j.ymssp.2015.08.030 10.1109/TBME.2012.2226175 10.1109/MSP.2007.914730 10.1109/TIE.2016.2582729 10.1109/TIM.2017.2654578 10.1016/j.ymssp.2011.08.002 10.1038/nature14539 10.1109/TIM.2017.2664599 10.1016/j.ymssp.2015.04.021 10.1111/j.1365-246X.2007.03698.x 10.1007/s11263-015-0816-y 10.1109/TIE.2013.2273471 10.1016/j.measurement.2016.04.007 10.1016/j.ymssp.2011.10.016 10.1109/TIE.2016.2519325 10.1109/ACCESS.2014.2325029 10.1016/j.neunet.2014.09.003 10.1109/TIM.2015.2450352 10.1109/LGRS.2014.2361313 10.1016/j.knosys.2016.12.012 10.1016/j.ymssp.2006.12.007 10.1016/j.ymssp.2013.06.004 10.1109/MSP.2007.914728 10.1016/j.measurement.2012.12.011 10.1016/j.neucom.2015.04.069 10.1016/j.ymssp.2015.10.025 10.1109/TPAMI.2013.50 10.1016/j.eswa.2010.02.118 10.1016/j.sigpro.2016.07.028 10.1109/TIT.2005.862083 10.1109/TIT.2006.871582 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2017.2759418 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 195 |
| ExternalDocumentID | 10_1109_TIM_2017_2759418 8097416 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hebei Province of China grantid: E2016203223; E2013203300 funderid: 10.13039/501100003787 – fundername: National Natural Science Foundation of China grantid: 51204145 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M RIG |
| ID | FETCH-LOGICAL-c291t-df329ecac77a9cc5a102041d0df000f7677728d0bda24a56e339c94d300bf32e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:18:59 EDT 2025 Wed Oct 01 02:46:05 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Tue Aug 26 16:59:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-df329ecac77a9cc5a102041d0df000f7677728d0bda24a56e339c94d300bf32e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8725-6305 |
| PQID | 2221350066 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_8097416 crossref_citationtrail_10_1109_TIM_2017_2759418 proquest_journals_2221350066 crossref_primary_10_1109_TIM_2017_2759418 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan. 2018-1-00 20180101 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref34 doi: 10.1109/TASL.2011.2134090 – ident: ref12 doi: 10.1016/j.eswa.2011.08.004 – ident: ref15 doi: 10.1016/j.asoc.2016.05.015 – ident: ref8 doi: 10.1016/j.ymssp.2013.07.006 – ident: ref14 doi: 10.1109/TPEL.2014.2358494 – ident: ref41 doi: 10.1162/neco.2006.18.7.1527 – ident: ref6 doi: 10.1016/j.chaos.2015.06.018 – ident: ref7 doi: 10.1109/TIM.2014.2330494 – ident: ref30 doi: 10.1016/j.measurement.2015.02.046 – ident: ref18 doi: 10.1016/j.engappai.2016.08.011 – ident: ref3 doi: 10.1109/TIM.2013.2245180 – ident: ref19 doi: 10.1016/j.ymssp.2015.08.030 – ident: ref28 doi: 10.1109/TBME.2012.2226175 – ident: ref23 doi: 10.1109/MSP.2007.914730 – ident: ref37 doi: 10.1109/TIE.2016.2582729 – ident: ref26 doi: 10.1109/TIM.2017.2654578 – ident: ref10 doi: 10.1016/j.ymssp.2011.08.002 – ident: ref33 doi: 10.1038/nature14539 – ident: ref9 doi: 10.1109/TIM.2017.2664599 – ident: ref42 doi: 10.1016/j.ymssp.2015.04.021 – ident: ref25 doi: 10.1111/j.1365-246X.2007.03698.x – ident: ref35 doi: 10.1007/s11263-015-0816-y – ident: ref2 doi: 10.1109/TIE.2013.2273471 – ident: ref36 doi: 10.1016/j.measurement.2016.04.007 – ident: ref5 doi: 10.1016/j.ymssp.2011.10.016 – ident: ref21 doi: 10.1109/TIE.2016.2519325 – ident: ref20 doi: 10.1109/ACCESS.2014.2325029 – ident: ref31 doi: 10.1016/j.neunet.2014.09.003 – ident: ref13 doi: 10.1109/TIM.2015.2450352 – ident: ref27 doi: 10.1109/LGRS.2014.2361313 – ident: ref38 doi: 10.1016/j.knosys.2016.12.012 – ident: ref17 doi: 10.1016/j.ymssp.2006.12.007 – ident: ref1 doi: 10.1016/j.ymssp.2013.06.004 – ident: ref24 doi: 10.1109/MSP.2007.914728 – ident: ref4 doi: 10.1016/j.measurement.2012.12.011 – ident: ref16 doi: 10.1016/j.neucom.2015.04.069 – ident: ref40 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref32 doi: 10.1109/TPAMI.2013.50 – ident: ref11 doi: 10.1016/j.eswa.2010.02.118 – ident: ref39 doi: 10.1016/j.sigpro.2016.07.028 – ident: ref29 doi: 10.1109/TIT.2005.862083 – ident: ref22 doi: 10.1109/TIT.2006.871582 |
| SSID | ssj0007647 |
| Score | 2.6463962 |
| Snippet | Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 185 |
| SubjectTerms | Artificial neural networks Bearing fault Compressed sensing compressed sensing (CS) Data acquisition Deep learning deep neural network (DNN) Dependence Diagnostic systems Fault diagnosis Feature extraction intelligent diagnosis Machine learning Machinery condition monitoring Neural networks Roller bearings Rotating machinery Rotating machines Signal processing stacked sparse autoencoder (SSAE) Time-domain analysis Vibration monitoring |
| Title | Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning |
| URI | https://ieeexplore.ieee.org/document/8097416 https://www.proquest.com/docview/2221350066 |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD44QdAHL1NxOiUPvgh2S9u0aR69DSfMpwm-ldwqw9FN1774603SC6IivoU2KaHnJPmSfOc7AOeBSDLBEuJJP1YeoQR7DMfCi8xqwBWjVsTNsi0e4_sn8vAcPa_BZRsLo7V25DM9sEV3l68WsrRHZcMEMwsgOtChSVzFarWzLo1JpY_pmwFsUEFzJYnZcDqeWA4XHQQ0YsSm9_iyBLmcKj8mYre6jHZg0vSrIpW8DspCDOTHN8nG_3Z8F7ZrmImuKr_YgzWdd2Hri_hgFzYc-VOu9kGMW13OAl0b1zfv0YiX8wLdVky82QpNXKppZOYP4XJK2JIj0WqFbnnB0ZV8K2cVAwzx3DzUeolq-daXA3ga3U1v7r0694InA-YXnsrCgGnJJaWcSRlx30bR-gqrzPzsjMbUwPJEYaF4QHgU6zBkkhEVYixMUx0ewnq-yPURIOL7kiopcaYys9nBiaJJlJkvGXBHAhz2YNiYI5W1MLnNjzFP3QYFs9QYMLUGTGsD9uCibbGsRDn-qLtv7dHWq03Rg35j8bQetavUYCU_jCwKO_691QlsBtbB3BFMH9aL91KfGlBSiDPnjZ80xtxt |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHdkRZfeCCRFonseP4yFa1QDkViVvkLagClaXJha_HdtIIAULcrMSOrMzYfrbfvAE4jmSaS56SQIWJDggjOOA4kQG1q4HQnDkRN8e2uEt69-T6gT7MwGkTC2OM8eQz03ZFf5evX1Tpjso6KeYOQMzCPCWE0Cpaq5l3WUIqhczQDmGLC6aXkph3hv2BY3GxdsQoJy7Bx5dFyGdV-TEV-_WluwqDac8qWslTuyxkW318E238b9fXYKUGmuis8ox1mDHjDVj-Ij-4AQue_qkmmyD7jTJngc6t89v3qCvK5wJdVly80QQNfLJpZGcQ6bNKuJKn0RqNLkUh0Jl6K0cVBwyJsX1ozCuqBVwft-C-ezW86AV19oVARTwsAp3HETdKKMYEV4qK0MXRhhrr3P7snCXMAvNUY6lFRARNTBxzxYmOMZa2qYm3YW78MjY7gEgYKqaVwrnO7XYHp5qlNLdfsvCORDhuQWdqjkzV0uQuQ8Zz5rcomGfWgJkzYFYbsAUnTYvXSpbjj7qbzh5NvdoULdifWjyrx-0ks2gpjKnDYbu_tzqCxd5wcJvd9u9u9mApcs7mD2T2Ya54L82BhSiFPPSe-QnnsN-6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Bearing+Fault+Diagnosis+Method+Combining+Compressed+Data+Acquisition+and+Deep+Learning&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiedi+Sun&rft.au=Changhong+Yan&rft.au=Jiangtao+Wen&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=67&rft.issue=1&rft.spage=185&rft.epage=195&rft_id=info:doi/10.1109%2FTIM.2017.2759418&rft.externalDocID=8097416 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |