Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning

Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 67; no. 1; pp. 185 - 195
Main Authors Sun, Jiedi, Yan, Changhong, Wen, Jiangtao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2017.2759418

Cover

Abstract Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and diagnostic expertise, and limited capacity for learning complex relationships in fault signals. Furthermore, following the increase in condition data, how to promptly process the massive fault data and automatically provide accurate diagnosis has become an urgent need to solve. Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines. In this paper, a nonlinear projection is applied to achieve the compressed acquisition, which not only reduces the amount of measured data that contained all the information of faults but also realizes the automatic feature extraction in transform domain. For exploring the discrimination hidden in the acquired data, a stacked sparse autoencoders-based deep neural network is established and performed with an unsupervised learning procedure followed by a supervised fine-tuning process. We studied the significance of compressed acquisition and provided the effects of key factors and comparison with traditional methods. The effectiveness of the proposed method is validated using data sets from rolling element bearings and the analysis shows that it is able to obtain high diagnotic accuracies and is superior to the existing methods. The proposed method reduces the need of human labor and expertise and provides new strategy to handle the massive data more easily.
AbstractList Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain vibration-based fault diagnosis has some deficiencies, such as complex computation of feature vectors, excessive dependence on prior knowledge and diagnostic expertise, and limited capacity for learning complex relationships in fault signals. Furthermore, following the increase in condition data, how to promptly process the massive fault data and automatically provide accurate diagnosis has become an urgent need to solve. Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines. In this paper, a nonlinear projection is applied to achieve the compressed acquisition, which not only reduces the amount of measured data that contained all the information of faults but also realizes the automatic feature extraction in transform domain. For exploring the discrimination hidden in the acquired data, a stacked sparse autoencoders-based deep neural network is established and performed with an unsupervised learning procedure followed by a supervised fine-tuning process. We studied the significance of compressed acquisition and provided the effects of key factors and comparison with traditional methods. The effectiveness of the proposed method is validated using data sets from rolling element bearings and the analysis shows that it is able to obtain high diagnotic accuracies and is superior to the existing methods. The proposed method reduces the need of human labor and expertise and provides new strategy to handle the massive data more easily.
Author Changhong Yan
Jiedi Sun
Jiangtao Wen
Author_xml – sequence: 1
  givenname: Jiedi
  orcidid: 0000-0001-8725-6305
  surname: Sun
  fullname: Sun, Jiedi
– sequence: 2
  givenname: Changhong
  surname: Yan
  fullname: Yan, Changhong
– sequence: 3
  givenname: Jiangtao
  surname: Wen
  fullname: Wen, Jiangtao
BookMark eNp9kDFPwzAQRi1UJFpgR2KxxJxydhK7HktLoVIRC8yR61yKUeq0tjPw73FUxMDAdKfTe3enb0JGrnNIyA2DKWOg7t_WL1MOTE65LFXBZmdkzMpSZkoIPiJjADbLVFGKCzIJ4RMApCjkmGzXLmLb2h26SB9Qe-t2dKX7NtKl1TvXBRvoC8aPrqaLbr-1bgBSd_AYAtZ0qaOmc3PsbbDRdo5ql4aIB7pJ2wb6ipw3ug14_VMvyfvq8W3xnG1en9aL-SYzXLGY1U3OFRptpNTKmFIz4FCwGuomfdtIIaXksxq2teaFLgXmuTKqqHOAbVIxvyR3p70H3x17DLH67Hrv0smKc87yEkCIRIkTZXwXgsemMjbq4fPotW0rBtWQZ5XyrIY8q588kwh_xIO3e-2__lNuT4pFxF98BkoWTOTfZBqCkg
CODEN IEIMAO
CitedBy_id crossref_primary_10_1155_2021_9927151
crossref_primary_10_1007_s00521_021_06205_1
crossref_primary_10_1109_TSMC_2019_2932000
crossref_primary_10_1109_TIE_2018_2856193
crossref_primary_10_1109_TIM_2022_3214490
crossref_primary_10_1080_21642583_2024_2437157
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1109_TIM_2020_2995441
crossref_primary_10_1007_s40430_020_02776_7
crossref_primary_10_1109_JIOT_2022_3151051
crossref_primary_10_1109_ACCESS_2019_2903295
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_3390_machines10121204
crossref_primary_10_1109_TIM_2022_3160533
crossref_primary_10_1109_TIM_2025_3545721
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1109_ACCESS_2024_3399670
crossref_primary_10_1109_JESTPE_2019_2930306
crossref_primary_10_1016_j_jsv_2024_118785
crossref_primary_10_1109_TIM_2019_2925247
crossref_primary_10_1016_j_engappai_2022_105540
crossref_primary_10_1088_1361_6501_abb38c
crossref_primary_10_1109_TIM_2020_3035385
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_1109_ACCESS_2021_3089698
crossref_primary_10_1109_TIM_2023_3301895
crossref_primary_10_1016_j_knosys_2020_105971
crossref_primary_10_3390_s24072079
crossref_primary_10_1080_14484846_2023_2249144
crossref_primary_10_1109_ACCESS_2021_3108972
crossref_primary_10_1016_j_ymssp_2023_110338
crossref_primary_10_3390_machines10040249
crossref_primary_10_1109_ACCESS_2020_2992692
crossref_primary_10_1177_09596518241226461
crossref_primary_10_1109_ACCESS_2018_2886343
crossref_primary_10_1109_TIM_2020_2983233
crossref_primary_10_1049_rpg2_12383
crossref_primary_10_1109_TIM_2019_2917982
crossref_primary_10_1109_TIA_2020_2979383
crossref_primary_10_1109_TIM_2019_2962562
crossref_primary_10_1049_ipr2_70033
crossref_primary_10_1109_TMECH_2022_3223358
crossref_primary_10_1109_TIM_2020_2994012
crossref_primary_10_1007_s00500_018_3178_x
crossref_primary_10_1088_1361_6501_abcad4
crossref_primary_10_1088_1361_6501_ab3678
crossref_primary_10_1109_TIM_2019_2923829
crossref_primary_10_3390_app11146452
crossref_primary_10_1109_ACCESS_2021_3058993
crossref_primary_10_1109_TIM_2020_2964911
crossref_primary_10_1016_j_procs_2021_01_345
crossref_primary_10_1080_15325008_2022_2136291
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1080_17686733_2018_1539895
crossref_primary_10_1109_TIM_2021_3115207
crossref_primary_10_1109_TIM_2019_2902003
crossref_primary_10_1007_s43684_022_00031_5
crossref_primary_10_1109_TIM_2025_3527622
crossref_primary_10_1016_j_conengprac_2020_104358
crossref_primary_10_1088_1361_6501_acad1f
crossref_primary_10_1109_TIM_2019_2956332
crossref_primary_10_3390_s21165532
crossref_primary_10_21595_jve_2023_23391
crossref_primary_10_1155_2021_9790053
crossref_primary_10_1108_RIA_03_2023_0035
crossref_primary_10_1109_TIM_2018_2868519
crossref_primary_10_1109_TIM_2018_2838178
crossref_primary_10_1002_cjce_25562
crossref_primary_10_1016_j_rinp_2022_105781
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_1016_j_apacoust_2023_109573
crossref_primary_10_1016_j_eswa_2023_119551
crossref_primary_10_1007_s43926_024_00055_8
crossref_primary_10_1109_TIM_2020_2998233
crossref_primary_10_1109_TIM_2019_2933342
crossref_primary_10_1109_TIM_2021_3112800
crossref_primary_10_1109_JIOT_2024_3363216
crossref_primary_10_3934_mbe_2021086
crossref_primary_10_1109_TTE_2021_3110318
crossref_primary_10_3390_en14185967
crossref_primary_10_1007_s12652_020_02239_w
crossref_primary_10_1109_JSEN_2024_3496736
crossref_primary_10_1109_ACCESS_2019_2909756
crossref_primary_10_1109_TIM_2019_2913057
crossref_primary_10_1080_03772063_2020_1816223
crossref_primary_10_1109_MIM_2020_9200875
crossref_primary_10_1177_1748006X20965016
crossref_primary_10_34133_research_0176
crossref_primary_10_1109_TIM_2022_3203440
crossref_primary_10_1016_j_measurement_2022_111304
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_ymssp_2022_109886
crossref_primary_10_1080_08982112_2024_2385920
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1109_TIM_2021_3051948
crossref_primary_10_1007_s11760_024_03129_w
crossref_primary_10_1109_TIE_2019_2912763
crossref_primary_10_1109_TII_2021_3073755
crossref_primary_10_1155_2021_1205473
crossref_primary_10_1109_ACCESS_2023_3244795
crossref_primary_10_1007_s13198_022_01843_7
crossref_primary_10_1007_s11761_024_00418_7
crossref_primary_10_3390_e23020162
crossref_primary_10_1109_TIM_2021_3122742
crossref_primary_10_1109_TIM_2023_3308256
crossref_primary_10_3390_app11062761
crossref_primary_10_1109_TIM_2020_3031198
crossref_primary_10_1080_21693277_2024_2305358
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_ACCESS_2021_3065195
crossref_primary_10_1109_TIM_2018_2885608
crossref_primary_10_1088_1361_6501_abf176
crossref_primary_10_3390_s22113997
crossref_primary_10_3934_mbe_2023242
crossref_primary_10_1016_j_iot_2024_101164
crossref_primary_10_1155_2021_3083190
crossref_primary_10_1109_TII_2022_3166790
crossref_primary_10_1109_TIM_2020_3023212
crossref_primary_10_1016_j_isatra_2020_11_005
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_1109_TIM_2024_3350143
crossref_primary_10_3390_s20205907
crossref_primary_10_1109_JSEN_2021_3086677
crossref_primary_10_3390_en13153834
crossref_primary_10_1016_j_measurement_2022_111203
crossref_primary_10_1109_ACCESS_2020_3021007
crossref_primary_10_1520_SSMS20190023
crossref_primary_10_1109_JSEN_2020_3021918
crossref_primary_10_3390_machines10050376
crossref_primary_10_1109_TIM_2021_3076575
crossref_primary_10_1109_TR_2022_3180273
crossref_primary_10_1007_s00170_021_07385_9
crossref_primary_10_1177_0959651820936969
crossref_primary_10_1093_jcde_qwac006
crossref_primary_10_3390_s21196579
crossref_primary_10_1109_TIM_2021_3096283
crossref_primary_10_21595_jve_2022_22796
crossref_primary_10_1007_s10462_022_10293_3
crossref_primary_10_1109_TIM_2023_3273686
crossref_primary_10_1134_S1061830923600016
crossref_primary_10_3390_s23188013
crossref_primary_10_1109_JIOT_2023_3307127
crossref_primary_10_1016_j_aei_2022_101708
crossref_primary_10_1016_j_measurement_2022_111597
crossref_primary_10_1109_ACCESS_2021_3083646
crossref_primary_10_1587_elex_21_20240633
crossref_primary_10_1109_JIOT_2024_3419251
crossref_primary_10_1088_1361_6501_ac8d20
crossref_primary_10_1016_j_asoc_2022_109335
crossref_primary_10_1109_JSEN_2019_2961942
crossref_primary_10_3390_s19081826
crossref_primary_10_1109_TIM_2019_2953436
crossref_primary_10_1007_s42417_022_00484_1
crossref_primary_10_1109_TIE_2019_2897510
crossref_primary_10_1007_s11760_025_03848_8
crossref_primary_10_1109_ACCESS_2018_2890566
crossref_primary_10_1016_j_isatra_2022_02_048
crossref_primary_10_1016_j_procir_2021_09_046
crossref_primary_10_1088_1361_6501_ab3a59
crossref_primary_10_1109_JSEN_2021_3131722
crossref_primary_10_1016_j_measurement_2019_06_029
crossref_primary_10_1109_TIM_2024_3502781
crossref_primary_10_1109_ACCESS_2018_2824352
crossref_primary_10_1109_TIM_2019_2932162
crossref_primary_10_1007_s12206_020_0306_1
crossref_primary_10_1088_1755_1315_1189_1_012011
crossref_primary_10_1109_JSEN_2023_3264870
crossref_primary_10_3390_app12199670
crossref_primary_10_1016_j_asej_2022_101945
crossref_primary_10_1016_j_measurement_2020_108500
crossref_primary_10_1016_j_isatra_2019_05_021
crossref_primary_10_1088_1742_6596_2146_1_012012
crossref_primary_10_1109_JSEN_2024_3419118
crossref_primary_10_1088_1361_6501_ac471d
crossref_primary_10_1109_ACCESS_2024_3350785
crossref_primary_10_3390_s20143949
crossref_primary_10_1177_14759217221139642
crossref_primary_10_1109_TIM_2018_2872610
crossref_primary_10_3390_en16083429
crossref_primary_10_3390_s22072641
crossref_primary_10_1016_j_engappai_2022_105498
crossref_primary_10_3390_app12041878
crossref_primary_10_1016_j_measurement_2021_109452
crossref_primary_10_1109_TIM_2021_3071232
crossref_primary_10_1016_j_eswa_2021_115087
crossref_primary_10_1109_TIM_2020_3025396
crossref_primary_10_1109_JSEN_2019_2939360
crossref_primary_10_1007_s12206_019_0504_x
crossref_primary_10_1177_09544062241283331
crossref_primary_10_1088_1757_899X_790_1_012066
crossref_primary_10_1007_s00500_022_06755_z
crossref_primary_10_3390_s22093314
crossref_primary_10_1016_j_future_2020_02_032
crossref_primary_10_1109_TIM_2019_2929669
crossref_primary_10_1109_ACCESS_2019_2951409
crossref_primary_10_1007_s00521_022_07657_9
crossref_primary_10_3390_app12042158
crossref_primary_10_3390_app10051680
crossref_primary_10_1088_1361_6501_ac3627
crossref_primary_10_1016_j_asoc_2024_112033
crossref_primary_10_1109_JSEN_2023_3264853
crossref_primary_10_3390_e25121648
crossref_primary_10_1109_TIM_2023_3311062
crossref_primary_10_1109_TIM_2019_2933119
crossref_primary_10_1109_TIM_2020_3045798
crossref_primary_10_1109_TIM_2019_2895495
crossref_primary_10_3390_s20061774
crossref_primary_10_1109_JSEN_2020_2976523
crossref_primary_10_1007_s42791_019_0016_y
crossref_primary_10_1016_j_asoc_2023_110870
crossref_primary_10_1109_TIM_2020_3028402
crossref_primary_10_1109_TIM_2024_3451601
crossref_primary_10_3390_en17153723
crossref_primary_10_1109_JSEN_2022_3163425
crossref_primary_10_1016_j_measurement_2021_110213
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1109_TIM_2022_3216593
crossref_primary_10_1007_s00500_023_09068_x
crossref_primary_10_1109_TTE_2022_3225312
crossref_primary_10_3390_en14217017
crossref_primary_10_1016_j_measurement_2023_113062
crossref_primary_10_1016_j_ymssp_2024_111331
crossref_primary_10_1016_j_measurement_2018_08_002
crossref_primary_10_1109_TDEI_2023_3339114
crossref_primary_10_1016_j_asoc_2021_108207
crossref_primary_10_1088_1361_6501_abf30b
crossref_primary_10_1109_ACCESS_2021_3059221
crossref_primary_10_3390_s19235222
crossref_primary_10_1109_TIM_2020_2998888
crossref_primary_10_1109_TIM_2019_2890933
crossref_primary_10_1109_TIM_2018_2884450
crossref_primary_10_1109_TIM_2020_3011874
crossref_primary_10_3390_s24030941
crossref_primary_10_1016_j_autcon_2021_103823
crossref_primary_10_1109_TIM_2022_3212542
crossref_primary_10_1002_adts_202301090
crossref_primary_10_1016_j_ress_2022_108900
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_1016_j_measurement_2020_108786
crossref_primary_10_1016_j_measurement_2024_114382
crossref_primary_10_1109_ACCESS_2019_2954170
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1109_TII_2020_3030967
crossref_primary_10_1016_j_engappai_2023_106181
crossref_primary_10_3390_mi14010154
crossref_primary_10_1109_TIM_2022_3222494
crossref_primary_10_1109_TIM_2023_3269122
crossref_primary_10_1109_TII_2023_3264111
crossref_primary_10_1109_TIM_2020_3009341
crossref_primary_10_1002_stc_2714
crossref_primary_10_1109_TIM_2021_3055821
crossref_primary_10_1109_TIM_2024_3385039
crossref_primary_10_1109_TCYB_2022_3178116
crossref_primary_10_36306_konjes_1049489
crossref_primary_10_1109_TIM_2019_2896370
crossref_primary_10_1007_s11071_023_08877_x
crossref_primary_10_1016_j_ress_2023_109705
crossref_primary_10_1515_mt_2023_0334
crossref_primary_10_1016_j_measurement_2021_109127
crossref_primary_10_1109_TIM_2021_3067218
crossref_primary_10_1109_TIM_2024_3352702
crossref_primary_10_1109_TMECH_2022_3179289
crossref_primary_10_3390_app112411732
crossref_primary_10_1109_TIM_2023_3269112
crossref_primary_10_1109_ACCESS_2019_2916461
crossref_primary_10_1109_JSEN_2022_3173446
crossref_primary_10_1049_iet_gtd_2019_0743
crossref_primary_10_1016_j_engappai_2023_107126
crossref_primary_10_1109_JSEN_2020_3004515
crossref_primary_10_2478_amns_2025_0339
crossref_primary_10_1115_1_4046337
crossref_primary_10_1177_14759217221075241
crossref_primary_10_1016_j_compchemeng_2023_108391
crossref_primary_10_1016_j_eswa_2021_116197
crossref_primary_10_1109_TIM_2024_3457938
crossref_primary_10_1016_j_jsv_2023_117604
crossref_primary_10_1109_TSMC_2020_3005433
crossref_primary_10_3390_sym16050512
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_3390_s22239037
crossref_primary_10_1109_TIM_2022_3216366
Cites_doi 10.1109/TASL.2011.2134090
10.1016/j.eswa.2011.08.004
10.1016/j.asoc.2016.05.015
10.1016/j.ymssp.2013.07.006
10.1109/TPEL.2014.2358494
10.1162/neco.2006.18.7.1527
10.1016/j.chaos.2015.06.018
10.1109/TIM.2014.2330494
10.1016/j.measurement.2015.02.046
10.1016/j.engappai.2016.08.011
10.1109/TIM.2013.2245180
10.1016/j.ymssp.2015.08.030
10.1109/TBME.2012.2226175
10.1109/MSP.2007.914730
10.1109/TIE.2016.2582729
10.1109/TIM.2017.2654578
10.1016/j.ymssp.2011.08.002
10.1038/nature14539
10.1109/TIM.2017.2664599
10.1016/j.ymssp.2015.04.021
10.1111/j.1365-246X.2007.03698.x
10.1007/s11263-015-0816-y
10.1109/TIE.2013.2273471
10.1016/j.measurement.2016.04.007
10.1016/j.ymssp.2011.10.016
10.1109/TIE.2016.2519325
10.1109/ACCESS.2014.2325029
10.1016/j.neunet.2014.09.003
10.1109/TIM.2015.2450352
10.1109/LGRS.2014.2361313
10.1016/j.knosys.2016.12.012
10.1016/j.ymssp.2006.12.007
10.1016/j.ymssp.2013.06.004
10.1109/MSP.2007.914728
10.1016/j.measurement.2012.12.011
10.1016/j.neucom.2015.04.069
10.1016/j.ymssp.2015.10.025
10.1109/TPAMI.2013.50
10.1016/j.eswa.2010.02.118
10.1016/j.sigpro.2016.07.028
10.1109/TIT.2005.862083
10.1109/TIT.2006.871582
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2017.2759418
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 195
ExternalDocumentID 10_1109_TIM_2017_2759418
8097416
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province of China
  grantid: E2016203223; E2013203300
  funderid: 10.13039/501100003787
– fundername: National Natural Science Foundation of China
  grantid: 51204145
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
RIG
ID FETCH-LOGICAL-c291t-df329ecac77a9cc5a102041d0df000f7677728d0bda24a56e339c94d300bf32e3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:59 EDT 2025
Wed Oct 01 02:46:05 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Tue Aug 26 16:59:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-df329ecac77a9cc5a102041d0df000f7677728d0bda24a56e339c94d300bf32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8725-6305
PQID 2221350066
PQPubID 85462
PageCount 11
ParticipantIDs ieee_primary_8097416
crossref_citationtrail_10_1109_TIM_2017_2759418
proquest_journals_2221350066
crossref_primary_10_1109_TIM_2017_2759418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan.
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1109/TASL.2011.2134090
– ident: ref12
  doi: 10.1016/j.eswa.2011.08.004
– ident: ref15
  doi: 10.1016/j.asoc.2016.05.015
– ident: ref8
  doi: 10.1016/j.ymssp.2013.07.006
– ident: ref14
  doi: 10.1109/TPEL.2014.2358494
– ident: ref41
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref6
  doi: 10.1016/j.chaos.2015.06.018
– ident: ref7
  doi: 10.1109/TIM.2014.2330494
– ident: ref30
  doi: 10.1016/j.measurement.2015.02.046
– ident: ref18
  doi: 10.1016/j.engappai.2016.08.011
– ident: ref3
  doi: 10.1109/TIM.2013.2245180
– ident: ref19
  doi: 10.1016/j.ymssp.2015.08.030
– ident: ref28
  doi: 10.1109/TBME.2012.2226175
– ident: ref23
  doi: 10.1109/MSP.2007.914730
– ident: ref37
  doi: 10.1109/TIE.2016.2582729
– ident: ref26
  doi: 10.1109/TIM.2017.2654578
– ident: ref10
  doi: 10.1016/j.ymssp.2011.08.002
– ident: ref33
  doi: 10.1038/nature14539
– ident: ref9
  doi: 10.1109/TIM.2017.2664599
– ident: ref42
  doi: 10.1016/j.ymssp.2015.04.021
– ident: ref25
  doi: 10.1111/j.1365-246X.2007.03698.x
– ident: ref35
  doi: 10.1007/s11263-015-0816-y
– ident: ref2
  doi: 10.1109/TIE.2013.2273471
– ident: ref36
  doi: 10.1016/j.measurement.2016.04.007
– ident: ref5
  doi: 10.1016/j.ymssp.2011.10.016
– ident: ref21
  doi: 10.1109/TIE.2016.2519325
– ident: ref20
  doi: 10.1109/ACCESS.2014.2325029
– ident: ref31
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref13
  doi: 10.1109/TIM.2015.2450352
– ident: ref27
  doi: 10.1109/LGRS.2014.2361313
– ident: ref38
  doi: 10.1016/j.knosys.2016.12.012
– ident: ref17
  doi: 10.1016/j.ymssp.2006.12.007
– ident: ref1
  doi: 10.1016/j.ymssp.2013.06.004
– ident: ref24
  doi: 10.1109/MSP.2007.914728
– ident: ref4
  doi: 10.1016/j.measurement.2012.12.011
– ident: ref16
  doi: 10.1016/j.neucom.2015.04.069
– ident: ref40
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref32
  doi: 10.1109/TPAMI.2013.50
– ident: ref11
  doi: 10.1016/j.eswa.2010.02.118
– ident: ref39
  doi: 10.1016/j.sigpro.2016.07.028
– ident: ref29
  doi: 10.1109/TIT.2005.862083
– ident: ref22
  doi: 10.1109/TIT.2006.871582
SSID ssj0007647
Score 2.6463962
Snippet Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Artificial neural networks
Bearing fault
Compressed sensing
compressed sensing (CS)
Data acquisition
Deep learning
deep neural network (DNN)
Dependence
Diagnostic systems
Fault diagnosis
Feature extraction
intelligent diagnosis
Machine learning
Machinery condition monitoring
Neural networks
Roller bearings
Rotating machinery
Rotating machines
Signal processing
stacked sparse autoencoder (SSAE)
Time-domain analysis
Vibration monitoring
Title Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning
URI https://ieeexplore.ieee.org/document/8097416
https://www.proquest.com/docview/2221350066
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD44QdAHL1NxOiUPvgh2S9u0aR69DSfMpwm-ldwqw9FN1774603SC6IivoU2KaHnJPmSfOc7AOeBSDLBEuJJP1YeoQR7DMfCi8xqwBWjVsTNsi0e4_sn8vAcPa_BZRsLo7V25DM9sEV3l68WsrRHZcMEMwsgOtChSVzFarWzLo1JpY_pmwFsUEFzJYnZcDqeWA4XHQQ0YsSm9_iyBLmcKj8mYre6jHZg0vSrIpW8DspCDOTHN8nG_3Z8F7ZrmImuKr_YgzWdd2Hri_hgFzYc-VOu9kGMW13OAl0b1zfv0YiX8wLdVky82QpNXKppZOYP4XJK2JIj0WqFbnnB0ZV8K2cVAwzx3DzUeolq-daXA3ga3U1v7r0694InA-YXnsrCgGnJJaWcSRlx30bR-gqrzPzsjMbUwPJEYaF4QHgU6zBkkhEVYixMUx0ewnq-yPURIOL7kiopcaYys9nBiaJJlJkvGXBHAhz2YNiYI5W1MLnNjzFP3QYFs9QYMLUGTGsD9uCibbGsRDn-qLtv7dHWq03Rg35j8bQetavUYCU_jCwKO_691QlsBtbB3BFMH9aL91KfGlBSiDPnjZ80xtxt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHdkRZfeCCRFonseP4yFa1QDkViVvkLagClaXJha_HdtIIAULcrMSOrMzYfrbfvAE4jmSaS56SQIWJDggjOOA4kQG1q4HQnDkRN8e2uEt69-T6gT7MwGkTC2OM8eQz03ZFf5evX1Tpjso6KeYOQMzCPCWE0Cpaq5l3WUIqhczQDmGLC6aXkph3hv2BY3GxdsQoJy7Bx5dFyGdV-TEV-_WluwqDac8qWslTuyxkW318E238b9fXYKUGmuis8ox1mDHjDVj-Ij-4AQue_qkmmyD7jTJngc6t89v3qCvK5wJdVly80QQNfLJpZGcQ6bNKuJKn0RqNLkUh0Jl6K0cVBwyJsX1ozCuqBVwft-C-ezW86AV19oVARTwsAp3HETdKKMYEV4qK0MXRhhrr3P7snCXMAvNUY6lFRARNTBxzxYmOMZa2qYm3YW78MjY7gEgYKqaVwrnO7XYHp5qlNLdfsvCORDhuQWdqjkzV0uQuQ8Zz5rcomGfWgJkzYFYbsAUnTYvXSpbjj7qbzh5NvdoULdifWjyrx-0ks2gpjKnDYbu_tzqCxd5wcJvd9u9u9mApcs7mD2T2Ya54L82BhSiFPPSe-QnnsN-6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Bearing+Fault+Diagnosis+Method+Combining+Compressed+Data+Acquisition+and+Deep+Learning&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiedi+Sun&rft.au=Changhong+Yan&rft.au=Jiangtao+Wen&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=67&rft.issue=1&rft.spage=185&rft.epage=195&rft_id=info:doi/10.1109%2FTIM.2017.2759418&rft.externalDocID=8097416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon