Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed Wireless Access Links
Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss....
Saved in:
| Published in | IEEE transactions on signal processing Vol. 69; pp. 3268 - 3282 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2021.3076899 |
Cover
| Abstract | Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss. However, narrow beams increase sensitivity to physical perturbations caused by environmental factors. To address this issue, in this paper we propose a predictive transmit-receive beam alignment process. We construct an explicit mapping between transmit (or receive) beams and physical coordinates via a Gaussian process, which can incorporate environmental uncertainties. To make full use of underlying correlations between transmitter and receiver and accumulated experiences, we further construct a hierarchical Bayesian learning model and design an efficient beam predictive algorithm. To reduce dependency on physical position measurements, a reverse mapping that predicts physical coordinates from beam experiences is further constructed. The designed algorithms enjoy two folds of advantages. Firstly, thanks to Bayesian learning, a good performance can be achieved even for a small sample setting as low as 10 samples in our scenarios, which drastically reduces training time and is therefore very appealing for wireless communications. Secondly, in contrast to most existing algorithms that only predict one beam in each time-slot, the designed algorithms generate the most promising beam subset, which improves robustness to environment uncertainties. Simulation results demonstrate the effectiveness and superiority of the designed algorithms against the state of the art. |
|---|---|
| AbstractList | Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss. However, narrow beams increase sensitivity to physical perturbations caused by environmental factors. To address this issue, in this paper we propose a predictive transmit-receive beam alignment process. We construct an explicit mapping between transmit (or receive) beams and physical coordinates via a Gaussian process, which can incorporate environmental uncertainties. To make full use of underlying correlations between transmitter and receiver and accumulated experiences, we further construct a hierarchical Bayesian learning model and design an efficient beam predictive algorithm. To reduce dependency on physical position measurements, a reverse mapping that predicts physical coordinates from beam experiences is further constructed. The designed algorithms enjoy two folds of advantages. Firstly, thanks to Bayesian learning, a good performance can be achieved even for a small sample setting as low as 10 samples in our scenarios, which drastically reduces training time and is therefore very appealing for wireless communications. Secondly, in contrast to most existing algorithms that only predict one beam in each time-slot, the designed algorithms generate the most promising beam subset, which improves robustness to environment uncertainties. Simulation results demonstrate the effectiveness and superiority of the designed algorithms against the state of the art. |
| Author | Masouros, Christos Zhang, Jianjun |
| Author_xml | – sequence: 1 givenname: Jianjun orcidid: 0000-0002-4830-1959 surname: Zhang fullname: Zhang, Jianjun email: jianjun.zhang@ucl.ac.uk organization: Department of Electronic & Electrical Engineering, University College London, London, U.K – sequence: 2 givenname: Christos orcidid: 0000-0002-8259-6615 surname: Masouros fullname: Masouros, Christos email: c.masouros@ucl.ac.uk organization: Department of Electronic & Electrical Engineering, University College London, London, U.K |
| BookMark | eNp9kM9LwzAUx4NMcJveBS8Fz51JmjbLcRtOhYpDJ_NWkvZ1ZLbpTDLR_96MDQ8evLz3eHw_78d3gHqmM4DQJcEjQrC4Wb4sRhRTMkowz8ZCnKA-EYzEmPGsF2qcJnE65m9naODcBmPCmMj6qMlBWqPNOp5KB1W0sFDp0utPiJZWGtdq78HGz1BC6NloCrKNJo1emxaMj7SJHnXT6BaCKlrJgM31V5iz0hYacC6alOU-5dq8u3N0WsvGwcUxD9Hr_HY5u4_zp7uH2SSPSyqIjyulsJCMC05wEn5LWV1mqs5EeI0lSjKpGKeKpkwlooKK8RCkUopJDgAsGaLrw9yt7T524Hyx6XbWhJVFgAjLuGBpUGUHVWk75yzURam99Loz3krdFAQXe2eL4Gyxd7Y4OhtA_AfcWt1K-_0fcnVAdDjwVy4YpRST5Acp9Ict |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_COMST_2024_3361991 crossref_primary_10_1109_TCOMM_2023_3330878 crossref_primary_10_1109_TCOMM_2022_3184158 crossref_primary_10_1109_JSAC_2025_3531563 crossref_primary_10_3390_s23042280 crossref_primary_10_1109_ACCESS_2022_3161951 crossref_primary_10_1109_ACCESS_2024_3491870 crossref_primary_10_1109_TIFS_2023_3265341 crossref_primary_10_1109_TCOMM_2024_3395319 crossref_primary_10_1109_TSP_2024_3374548 |
| Cites_doi | 10.1109/TCOMM.2020.2988256 10.1109/ACCESS.2019.2902372 10.1109/LCOMM.2016.2544937 10.1109/JSAC.2019.2933967 10.1109/JSAC.2017.2719924 10.1109/JSTSP.2014.2334278 10.1109/TWC.2016.2520930 10.1109/TCOMM.2017.2730878 10.1109/ICC.2019.8761773 10.1109/TWC.2020.3038787 10.1109/TVT.2020.3020898 10.1109/ACCESS.2017.2753781 10.1109/INFOCOM.2018.8486279 10.1109/TWC.2020.3036945 10.1109/TVT.2019.2939400 10.1109/ACCESS.2018.2850226 10.1109/TWC.2014.011714.130846 10.1109/TVT.2017.2787627 10.1109/WCNC.2010.5506714 10.1109/TCOMM.2013.090513.120848 10.1109/TSP.2019.2949502 10.1109/ACCESS.2016.2631222 10.1109/GLOCOM.2018.8647890 10.1109/MCOM.001.1900076 10.1109/TWC.2015.2390637 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2021.3076899 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 3282 |
| ExternalDocumentID | 10_1109_TSP_2021_3076899 9422201 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council; Engineering, and Physical Sciences Research Council, U.K. grantid: EP/S028455/1 funderid: 10.13039/501100000266 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-dbb09a479710310954fc6bf6930743ba4ab472b254b39ded47dedabbb4a7eee43 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Sun Sep 07 08:10:37 EDT 2025 Wed Oct 01 03:34:36 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-dbb09a479710310954fc6bf6930743ba4ab472b254b39ded47dedabbb4a7eee43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8259-6615 0000-0002-4830-1959 |
| PQID | 2541467945 |
| PQPubID | 85478 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2541467945 ieee_primary_9422201 crossref_citationtrail_10_1109_TSP_2021_3076899 crossref_primary_10_1109_TSP_2021_3076899 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 alquier (ref26) 2015; 17 duvenaud (ref30) 2014 murphy (ref29) 2012 ref23 ref20 amit (ref32) 0 ref22 ref21 catoni (ref31) 2007; 56 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 rasmussen (ref25) 2006 wilson (ref24) 0; 51 |
| References_xml | – ident: ref19 doi: 10.1109/TCOMM.2020.2988256 – ident: ref15 doi: 10.1109/ACCESS.2019.2902372 – ident: ref7 doi: 10.1109/LCOMM.2016.2544937 – ident: ref20 doi: 10.1109/JSAC.2019.2933967 – year: 2014 ident: ref30 article-title: Automatic model construction with Gaussian processes – ident: ref2 doi: 10.1109/JSAC.2017.2719924 – volume: 56 start-page: 1 year: 2007 ident: ref31 article-title: Pac-Bayesian supervised classification: The thermodynamics of statistical learning publication-title: Lecture Notes Monograph Series – ident: ref5 doi: 10.1109/JSTSP.2014.2334278 – ident: ref8 doi: 10.1109/TWC.2016.2520930 – ident: ref6 doi: 10.1109/TCOMM.2017.2730878 – ident: ref17 doi: 10.1109/ICC.2019.8761773 – ident: ref28 doi: 10.1109/TWC.2020.3038787 – ident: ref21 doi: 10.1109/TVT.2020.3020898 – ident: ref13 doi: 10.1109/ACCESS.2017.2753781 – ident: ref16 doi: 10.1109/INFOCOM.2018.8486279 – ident: ref23 doi: 10.1109/TWC.2020.3036945 – ident: ref14 doi: 10.1109/TVT.2019.2939400 – ident: ref10 doi: 10.1109/ACCESS.2018.2850226 – ident: ref27 doi: 10.1109/TWC.2014.011714.130846 – volume: 51 start-page: 370 year: 0 ident: ref24 article-title: Deep kernel learning publication-title: Proc 19th Int Conf Artif Intell Statist ser Proc Mach Learn Res – ident: ref11 doi: 10.1109/TVT.2017.2787627 – ident: ref3 doi: 10.1109/WCNC.2010.5506714 – volume: 17 start-page: 8374 year: 2015 ident: ref26 article-title: On the properties of variational approximations of gibbs posteriors publication-title: J Mach Learn Res – year: 2012 ident: ref29 publication-title: Machine Learning A Probabilistic Perspective – ident: ref4 doi: 10.1109/TCOMM.2013.090513.120848 – year: 2006 ident: ref25 publication-title: Gaussian Processes for Machine Learning – ident: ref22 doi: 10.1109/TSP.2019.2949502 – ident: ref12 doi: 10.1109/ACCESS.2016.2631222 – ident: ref18 doi: 10.1109/GLOCOM.2018.8647890 – ident: ref1 doi: 10.1109/MCOM.001.1900076 – ident: ref9 doi: 10.1109/TWC.2015.2390637 – start-page: 205 year: 0 ident: ref32 article-title: Meta-learning by adjusting priors based on extended PAC-bayes theory publication-title: Proc Int Conf Mach Learn |
| SSID | ssj0014496 |
| Score | 2.4613895 |
| Snippet | Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3268 |
| SubjectTerms | Algorithms Alignment Antenna arrays Array signal processing Bayes methods Bayesian analysis Bayesian learning Beam alignment beam prediction beam training Beamforming Correlation fixed wireless access Gaussian beams (optics) Gaussian process Gaussian processes Machine learning Mapping millimeter wave communications Millimeter waves Perturbation Position measurement Prediction algorithms Signal processing algorithms Training Transceivers Uncertainty Wireless communication Wireless communications |
| Title | Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed Wireless Access Links |
| URI | https://ieeexplore.ieee.org/document/9422201 https://www.proquest.com/docview/2541467945 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qSQ--xWqVHLwIpt1HutkcW7GIoAgq9rZkdhNZbKtoC-Kvdya7raIiXpY9ZEKWyc575mPsCAVcbB16qs4mICTkUkAYO5FIh_ohVyYw1I18eZWc38mLQWewwE7mvTDWWl98Zlv06nP5xVM-pVBZW1O8gpq1FlWaVL1a84yBlB6LC82FWHRSNZilJAPdvr25RkcwClsxpZ38lNdPFeQxVX4IYq9d-mvscnauqqjksTWdQCt__zay8b8HX2ertZnJu9W92GALdrzJVr4MH9xiw3q06oPooSYr-PUL5WxI-nGvwEYlNfoItCst1W7wnjUj3h2WD75-gJdjTn2E5Yjqafi9QbJ--Yb7UD3tEOUn73osRk7e7us2u-uf3Z6eixp7QeSRDieiAAi0kUqr0A8P7UiXJ-AIOBFtDjDSgFQRoHsJsS5sIRU-DABIo_DzZbzDlsZPY7vLuNXKUXIviBySxU4DFKpIrUldqnSoG6w9Y0eW14PJCR9jmHkHJdAZMjAjBmY1AxvseE7xXA3l-GPtFvFjvq5mRYM1ZxzP6r_2NYsIEz1BCdXZ-51qny3T3lUIpsmWJi9Te4BGyQQO_W38ALaT33M |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5VA4FEpBTSl0D1yQ2MSPtTd7TBFR-khViVTkZu3Yu5XVJK3aREL8embWTkCAEBfLhx17rVnPe-YDeE8CLnWePFXvcpQKSyUxTr3MlSf9UGobWe5GHl_mo2t1Ns2mW_Bx0wvjnAvFZ67LtyGXX92VKw6V9QzHK7hZ60mmlMqabq1NzkCpgMZFBkMqs76erpOSkelNvlyRK5jE3ZQTT2HO608lFFBV_hDFQb8Mn8N4vbOmrOS2u1pit_z-29DG_936C9htDU0xaE7GHmy5xUt49sv4wX2YtcNVb-QJ6bJKXD1w1oblnwgqbF5zq48ky9Jx9YY4cXYuBrP6JlQQiHohuJOwnnNFjfhqiWxYf6PncEXtjCSoGAQ0RsH-7uMruB5-nnwayRZ9QZaJiZeyQoyMVdroOIwPzZQvc_QMnUhWB1plUekEycHE1FSuUpouFhGV1fT5Kn0N24u7hTsA4Yz2nN6LEk9kqTeIla76zvZ9X5vYdKC3ZkdRtqPJGSFjVgQXJTIFMbBgBhYtAzvwYUNx34zl-MfafebHZl3Lig4crTletP_tY5EwKnpOMio7_DvVMeyMJuOL4uL08vwNPOX3NAGZI9hePqzcWzJRlvgunMwfkCriwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Predictive+Transmitter-Receiver+Beam+Alignment+in+Millimeter+Wave+Fixed+Wireless+Access+Links&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhang%2C+Jianjun&rft.au=Masouros%2C+Christos&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=3268&rft.epage=3282&rft_id=info:doi/10.1109%2FTSP.2021.3076899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2021_3076899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |