Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed Wireless Access Links

Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 69; pp. 3268 - 3282
Main Authors Zhang, Jianjun, Masouros, Christos
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2021.3076899

Cover

Abstract Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss. However, narrow beams increase sensitivity to physical perturbations caused by environmental factors. To address this issue, in this paper we propose a predictive transmit-receive beam alignment process. We construct an explicit mapping between transmit (or receive) beams and physical coordinates via a Gaussian process, which can incorporate environmental uncertainties. To make full use of underlying correlations between transmitter and receiver and accumulated experiences, we further construct a hierarchical Bayesian learning model and design an efficient beam predictive algorithm. To reduce dependency on physical position measurements, a reverse mapping that predicts physical coordinates from beam experiences is further constructed. The designed algorithms enjoy two folds of advantages. Firstly, thanks to Bayesian learning, a good performance can be achieved even for a small sample setting as low as 10 samples in our scenarios, which drastically reduces training time and is therefore very appealing for wireless communications. Secondly, in contrast to most existing algorithms that only predict one beam in each time-slot, the designed algorithms generate the most promising beam subset, which improves robustness to environment uncertainties. Simulation results demonstrate the effectiveness and superiority of the designed algorithms against the state of the art.
AbstractList Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to provide Gbps backhaul and access links. Large antenna arrays and extremely directional beamforming are necessary to combat the mmwave path loss. However, narrow beams increase sensitivity to physical perturbations caused by environmental factors. To address this issue, in this paper we propose a predictive transmit-receive beam alignment process. We construct an explicit mapping between transmit (or receive) beams and physical coordinates via a Gaussian process, which can incorporate environmental uncertainties. To make full use of underlying correlations between transmitter and receiver and accumulated experiences, we further construct a hierarchical Bayesian learning model and design an efficient beam predictive algorithm. To reduce dependency on physical position measurements, a reverse mapping that predicts physical coordinates from beam experiences is further constructed. The designed algorithms enjoy two folds of advantages. Firstly, thanks to Bayesian learning, a good performance can be achieved even for a small sample setting as low as 10 samples in our scenarios, which drastically reduces training time and is therefore very appealing for wireless communications. Secondly, in contrast to most existing algorithms that only predict one beam in each time-slot, the designed algorithms generate the most promising beam subset, which improves robustness to environment uncertainties. Simulation results demonstrate the effectiveness and superiority of the designed algorithms against the state of the art.
Author Masouros, Christos
Zhang, Jianjun
Author_xml – sequence: 1
  givenname: Jianjun
  orcidid: 0000-0002-4830-1959
  surname: Zhang
  fullname: Zhang, Jianjun
  email: jianjun.zhang@ucl.ac.uk
  organization: Department of Electronic & Electrical Engineering, University College London, London, U.K
– sequence: 2
  givenname: Christos
  orcidid: 0000-0002-8259-6615
  surname: Masouros
  fullname: Masouros, Christos
  email: c.masouros@ucl.ac.uk
  organization: Department of Electronic & Electrical Engineering, University College London, London, U.K
BookMark eNp9kM9LwzAUx4NMcJveBS8Fz51JmjbLcRtOhYpDJ_NWkvZ1ZLbpTDLR_96MDQ8evLz3eHw_78d3gHqmM4DQJcEjQrC4Wb4sRhRTMkowz8ZCnKA-EYzEmPGsF2qcJnE65m9naODcBmPCmMj6qMlBWqPNOp5KB1W0sFDp0utPiJZWGtdq78HGz1BC6NloCrKNJo1emxaMj7SJHnXT6BaCKlrJgM31V5iz0hYacC6alOU-5dq8u3N0WsvGwcUxD9Hr_HY5u4_zp7uH2SSPSyqIjyulsJCMC05wEn5LWV1mqs5EeI0lSjKpGKeKpkwlooKK8RCkUopJDgAsGaLrw9yt7T524Hyx6XbWhJVFgAjLuGBpUGUHVWk75yzURam99Loz3krdFAQXe2eL4Gyxd7Y4OhtA_AfcWt1K-_0fcnVAdDjwVy4YpRST5Acp9Ict
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_COMST_2024_3361991
crossref_primary_10_1109_TCOMM_2023_3330878
crossref_primary_10_1109_TCOMM_2022_3184158
crossref_primary_10_1109_JSAC_2025_3531563
crossref_primary_10_3390_s23042280
crossref_primary_10_1109_ACCESS_2022_3161951
crossref_primary_10_1109_ACCESS_2024_3491870
crossref_primary_10_1109_TIFS_2023_3265341
crossref_primary_10_1109_TCOMM_2024_3395319
crossref_primary_10_1109_TSP_2024_3374548
Cites_doi 10.1109/TCOMM.2020.2988256
10.1109/ACCESS.2019.2902372
10.1109/LCOMM.2016.2544937
10.1109/JSAC.2019.2933967
10.1109/JSAC.2017.2719924
10.1109/JSTSP.2014.2334278
10.1109/TWC.2016.2520930
10.1109/TCOMM.2017.2730878
10.1109/ICC.2019.8761773
10.1109/TWC.2020.3038787
10.1109/TVT.2020.3020898
10.1109/ACCESS.2017.2753781
10.1109/INFOCOM.2018.8486279
10.1109/TWC.2020.3036945
10.1109/TVT.2019.2939400
10.1109/ACCESS.2018.2850226
10.1109/TWC.2014.011714.130846
10.1109/TVT.2017.2787627
10.1109/WCNC.2010.5506714
10.1109/TCOMM.2013.090513.120848
10.1109/TSP.2019.2949502
10.1109/ACCESS.2016.2631222
10.1109/GLOCOM.2018.8647890
10.1109/MCOM.001.1900076
10.1109/TWC.2015.2390637
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2021.3076899
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3282
ExternalDocumentID 10_1109_TSP_2021_3076899
9422201
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council; Engineering, and Physical Sciences Research Council, U.K.
  grantid: EP/S028455/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-dbb09a479710310954fc6bf6930743ba4ab472b254b39ded47dedabbb4a7eee43
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 07 08:10:37 EDT 2025
Wed Oct 01 03:34:36 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-dbb09a479710310954fc6bf6930743ba4ab472b254b39ded47dedabbb4a7eee43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8259-6615
0000-0002-4830-1959
PQID 2541467945
PQPubID 85478
PageCount 15
ParticipantIDs proquest_journals_2541467945
ieee_primary_9422201
crossref_citationtrail_10_1109_TSP_2021_3076899
crossref_primary_10_1109_TSP_2021_3076899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
alquier (ref26) 2015; 17
duvenaud (ref30) 2014
murphy (ref29) 2012
ref23
ref20
amit (ref32) 0
ref22
ref21
catoni (ref31) 2007; 56
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
rasmussen (ref25) 2006
wilson (ref24) 0; 51
References_xml – ident: ref19
  doi: 10.1109/TCOMM.2020.2988256
– ident: ref15
  doi: 10.1109/ACCESS.2019.2902372
– ident: ref7
  doi: 10.1109/LCOMM.2016.2544937
– ident: ref20
  doi: 10.1109/JSAC.2019.2933967
– year: 2014
  ident: ref30
  article-title: Automatic model construction with Gaussian processes
– ident: ref2
  doi: 10.1109/JSAC.2017.2719924
– volume: 56
  start-page: 1
  year: 2007
  ident: ref31
  article-title: Pac-Bayesian supervised classification: The thermodynamics of statistical learning
  publication-title: Lecture Notes Monograph Series
– ident: ref5
  doi: 10.1109/JSTSP.2014.2334278
– ident: ref8
  doi: 10.1109/TWC.2016.2520930
– ident: ref6
  doi: 10.1109/TCOMM.2017.2730878
– ident: ref17
  doi: 10.1109/ICC.2019.8761773
– ident: ref28
  doi: 10.1109/TWC.2020.3038787
– ident: ref21
  doi: 10.1109/TVT.2020.3020898
– ident: ref13
  doi: 10.1109/ACCESS.2017.2753781
– ident: ref16
  doi: 10.1109/INFOCOM.2018.8486279
– ident: ref23
  doi: 10.1109/TWC.2020.3036945
– ident: ref14
  doi: 10.1109/TVT.2019.2939400
– ident: ref10
  doi: 10.1109/ACCESS.2018.2850226
– ident: ref27
  doi: 10.1109/TWC.2014.011714.130846
– volume: 51
  start-page: 370
  year: 0
  ident: ref24
  article-title: Deep kernel learning
  publication-title: Proc 19th Int Conf Artif Intell Statist ser Proc Mach Learn Res
– ident: ref11
  doi: 10.1109/TVT.2017.2787627
– ident: ref3
  doi: 10.1109/WCNC.2010.5506714
– volume: 17
  start-page: 8374
  year: 2015
  ident: ref26
  article-title: On the properties of variational approximations of gibbs posteriors
  publication-title: J Mach Learn Res
– year: 2012
  ident: ref29
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref4
  doi: 10.1109/TCOMM.2013.090513.120848
– year: 2006
  ident: ref25
  publication-title: Gaussian Processes for Machine Learning
– ident: ref22
  doi: 10.1109/TSP.2019.2949502
– ident: ref12
  doi: 10.1109/ACCESS.2016.2631222
– ident: ref18
  doi: 10.1109/GLOCOM.2018.8647890
– ident: ref1
  doi: 10.1109/MCOM.001.1900076
– ident: ref9
  doi: 10.1109/TWC.2015.2390637
– start-page: 205
  year: 0
  ident: ref32
  article-title: Meta-learning by adjusting priors based on extended PAC-bayes theory
  publication-title: Proc Int Conf Mach Learn
SSID ssj0014496
Score 2.4613895
Snippet Millimeter wave (mmwave) fixed wireless access is a key enabler of 5G and beyond small cell network deployment, exploiting the abundant mmwave spectrum to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3268
SubjectTerms Algorithms
Alignment
Antenna arrays
Array signal processing
Bayes methods
Bayesian analysis
Bayesian learning
Beam alignment
beam prediction
beam training
Beamforming
Correlation
fixed wireless access
Gaussian beams (optics)
Gaussian process
Gaussian processes
Machine learning
Mapping
millimeter wave communications
Millimeter waves
Perturbation
Position measurement
Prediction algorithms
Signal processing algorithms
Training
Transceivers
Uncertainty
Wireless communication
Wireless communications
Title Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed Wireless Access Links
URI https://ieeexplore.ieee.org/document/9422201
https://www.proquest.com/docview/2541467945
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qSQ--xWqVHLwIpt1HutkcW7GIoAgq9rZkdhNZbKtoC-Kvdya7raIiXpY9ZEKWyc575mPsCAVcbB16qs4mICTkUkAYO5FIh_ohVyYw1I18eZWc38mLQWewwE7mvTDWWl98Zlv06nP5xVM-pVBZW1O8gpq1FlWaVL1a84yBlB6LC82FWHRSNZilJAPdvr25RkcwClsxpZ38lNdPFeQxVX4IYq9d-mvscnauqqjksTWdQCt__zay8b8HX2ertZnJu9W92GALdrzJVr4MH9xiw3q06oPooSYr-PUL5WxI-nGvwEYlNfoItCst1W7wnjUj3h2WD75-gJdjTn2E5Yjqafi9QbJ--Yb7UD3tEOUn73osRk7e7us2u-uf3Z6eixp7QeSRDieiAAi0kUqr0A8P7UiXJ-AIOBFtDjDSgFQRoHsJsS5sIRU-DABIo_DzZbzDlsZPY7vLuNXKUXIviBySxU4DFKpIrUldqnSoG6w9Y0eW14PJCR9jmHkHJdAZMjAjBmY1AxvseE7xXA3l-GPtFvFjvq5mRYM1ZxzP6r_2NYsIEz1BCdXZ-51qny3T3lUIpsmWJi9Te4BGyQQO_W38ALaT33M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5VA4FEpBTSl0D1yQ2MSPtTd7TBFR-khViVTkZu3Yu5XVJK3aREL8embWTkCAEBfLhx17rVnPe-YDeE8CLnWePFXvcpQKSyUxTr3MlSf9UGobWe5GHl_mo2t1Ns2mW_Bx0wvjnAvFZ67LtyGXX92VKw6V9QzHK7hZ60mmlMqabq1NzkCpgMZFBkMqs76erpOSkelNvlyRK5jE3ZQTT2HO608lFFBV_hDFQb8Mn8N4vbOmrOS2u1pit_z-29DG_936C9htDU0xaE7GHmy5xUt49sv4wX2YtcNVb-QJ6bJKXD1w1oblnwgqbF5zq48ky9Jx9YY4cXYuBrP6JlQQiHohuJOwnnNFjfhqiWxYf6PncEXtjCSoGAQ0RsH-7uMruB5-nnwayRZ9QZaJiZeyQoyMVdroOIwPzZQvc_QMnUhWB1plUekEycHE1FSuUpouFhGV1fT5Kn0N24u7hTsA4Yz2nN6LEk9kqTeIla76zvZ9X5vYdKC3ZkdRtqPJGSFjVgQXJTIFMbBgBhYtAzvwYUNx34zl-MfafebHZl3Lig4crTletP_tY5EwKnpOMio7_DvVMeyMJuOL4uL08vwNPOX3NAGZI9hePqzcWzJRlvgunMwfkCriwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Predictive+Transmitter-Receiver+Beam+Alignment+in+Millimeter+Wave+Fixed+Wireless+Access+Links&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhang%2C+Jianjun&rft.au=Masouros%2C+Christos&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=3268&rft.epage=3282&rft_id=info:doi/10.1109%2FTSP.2021.3076899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2021_3076899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon