Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators With Unknown Physical Parameters

Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 65; no. 6; pp. 4909 - 4920
Main Authors Zhang, Yinyan, Chen, Siyuan, Li, Shuai, Zhang, Zhijun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2017.2774720

Cover

Abstract Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic program approaches require exactly knowing all the physical parameters of manipulators, the condition of which may not hold in some practical applications. This fact motivates us to consider the application of adaptive control techniques for simultaneous parameter identification and neural control. However, the inherent nonlinearity and nonsmoothness of the neural model prohibits direct applications of adaptive control to this model and there has been no existing result on adaptive control of robotic arms using projection neural network (PNN) approaches with parameter convergence. Different from conventional treatments in joint angle space, we investigate the problem from the joint speed space and decouple the nonlinear part of the Jacobian matrix from the structural parameters that need to be learnt. Based on the new representation, we establish the first adaptive PNN with online learning for the redundancy resolution of manipulators with unknown physical parameters, which tackles the dilemmas in existing methods. The proposed method is capable of simultaneously optimizing performance indices subject to physical constraints and handling parameter uncertainty. Theoretical results are presented to guarantee the performance of the proposed neural network. Besides, simulations based on a PUMA 560 manipulator with unknown physical parameters together with the comparison with an existing PNN substantiate the efficacy and superiority of the proposed neural network, and verify the theoretical results.
AbstractList Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic program approaches require exactly knowing all the physical parameters of manipulators, the condition of which may not hold in some practical applications. This fact motivates us to consider the application of adaptive control techniques for simultaneous parameter identification and neural control. However, the inherent nonlinearity and nonsmoothness of the neural model prohibits direct applications of adaptive control to this model and there has been no existing result on adaptive control of robotic arms using projection neural network (PNN) approaches with parameter convergence. Different from conventional treatments in joint angle space, we investigate the problem from the joint speed space and decouple the nonlinear part of the Jacobian matrix from the structural parameters that need to be learnt. Based on the new representation, we establish the first adaptive PNN with online learning for the redundancy resolution of manipulators with unknown physical parameters, which tackles the dilemmas in existing methods. The proposed method is capable of simultaneously optimizing performance indices subject to physical constraints and handling parameter uncertainty. Theoretical results are presented to guarantee the performance of the proposed neural network. Besides, simulations based on a PUMA 560 manipulator with unknown physical parameters together with the comparison with an existing PNN substantiate the efficacy and superiority of the proposed neural network, and verify the theoretical results.
Author Zhang, Yinyan
Li, Shuai
Chen, Siyuan
Zhang, Zhijun
Author_xml – sequence: 1
  givenname: Yinyan
  orcidid: 0000-0002-0463-0291
  surname: Zhang
  fullname: Zhang, Yinyan
  email: yinyan.zhang@connect.polyu.hk
  organization: Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 2
  givenname: Siyuan
  surname: Chen
  fullname: Chen, Siyuan
  email: c.sy05@mail.scut.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Shuai
  orcidid: 0000-0001-8316-5289
  surname: Li
  fullname: Li, Shuai
  email: shuaili@polyu.edu.hk
  organization: Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 4
  givenname: Zhijun
  orcidid: 0000-0002-6859-3426
  surname: Zhang
  fullname: Zhang, Zhijun
  email: drzhangzhijun@gmail.com
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kM1LwzAYxoNMcFPvgpeA584kS5v2KMOP4deQicfytnnLsnXJTFLF_96OiQcPnp7L83se-I3IwDqLhJxxNuacFZeL2fVYMK7GQimpBDsgQ56mKikKmQ_IkAmVJ4zJ7IiMQlgxxmXK0yEJVxq20XwgnXu3wjoaZ-kTdh7aPuKn82vaOE_vjcUNRFPTqbPRu5a6hr6g7qwGG-kjWLPtWojOB_pm4pK-2rV1n5bOl1_B1P3aHDxsMKIPJ-SwgTbg6U8ek9eb68X0Lnl4vp1Nrx6SWhQ8JjoXOeii0KqSUIMA5BnoVOXIZZaCbgCquqpQZZmoGtRskjFWZBWXOUgUenJMLva7W-_eOwyxXLnO2_6yFIwJWaSKi77F9q3auxA8NuXWmw34r5Kzcqe27NWWO7Xlj9oeyf4gtYmwUxc9mPY_8HwPGkT8_ck5n6RKTb4BpFuKyg
CODEN ITIED6
CitedBy_id crossref_primary_10_1007_s13369_019_03728_7
crossref_primary_10_1109_TCSII_2021_3088942
crossref_primary_10_3390_act12030112
crossref_primary_10_1109_TNNLS_2020_2963998
crossref_primary_10_1109_TIE_2022_3165279
crossref_primary_10_1016_j_jtbi_2024_111987
crossref_primary_10_1109_TSMC_2021_3129794
crossref_primary_10_1007_s11063_019_10068_y
crossref_primary_10_1016_j_engappai_2024_107935
crossref_primary_10_1109_TII_2020_3047959
crossref_primary_10_1108_IR_12_2021_0291
crossref_primary_10_1109_ACCESS_2020_2970196
crossref_primary_10_1016_j_neucom_2022_09_015
crossref_primary_10_1007_s11071_018_4351_6
crossref_primary_10_1109_TIE_2020_3013795
crossref_primary_10_1016_j_neucom_2020_07_040
crossref_primary_10_1007_s00521_023_08621_x
crossref_primary_10_1109_TIE_2022_3210522
crossref_primary_10_1109_ACCESS_2020_2990555
crossref_primary_10_1109_TSMC_2024_3390237
crossref_primary_10_1109_TCYB_2018_2859751
crossref_primary_10_1109_ACCESS_2020_2981688
crossref_primary_10_1109_ACCESS_2025_3539374
crossref_primary_10_1109_TIE_2021_3073305
crossref_primary_10_1177_1077546319889852
crossref_primary_10_1016_j_isatra_2024_01_007
crossref_primary_10_1109_ACCESS_2019_2899587
crossref_primary_10_1016_j_isatra_2024_03_034
crossref_primary_10_1177_0142331217732617
crossref_primary_10_1016_j_rcim_2018_11_010
crossref_primary_10_1109_ACCESS_2020_2974248
crossref_primary_10_1109_TIE_2020_2970635
crossref_primary_10_1109_ACCESS_2019_2894180
crossref_primary_10_1080_00207721_2022_2070790
crossref_primary_10_1007_s00521_019_04622_x
crossref_primary_10_1016_j_compeleceng_2024_109344
crossref_primary_10_1109_TSMC_2018_2856266
crossref_primary_10_1177_1475090220927242
crossref_primary_10_1109_TCDS_2024_3387575
crossref_primary_10_17694_bajece_459568
crossref_primary_10_1177_00368504211037771
crossref_primary_10_1016_j_oceaneng_2024_117508
crossref_primary_10_1109_TNNLS_2019_2944992
crossref_primary_10_1109_TIE_2023_3239875
crossref_primary_10_1017_S0263574720001393
crossref_primary_10_1049_iet_cta_2018_6411
crossref_primary_10_1109_TMECH_2021_3056409
crossref_primary_10_1016_j_ymssp_2020_107577
crossref_primary_10_1109_TCST_2019_2897504
crossref_primary_10_1109_TSMC_2021_3111925
crossref_primary_10_3389_fnbot_2019_00050
crossref_primary_10_1016_j_isatra_2023_03_042
crossref_primary_10_1109_ACCESS_2019_2960399
crossref_primary_10_1109_TII_2018_2831225
crossref_primary_10_1109_TNNLS_2021_3109953
crossref_primary_10_1109_TMECH_2019_2917294
crossref_primary_10_3389_fnbot_2019_00047
crossref_primary_10_1016_j_neucom_2018_09_015
crossref_primary_10_1109_TETCI_2024_3386692
crossref_primary_10_1109_TFUZZ_2023_3328545
crossref_primary_10_1109_TNNLS_2020_2980038
crossref_primary_10_1049_iet_pel_2017_0883
crossref_primary_10_1109_TCST_2022_3145645
crossref_primary_10_1109_TRO_2023_3236942
crossref_primary_10_1109_TIE_2019_2959481
crossref_primary_10_1109_JAS_2023_123132
crossref_primary_10_1109_TSMC_2019_2956961
crossref_primary_10_1016_j_neucom_2019_04_069
crossref_primary_10_1016_j_conengprac_2024_105844
crossref_primary_10_1109_TVT_2022_3188546
crossref_primary_10_1109_ACCESS_2018_2878462
crossref_primary_10_1109_TCYB_2021_3111204
crossref_primary_10_3390_ma15196611
crossref_primary_10_1109_TII_2022_3149919
crossref_primary_10_1109_TII_2020_2976844
crossref_primary_10_1109_TASE_2020_3027394
crossref_primary_10_1016_j_heliyon_2023_e23570
crossref_primary_10_1177_0954406220952510
crossref_primary_10_1109_TIE_2020_3044776
crossref_primary_10_21597_jist_396344
crossref_primary_10_1177_0142331220979262
crossref_primary_10_1016_j_neucom_2020_11_012
crossref_primary_10_1109_TIE_2018_2851960
Cites_doi 10.23919/ACC.2004.1384511
10.1017/CBO9780511804441
10.1109/TII.2017.2737363
10.1109/TCST.2012.2190142
10.1016/j.automatica.2013.09.043
10.1109/TOH.2015.2504971
10.1109/TMECH.2012.2207964
10.1109/TAC.2003.821413
10.1109/LRA.2016.2519948
10.1016/0167-6911(85)90035-0
10.1016/j.rcim.2015.12.007
10.1109/TASE.2015.2474157
10.1109/41.744418
10.1109/21.467718
10.1109/TSMCB.2009.2034073
10.1109/TNNLS.2015.2469147
10.1017/S0263574714001349
10.1109/TRO.2016.2536749
10.1109/TIE.2017.2674624
10.1109/TIE.2008.2011621
10.1109/TAC.2006.876943
10.1109/TNNLS.2016.2574363
10.1109/ICRA.2012.6224904
10.1109/TSMCB.2004.830347
10.1109/TAC.2008.919568
10.1016/S0005-1098(97)00209-4
10.1109/TCYB.2014.2351416
10.1109/TAC.2016.2575827
10.1109/TIE.2013.2240635
10.1109/TIE.2017.2677312
10.1109/TSMC.2016.2608969
10.1109/TCYB.2016.2607166
10.1109/3477.826953
10.1109/LRA.2017.2668471
10.1109/TIE.2014.2314051
10.1016/j.automatica.2009.02.013
10.1016/j.rcim.2016.01.004
10.1109/TRA.2002.805651
10.1109/TNN.2003.809409
10.1109/TAC.2016.2552645
10.1109/TSMCC.2012.2183868
10.1109/TIE.2011.2143372
10.1109/TIE.2016.2538741
10.1080/00207179.2016.1276631
10.1109/TIE.2015.2464176
10.1109/TRO.2008.2003266
10.1109/TSMC.1983.6313123
10.1109/TCYB.2014.2321390
10.1109/TNN.2003.810607
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2017.2774720
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 4920
ExternalDocumentID 10_1109_TIE_2017_2774720
8113577
Genre orig-research
GrantInformation_xml – fundername: PolyU Central Research
  grantid: G-YBMU
– fundername: National Natural Science Foundation of China
  grantid: 61401385
  funderid: 10.13039/501100001809
– fundername: Departmental General Research Fund of Hong Kong Polytechnic University
  grantid: G.61.37.UA7L
– fundername: Hong Kong Research Grants Council Early Career Scheme
  grantid: 25214015
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c291t-d828ad99d7b4aca2ae16ad578e1465adfaabcbbe7662bfed0360096b148a4e2d3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:12:06 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Oct 01 00:26:56 EDT 2025
Wed Aug 27 08:36:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d828ad99d7b4aca2ae16ad578e1465adfaabcbbe7662bfed0360096b148a4e2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8316-5289
0000-0002-0463-0291
0000-0002-6859-3426
PQID 2002495712
PQPubID 85464
PageCount 12
ParticipantIDs ieee_primary_8113577
crossref_primary_10_1109_TIE_2017_2774720
crossref_citationtrail_10_1109_TIE_2017_2774720
proquest_journals_2002495712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref11
ref54
ref10
dixon (ref52) 2004; 4
ref17
ref19
ref18
cheah (ref21) 2003; 19
hou (ref16) 2010; 40
ref51
ref50
ref46
ref48
ref47
ref42
ref41
bellman (ref44) 1997
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref2
ref1
ref38
spong (ref30) 2006
zhang (ref39) 2014; 61
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
(ref32) 0
ref29
khalil (ref45) 2002
References_xml – volume: 4
  start-page: 3839
  year: 2004
  ident: ref52
  article-title: Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics
  publication-title: Proceedings of the 2004 American Control Conference ACC
  doi: 10.23919/ACC.2004.1384511
– ident: ref42
  doi: 10.1017/CBO9780511804441
– ident: ref29
  doi: 10.1109/TII.2017.2737363
– ident: ref11
  doi: 10.1109/TCST.2012.2190142
– ident: ref51
  doi: 10.1016/j.automatica.2013.09.043
– year: 2002
  ident: ref45
  publication-title: Nonlinear Systems
– ident: ref38
  doi: 10.1109/TOH.2015.2504971
– ident: ref20
  doi: 10.1109/TMECH.2012.2207964
– ident: ref43
  doi: 10.1109/TAC.2003.821413
– ident: ref36
  doi: 10.1109/LRA.2016.2519948
– ident: ref49
  doi: 10.1016/0167-6911(85)90035-0
– year: 0
  ident: ref32
– ident: ref10
  doi: 10.1016/j.rcim.2015.12.007
– ident: ref17
  doi: 10.1109/TASE.2015.2474157
– ident: ref8
  doi: 10.1109/41.744418
– ident: ref13
  doi: 10.1109/21.467718
– volume: 40
  start-page: 1075
  year: 2010
  ident: ref16
  article-title: Multicriteria optimization for coordination of redundant robots using a dual neural network
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2034073
– ident: ref14
  doi: 10.1109/TNNLS.2015.2469147
– ident: ref7
  doi: 10.1017/S0263574714001349
– ident: ref33
  doi: 10.1109/TRO.2016.2536749
– ident: ref12
  doi: 10.1109/TIE.2017.2674624
– ident: ref40
  doi: 10.1109/TIE.2008.2011621
– ident: ref53
  doi: 10.1109/TAC.2006.876943
– ident: ref31
  doi: 10.1109/TNNLS.2016.2574363
– ident: ref37
  doi: 10.1109/ICRA.2012.6224904
– ident: ref15
  doi: 10.1109/TSMCB.2004.830347
– ident: ref47
  doi: 10.1109/TAC.2008.919568
– ident: ref41
  doi: 10.1016/S0005-1098(97)00209-4
– ident: ref1
  doi: 10.1109/TCYB.2014.2351416
– ident: ref19
  doi: 10.1109/TAC.2016.2575827
– ident: ref25
  doi: 10.1109/TIE.2013.2240635
– year: 1997
  ident: ref44
  publication-title: Introduction to Matrix Analysis
– ident: ref35
  doi: 10.1109/TIE.2017.2677312
– ident: ref18
  doi: 10.1109/TSMC.2016.2608969
– ident: ref24
  doi: 10.1109/TCYB.2016.2607166
– ident: ref50
  doi: 10.1109/3477.826953
– ident: ref34
  doi: 10.1109/LRA.2017.2668471
– volume: 61
  start-page: 6852
  year: 2014
  ident: ref39
  article-title: Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2314051
– volume: 19
  start-page: 192
  year: 2003
  ident: ref21
  article-title: Approximate Jacobian control for robots with uncertain kinematics and dynamics
  publication-title: IEEE Trans Robot Autom
– year: 2006
  ident: ref30
  publication-title: Robot Modeling and Control
– ident: ref54
  doi: 10.1016/j.automatica.2009.02.013
– ident: ref28
  doi: 10.1016/j.rcim.2016.01.004
– ident: ref6
  doi: 10.1109/TRA.2002.805651
– ident: ref46
  doi: 10.1109/TNN.2003.809409
– ident: ref27
  doi: 10.1109/TAC.2016.2552645
– ident: ref3
  doi: 10.1109/TSMCC.2012.2183868
– ident: ref23
  doi: 10.1109/TIE.2011.2143372
– ident: ref26
  doi: 10.1109/TIE.2016.2538741
– ident: ref48
  doi: 10.1080/00207179.2016.1276631
– ident: ref4
  doi: 10.1109/TIE.2015.2464176
– ident: ref22
  doi: 10.1109/TRO.2008.2003266
– ident: ref9
  doi: 10.1109/TSMC.1983.6313123
– ident: ref2
  doi: 10.1109/TCYB.2014.2321390
– ident: ref5
  doi: 10.1109/TNN.2003.810607
SSID ssj0014515
Score 2.56864
Snippet Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4909
SubjectTerms Adaptive control
Computer simulation
Distance learning
Jacobi matrix method
Jacobian matrices
Jacobian matrix
Kinematic control
Kinematics
Machine learning
manipulator
Manipulators
Mathematical models
Neural networks
Nonlinearity
Parameter identification
Parameter uncertainty
Performance analysis
Performance indices
Physical properties
quadratic program (QP)
Redundancy
redundancy resolution
Robot arms
Uncertainty
unknown physical parameters
Title Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators With Unknown Physical Parameters
URI https://ieeexplore.ieee.org/document/8113577
https://www.proquest.com/docview/2002495712
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34qmJ9sQcvgmmbTbqbHEUUH7QUsegt7CsoSlra9OKvdyabFlERbznshoVvH_PNzn4fwKlwQolchEFoIyQoOlaBjuIoMBjMc4OUROeUh-wPxM0ovnvuPa_A-fItjHOuKj5zbfqs7vLt2MwpVdZJwjDqSbkKqzIR_q3W8sYg7nm3Ak6KsUj6FleS3bTzeHtFNVyyzTHWkeTs_eUIqjxVfmzE1elyvQn9xbh8Uclbe17qtvn4Jtn434FvwUYdZrILPy-2YcUVO7D-RXywCbMLqya02bGhz8YgQoy0OrDfwBeHM4xo2T12qXRd2aUva2fjnD04en2GqLC-Kl4rD7DxdMaeXssXNiooUVewYT0F2FBRBRjJeO7C6Prq8fImqC0YAsPTsAwsEjJl09RKRNEorlwolMVV7nCH7SmbK6WN1k4KwXXuLJ6HRIo0kiwVO26jPWgU48LtA1Oum-TIx4xLTKx4Vycy1sgvLXIklVvTgs4ClczU-uRkk_GeVTylm2aIY0Y4ZjWOLThb9ph4bY4_2jYJlmW7GpEWHC2Az-rFOyNnTnLkliE_-L3XIazhvxNfMXYEjXI6d8cYm5T6pJqUn1yC4qI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH64HNSDu1jXOXgRTNtMJttRRKlLS5EWvYXZgqKkYtOLv973MmkRFfGWwwwZ-GZ535s33wdwEtlIRnnke74JkKAoIT0ViMDTGMxzjZRE5ZSH7PaizlDcPIaPc3A2ewtjra2Kz2yTPqu7fDPSE0qVtRLfD8I4nofFUAgRutdaszsDETq_Ak6asUj7ppeS7bQ1uL6kKq64yTHaicnb-8shVLmq_NiKq_Plag2605G5spKX5qRUTf3xTbTxv0Nfh9U60GTnbmZswJwtNmHli_zgFozPjXyj7Y71XT4GMWKk1oH9eq48nGFMy26xS6Xsyi5cYTsb5eze0vszxIV1ZfFcuYCN3sfs4bl8YsOCUnUF69eTgPUl1YCRkOc2DK8uBxcdrzZh8DRP_dIzSMmkSVMTI45acmn9SBpc5xb32FCaXEqllbJxFHGVW4MnItEihTRLCstNsAMLxaiwu8CkbSc5MjJtEy0kb6skFgoZpkGWJHOjG9CaopLpWqGcjDJes4qptNMMccwIx6zGsQGnsx5vTp3jj7ZbBMusXY1IAw6mwGf18h2TNyd5csc-3_u91zEsdQbdu-zuune7D8v4n8TVjx3AQvk-sYcYqZTqqJqgn11Y5e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Projection+Neural+Network+for+Kinematic+Control+of+Redundant+Manipulators+With+Unknown+Physical+Parameters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Zhang%2C+Yinyan&rft.au=Chen%2C+Siyuan&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Zhijun&rft.date=2018-06-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=65&rft.issue=6&rft.spage=4909&rft.epage=4920&rft_id=info:doi/10.1109%2FTIE.2017.2774720&rft.externalDocID=8113577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon