Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators With Unknown Physical Parameters
Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic pro...
Saved in:
| Published in | IEEE transactions on industrial electronics (1982) Vol. 65; no. 6; pp. 4909 - 4920 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0046 1557-9948 |
| DOI | 10.1109/TIE.2017.2774720 |
Cover
| Abstract | Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic program approaches require exactly knowing all the physical parameters of manipulators, the condition of which may not hold in some practical applications. This fact motivates us to consider the application of adaptive control techniques for simultaneous parameter identification and neural control. However, the inherent nonlinearity and nonsmoothness of the neural model prohibits direct applications of adaptive control to this model and there has been no existing result on adaptive control of robotic arms using projection neural network (PNN) approaches with parameter convergence. Different from conventional treatments in joint angle space, we investigate the problem from the joint speed space and decouple the nonlinear part of the Jacobian matrix from the structural parameters that need to be learnt. Based on the new representation, we establish the first adaptive PNN with online learning for the redundancy resolution of manipulators with unknown physical parameters, which tackles the dilemmas in existing methods. The proposed method is capable of simultaneously optimizing performance indices subject to physical constraints and handling parameter uncertainty. Theoretical results are presented to guarantee the performance of the proposed neural network. Besides, simulations based on a PUMA 560 manipulator with unknown physical parameters together with the comparison with an existing PNN substantiate the efficacy and superiority of the proposed neural network, and verify the theoretical results. |
|---|---|
| AbstractList | Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program approaches, which are capable of optimizing performance indices subject to physical constraints, are widely used. However, the existing quadratic program approaches require exactly knowing all the physical parameters of manipulators, the condition of which may not hold in some practical applications. This fact motivates us to consider the application of adaptive control techniques for simultaneous parameter identification and neural control. However, the inherent nonlinearity and nonsmoothness of the neural model prohibits direct applications of adaptive control to this model and there has been no existing result on adaptive control of robotic arms using projection neural network (PNN) approaches with parameter convergence. Different from conventional treatments in joint angle space, we investigate the problem from the joint speed space and decouple the nonlinear part of the Jacobian matrix from the structural parameters that need to be learnt. Based on the new representation, we establish the first adaptive PNN with online learning for the redundancy resolution of manipulators with unknown physical parameters, which tackles the dilemmas in existing methods. The proposed method is capable of simultaneously optimizing performance indices subject to physical constraints and handling parameter uncertainty. Theoretical results are presented to guarantee the performance of the proposed neural network. Besides, simulations based on a PUMA 560 manipulator with unknown physical parameters together with the comparison with an existing PNN substantiate the efficacy and superiority of the proposed neural network, and verify the theoretical results. |
| Author | Zhang, Yinyan Li, Shuai Chen, Siyuan Zhang, Zhijun |
| Author_xml | – sequence: 1 givenname: Yinyan orcidid: 0000-0002-0463-0291 surname: Zhang fullname: Zhang, Yinyan email: yinyan.zhang@connect.polyu.hk organization: Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 2 givenname: Siyuan surname: Chen fullname: Chen, Siyuan email: c.sy05@mail.scut.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Shuai orcidid: 0000-0001-8316-5289 surname: Li fullname: Li, Shuai email: shuaili@polyu.edu.hk organization: Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 4 givenname: Zhijun orcidid: 0000-0002-6859-3426 surname: Zhang fullname: Zhang, Zhijun email: drzhangzhijun@gmail.com organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
| BookMark | eNp9kM1LwzAYxoNMcFPvgpeA584kS5v2KMOP4deQicfytnnLsnXJTFLF_96OiQcPnp7L83se-I3IwDqLhJxxNuacFZeL2fVYMK7GQimpBDsgQ56mKikKmQ_IkAmVJ4zJ7IiMQlgxxmXK0yEJVxq20XwgnXu3wjoaZ-kTdh7aPuKn82vaOE_vjcUNRFPTqbPRu5a6hr6g7qwGG-kjWLPtWojOB_pm4pK-2rV1n5bOl1_B1P3aHDxsMKIPJ-SwgTbg6U8ek9eb68X0Lnl4vp1Nrx6SWhQ8JjoXOeii0KqSUIMA5BnoVOXIZZaCbgCquqpQZZmoGtRskjFWZBWXOUgUenJMLva7W-_eOwyxXLnO2_6yFIwJWaSKi77F9q3auxA8NuXWmw34r5Kzcqe27NWWO7Xlj9oeyf4gtYmwUxc9mPY_8HwPGkT8_ck5n6RKTb4BpFuKyg |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1007_s13369_019_03728_7 crossref_primary_10_1109_TCSII_2021_3088942 crossref_primary_10_3390_act12030112 crossref_primary_10_1109_TNNLS_2020_2963998 crossref_primary_10_1109_TIE_2022_3165279 crossref_primary_10_1016_j_jtbi_2024_111987 crossref_primary_10_1109_TSMC_2021_3129794 crossref_primary_10_1007_s11063_019_10068_y crossref_primary_10_1016_j_engappai_2024_107935 crossref_primary_10_1109_TII_2020_3047959 crossref_primary_10_1108_IR_12_2021_0291 crossref_primary_10_1109_ACCESS_2020_2970196 crossref_primary_10_1016_j_neucom_2022_09_015 crossref_primary_10_1007_s11071_018_4351_6 crossref_primary_10_1109_TIE_2020_3013795 crossref_primary_10_1016_j_neucom_2020_07_040 crossref_primary_10_1007_s00521_023_08621_x crossref_primary_10_1109_TIE_2022_3210522 crossref_primary_10_1109_ACCESS_2020_2990555 crossref_primary_10_1109_TSMC_2024_3390237 crossref_primary_10_1109_TCYB_2018_2859751 crossref_primary_10_1109_ACCESS_2020_2981688 crossref_primary_10_1109_ACCESS_2025_3539374 crossref_primary_10_1109_TIE_2021_3073305 crossref_primary_10_1177_1077546319889852 crossref_primary_10_1016_j_isatra_2024_01_007 crossref_primary_10_1109_ACCESS_2019_2899587 crossref_primary_10_1016_j_isatra_2024_03_034 crossref_primary_10_1177_0142331217732617 crossref_primary_10_1016_j_rcim_2018_11_010 crossref_primary_10_1109_ACCESS_2020_2974248 crossref_primary_10_1109_TIE_2020_2970635 crossref_primary_10_1109_ACCESS_2019_2894180 crossref_primary_10_1080_00207721_2022_2070790 crossref_primary_10_1007_s00521_019_04622_x crossref_primary_10_1016_j_compeleceng_2024_109344 crossref_primary_10_1109_TSMC_2018_2856266 crossref_primary_10_1177_1475090220927242 crossref_primary_10_1109_TCDS_2024_3387575 crossref_primary_10_17694_bajece_459568 crossref_primary_10_1177_00368504211037771 crossref_primary_10_1016_j_oceaneng_2024_117508 crossref_primary_10_1109_TNNLS_2019_2944992 crossref_primary_10_1109_TIE_2023_3239875 crossref_primary_10_1017_S0263574720001393 crossref_primary_10_1049_iet_cta_2018_6411 crossref_primary_10_1109_TMECH_2021_3056409 crossref_primary_10_1016_j_ymssp_2020_107577 crossref_primary_10_1109_TCST_2019_2897504 crossref_primary_10_1109_TSMC_2021_3111925 crossref_primary_10_3389_fnbot_2019_00050 crossref_primary_10_1016_j_isatra_2023_03_042 crossref_primary_10_1109_ACCESS_2019_2960399 crossref_primary_10_1109_TII_2018_2831225 crossref_primary_10_1109_TNNLS_2021_3109953 crossref_primary_10_1109_TMECH_2019_2917294 crossref_primary_10_3389_fnbot_2019_00047 crossref_primary_10_1016_j_neucom_2018_09_015 crossref_primary_10_1109_TETCI_2024_3386692 crossref_primary_10_1109_TFUZZ_2023_3328545 crossref_primary_10_1109_TNNLS_2020_2980038 crossref_primary_10_1049_iet_pel_2017_0883 crossref_primary_10_1109_TCST_2022_3145645 crossref_primary_10_1109_TRO_2023_3236942 crossref_primary_10_1109_TIE_2019_2959481 crossref_primary_10_1109_JAS_2023_123132 crossref_primary_10_1109_TSMC_2019_2956961 crossref_primary_10_1016_j_neucom_2019_04_069 crossref_primary_10_1016_j_conengprac_2024_105844 crossref_primary_10_1109_TVT_2022_3188546 crossref_primary_10_1109_ACCESS_2018_2878462 crossref_primary_10_1109_TCYB_2021_3111204 crossref_primary_10_3390_ma15196611 crossref_primary_10_1109_TII_2022_3149919 crossref_primary_10_1109_TII_2020_2976844 crossref_primary_10_1109_TASE_2020_3027394 crossref_primary_10_1016_j_heliyon_2023_e23570 crossref_primary_10_1177_0954406220952510 crossref_primary_10_1109_TIE_2020_3044776 crossref_primary_10_21597_jist_396344 crossref_primary_10_1177_0142331220979262 crossref_primary_10_1016_j_neucom_2020_11_012 crossref_primary_10_1109_TIE_2018_2851960 |
| Cites_doi | 10.23919/ACC.2004.1384511 10.1017/CBO9780511804441 10.1109/TII.2017.2737363 10.1109/TCST.2012.2190142 10.1016/j.automatica.2013.09.043 10.1109/TOH.2015.2504971 10.1109/TMECH.2012.2207964 10.1109/TAC.2003.821413 10.1109/LRA.2016.2519948 10.1016/0167-6911(85)90035-0 10.1016/j.rcim.2015.12.007 10.1109/TASE.2015.2474157 10.1109/41.744418 10.1109/21.467718 10.1109/TSMCB.2009.2034073 10.1109/TNNLS.2015.2469147 10.1017/S0263574714001349 10.1109/TRO.2016.2536749 10.1109/TIE.2017.2674624 10.1109/TIE.2008.2011621 10.1109/TAC.2006.876943 10.1109/TNNLS.2016.2574363 10.1109/ICRA.2012.6224904 10.1109/TSMCB.2004.830347 10.1109/TAC.2008.919568 10.1016/S0005-1098(97)00209-4 10.1109/TCYB.2014.2351416 10.1109/TAC.2016.2575827 10.1109/TIE.2013.2240635 10.1109/TIE.2017.2677312 10.1109/TSMC.2016.2608969 10.1109/TCYB.2016.2607166 10.1109/3477.826953 10.1109/LRA.2017.2668471 10.1109/TIE.2014.2314051 10.1016/j.automatica.2009.02.013 10.1016/j.rcim.2016.01.004 10.1109/TRA.2002.805651 10.1109/TNN.2003.809409 10.1109/TAC.2016.2552645 10.1109/TSMCC.2012.2183868 10.1109/TIE.2011.2143372 10.1109/TIE.2016.2538741 10.1080/00207179.2016.1276631 10.1109/TIE.2015.2464176 10.1109/TRO.2008.2003266 10.1109/TSMC.1983.6313123 10.1109/TCYB.2014.2321390 10.1109/TNN.2003.810607 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2017.2774720 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 4920 |
| ExternalDocumentID | 10_1109_TIE_2017_2774720 8113577 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: PolyU Central Research grantid: G-YBMU – fundername: National Natural Science Foundation of China grantid: 61401385 funderid: 10.13039/501100001809 – fundername: Departmental General Research Fund of Hong Kong Polytechnic University grantid: G.61.37.UA7L – fundername: Hong Kong Research Grants Council Early Career Scheme grantid: 25214015 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c291t-d828ad99d7b4aca2ae16ad578e1465adfaabcbbe7662bfed0360096b148a4e2d3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:12:06 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Oct 01 00:26:56 EDT 2025 Wed Aug 27 08:36:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d828ad99d7b4aca2ae16ad578e1465adfaabcbbe7662bfed0360096b148a4e2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8316-5289 0000-0002-0463-0291 0000-0002-6859-3426 |
| PQID | 2002495712 |
| PQPubID | 85464 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8113577 crossref_primary_10_1109_TIE_2017_2774720 crossref_citationtrail_10_1109_TIE_2017_2774720 proquest_journals_2002495712 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref11 ref54 ref10 dixon (ref52) 2004; 4 ref17 ref19 ref18 cheah (ref21) 2003; 19 hou (ref16) 2010; 40 ref51 ref50 ref46 ref48 ref47 ref42 ref41 bellman (ref44) 1997 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref2 ref1 ref38 spong (ref30) 2006 zhang (ref39) 2014; 61 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 (ref32) 0 ref29 khalil (ref45) 2002 |
| References_xml | – volume: 4 start-page: 3839 year: 2004 ident: ref52 article-title: Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics publication-title: Proceedings of the 2004 American Control Conference ACC doi: 10.23919/ACC.2004.1384511 – ident: ref42 doi: 10.1017/CBO9780511804441 – ident: ref29 doi: 10.1109/TII.2017.2737363 – ident: ref11 doi: 10.1109/TCST.2012.2190142 – ident: ref51 doi: 10.1016/j.automatica.2013.09.043 – year: 2002 ident: ref45 publication-title: Nonlinear Systems – ident: ref38 doi: 10.1109/TOH.2015.2504971 – ident: ref20 doi: 10.1109/TMECH.2012.2207964 – ident: ref43 doi: 10.1109/TAC.2003.821413 – ident: ref36 doi: 10.1109/LRA.2016.2519948 – ident: ref49 doi: 10.1016/0167-6911(85)90035-0 – year: 0 ident: ref32 – ident: ref10 doi: 10.1016/j.rcim.2015.12.007 – ident: ref17 doi: 10.1109/TASE.2015.2474157 – ident: ref8 doi: 10.1109/41.744418 – ident: ref13 doi: 10.1109/21.467718 – volume: 40 start-page: 1075 year: 2010 ident: ref16 article-title: Multicriteria optimization for coordination of redundant robots using a dual neural network publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2034073 – ident: ref14 doi: 10.1109/TNNLS.2015.2469147 – ident: ref7 doi: 10.1017/S0263574714001349 – ident: ref33 doi: 10.1109/TRO.2016.2536749 – ident: ref12 doi: 10.1109/TIE.2017.2674624 – ident: ref40 doi: 10.1109/TIE.2008.2011621 – ident: ref53 doi: 10.1109/TAC.2006.876943 – ident: ref31 doi: 10.1109/TNNLS.2016.2574363 – ident: ref37 doi: 10.1109/ICRA.2012.6224904 – ident: ref15 doi: 10.1109/TSMCB.2004.830347 – ident: ref47 doi: 10.1109/TAC.2008.919568 – ident: ref41 doi: 10.1016/S0005-1098(97)00209-4 – ident: ref1 doi: 10.1109/TCYB.2014.2351416 – ident: ref19 doi: 10.1109/TAC.2016.2575827 – ident: ref25 doi: 10.1109/TIE.2013.2240635 – year: 1997 ident: ref44 publication-title: Introduction to Matrix Analysis – ident: ref35 doi: 10.1109/TIE.2017.2677312 – ident: ref18 doi: 10.1109/TSMC.2016.2608969 – ident: ref24 doi: 10.1109/TCYB.2016.2607166 – ident: ref50 doi: 10.1109/3477.826953 – ident: ref34 doi: 10.1109/LRA.2017.2668471 – volume: 61 start-page: 6852 year: 2014 ident: ref39 article-title: Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2314051 – volume: 19 start-page: 192 year: 2003 ident: ref21 article-title: Approximate Jacobian control for robots with uncertain kinematics and dynamics publication-title: IEEE Trans Robot Autom – year: 2006 ident: ref30 publication-title: Robot Modeling and Control – ident: ref54 doi: 10.1016/j.automatica.2009.02.013 – ident: ref28 doi: 10.1016/j.rcim.2016.01.004 – ident: ref6 doi: 10.1109/TRA.2002.805651 – ident: ref46 doi: 10.1109/TNN.2003.809409 – ident: ref27 doi: 10.1109/TAC.2016.2552645 – ident: ref3 doi: 10.1109/TSMCC.2012.2183868 – ident: ref23 doi: 10.1109/TIE.2011.2143372 – ident: ref26 doi: 10.1109/TIE.2016.2538741 – ident: ref48 doi: 10.1080/00207179.2016.1276631 – ident: ref4 doi: 10.1109/TIE.2015.2464176 – ident: ref22 doi: 10.1109/TRO.2008.2003266 – ident: ref9 doi: 10.1109/TSMC.1983.6313123 – ident: ref2 doi: 10.1109/TCYB.2014.2321390 – ident: ref5 doi: 10.1109/TNN.2003.810607 |
| SSID | ssj0014515 |
| Score | 2.56864 |
| Snippet | Redundancy resolution is of great importance in the control of manipulators. Among the existing results for handling this issue, the quadratic program... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4909 |
| SubjectTerms | Adaptive control Computer simulation Distance learning Jacobi matrix method Jacobian matrices Jacobian matrix Kinematic control Kinematics Machine learning manipulator Manipulators Mathematical models Neural networks Nonlinearity Parameter identification Parameter uncertainty Performance analysis Performance indices Physical properties quadratic program (QP) Redundancy redundancy resolution Robot arms Uncertainty unknown physical parameters |
| Title | Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators With Unknown Physical Parameters |
| URI | https://ieeexplore.ieee.org/document/8113577 https://www.proquest.com/docview/2002495712 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34qmJ9sQcvgmmbTbqbHEUUH7QUsegt7CsoSlra9OKvdyabFlERbznshoVvH_PNzn4fwKlwQolchEFoIyQoOlaBjuIoMBjMc4OUROeUh-wPxM0ovnvuPa_A-fItjHOuKj5zbfqs7vLt2MwpVdZJwjDqSbkKqzIR_q3W8sYg7nm3Ak6KsUj6FleS3bTzeHtFNVyyzTHWkeTs_eUIqjxVfmzE1elyvQn9xbh8Uclbe17qtvn4Jtn434FvwUYdZrILPy-2YcUVO7D-RXywCbMLqya02bGhz8YgQoy0OrDfwBeHM4xo2T12qXRd2aUva2fjnD04en2GqLC-Kl4rD7DxdMaeXssXNiooUVewYT0F2FBRBRjJeO7C6Prq8fImqC0YAsPTsAwsEjJl09RKRNEorlwolMVV7nCH7SmbK6WN1k4KwXXuLJ6HRIo0kiwVO26jPWgU48LtA1Oum-TIx4xLTKx4Vycy1sgvLXIklVvTgs4ClczU-uRkk_GeVTylm2aIY0Y4ZjWOLThb9ph4bY4_2jYJlmW7GpEWHC2Az-rFOyNnTnLkliE_-L3XIazhvxNfMXYEjXI6d8cYm5T6pJqUn1yC4qI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH64HNSDu1jXOXgRTNtMJttRRKlLS5EWvYXZgqKkYtOLv973MmkRFfGWwwwZ-GZ535s33wdwEtlIRnnke74JkKAoIT0ViMDTGMxzjZRE5ZSH7PaizlDcPIaPc3A2ewtjra2Kz2yTPqu7fDPSE0qVtRLfD8I4nofFUAgRutdaszsDETq_Ak6asUj7ppeS7bQ1uL6kKq64yTHaicnb-8shVLmq_NiKq_Plag2605G5spKX5qRUTf3xTbTxv0Nfh9U60GTnbmZswJwtNmHli_zgFozPjXyj7Y71XT4GMWKk1oH9eq48nGFMy26xS6Xsyi5cYTsb5eze0vszxIV1ZfFcuYCN3sfs4bl8YsOCUnUF69eTgPUl1YCRkOc2DK8uBxcdrzZh8DRP_dIzSMmkSVMTI45acmn9SBpc5xb32FCaXEqllbJxFHGVW4MnItEihTRLCstNsAMLxaiwu8CkbSc5MjJtEy0kb6skFgoZpkGWJHOjG9CaopLpWqGcjDJes4qptNMMccwIx6zGsQGnsx5vTp3jj7ZbBMusXY1IAw6mwGf18h2TNyd5csc-3_u91zEsdQbdu-zuune7D8v4n8TVjx3AQvk-sYcYqZTqqJqgn11Y5e8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Projection+Neural+Network+for+Kinematic+Control+of+Redundant+Manipulators+With+Unknown+Physical+Parameters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Zhang%2C+Yinyan&rft.au=Chen%2C+Siyuan&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Zhijun&rft.date=2018-06-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=65&rft.issue=6&rft.spage=4909&rft.epage=4920&rft_id=info:doi/10.1109%2FTIE.2017.2774720&rft.externalDocID=8113577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |