Robust Variational Bayesian-Based Soft Sensor Model for LPV Processes With Delayed and Integrated Output Measurements
To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical lim...
        Saved in:
      
    
          | Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 10 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9456 1557-9662  | 
| DOI | 10.1109/TIM.2022.3200098 | 
Cover
| Abstract | To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical limitations. To measure the quality variables of some processes, samples are usually collected over a considerable time interval (integration interval) and sent to the laboratory. Due to the time-consuming offline analysis in the laboratory, the measurements would be available only after a significant delay. The lack of frequent measurements for such variables may hamper the performance of control and optimization techniques. Furthermore, the processes often show time-varying properties due to operating over different conditions, aging, and so on. This article proposes a soft sensor model for the quality variables in linear parameter-varying (LPV) processes subject to unknown varying integration intervals, unknown varying delays, and outliers. The unknown parameters of the soft sensor model and noise variance along with their uncertainties are estimated using a robust variational Bayesian (VB) algorithm. Also, the proposed algorithm estimates various statistics based on a nonparametric distribution technique. Finally, a numerical example and an experimental study on a hybrid three-tank (HTT) system demonstrate the advantages of the developed model. | 
    
|---|---|
| AbstractList | To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical limitations. To measure the quality variables of some processes, samples are usually collected over a considerable time interval (integration interval) and sent to the laboratory. Due to the time-consuming offline analysis in the laboratory, the measurements would be available only after a significant delay. The lack of frequent measurements for such variables may hamper the performance of control and optimization techniques. Furthermore, the processes often show time-varying properties due to operating over different conditions, aging, and so on. This article proposes a soft sensor model for the quality variables in linear parameter-varying (LPV) processes subject to unknown varying integration intervals, unknown varying delays, and outliers. The unknown parameters of the soft sensor model and noise variance along with their uncertainties are estimated using a robust variational Bayesian (VB) algorithm. Also, the proposed algorithm estimates various statistics based on a nonparametric distribution technique. Finally, a numerical example and an experimental study on a hybrid three-tank (HTT) system demonstrate the advantages of the developed model. | 
    
| Author | Huang, Biao Salehi, Yousef  | 
    
| Author_xml | – sequence: 1 givenname: Yousef orcidid: 0000-0002-6786-0529 surname: Salehi fullname: Salehi, Yousef email: ysalehi@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada – sequence: 2 givenname: Biao orcidid: 0000-0001-9082-2216 surname: Huang fullname: Huang, Biao email: biao.huang@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada  | 
    
| BookMark | eNp9kE1PAjEQhhuDiYDeTbw08bzYlm13e_RbEghEEI-bsp3qkmWLbffAv7cI8eDB08wk7zOTeXqo09gGELqkZEApkTeL0WTACGODISOEyPwEdSnnWSKFYB3UJYTmiUy5OEM979cxkok066L21a5aH_BSuUqFyjaqxndqB75STXKnPGg8tybgOTTeOjyxGmpsYjeeLfHM2RK8B4_fq_CJH6COpMaq0XjUBPhwKsRx2oZtG_AElG8dbKAJ_hydGlV7uDjWPnp7elzcvyTj6fPo_naclEzSkJQGFJek1AZybgw30pCSMpGnKaNcgtBEpAp0vlKZkdzoFc2GnKYGqBba0GEfXR_2bp39asGHYm1bF3_0BcuiNs7TVMYUOaRKZ713YIqtqzbK7QpKir3cIsot9nKLo9yIiD9IWYUff8Gpqv4PvDqAFQD83pG5YFLy4TdVSopT | 
    
| CODEN | IEIMAO | 
    
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2024_109783 crossref_primary_10_1109_LSP_2024_3519258 crossref_primary_10_1109_TIM_2024_3373098 crossref_primary_10_1016_j_compchemeng_2023_108543 crossref_primary_10_1109_TIM_2022_3225004  | 
    
| Cites_doi | 10.1080/00207170010018904 10.1109/TSMC.2019.2949087 10.1109/TCYB.2015.2499771 10.1109/ISIE.2016.7744872 10.1016/j.jfranklin.2020.10.046 10.1109/TIM.2018.2884604 10.1109/TIM.2021.3067242 10.1016/j.automatica.2018.04.003 10.1109/TIE.2021.3095807 10.1109/TCST.2016.2642159 10.1109/TAC.2018.2813004 10.1016/j.automatica.2015.05.001 10.1109/TII.2021.3057421 10.1002/aic.17327 10.1109/TIM.2020.3006664 10.1016/j.conengprac.2011.10.007 10.1016/j.jprocont.2021.07.003 10.1109/TIE.2016.2597764 10.1109/TII.2017.2702754 10.1016/j.jprocont.2019.11.005 10.1109/JSEN.2020.3033153 10.1016/j.dsp.2009.10.023 10.1109/TIE.2017.2733465 10.1049/iet-cta.2017.1119  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/TIM.2022.3200098 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1557-9662 | 
    
| EndPage | 10 | 
    
| ExternalDocumentID | 10_1109_TIM_2022_3200098 9862995  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science and Engineering Research Council of Canada (NSERC) funderid: 10.13039/501100000038  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c291t-cfea590cdfe85ff5f9f0c1268442159e6d064aed8ba7f95fdb173514fe1d6df13 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9456 | 
    
| IngestDate | Mon Jun 30 10:13:21 EDT 2025 Wed Oct 01 03:46:39 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Aug 27 02:14:37 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-cfea590cdfe85ff5f9f0c1268442159e6d064aed8ba7f95fdb173514fe1d6df13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6786-0529 0000-0001-9082-2216  | 
    
| PQID | 2711055449 | 
    
| PQPubID | 85462 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | ieee_primary_9862995 crossref_citationtrail_10_1109_TIM_2022_3200098 proquest_journals_2711055449 crossref_primary_10_1109_TIM_2022_3200098  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on instrumentation and measurement | 
    
| PublicationTitleAbbrev | TIM | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref7 doi: 10.1080/00207170010018904 – ident: ref15 doi: 10.1109/TSMC.2019.2949087 – ident: ref24 doi: 10.1109/TCYB.2015.2499771 – ident: ref12 doi: 10.1109/ISIE.2016.7744872 – ident: ref17 doi: 10.1016/j.jfranklin.2020.10.046 – ident: ref3 doi: 10.1109/TIM.2018.2884604 – ident: ref18 doi: 10.1109/TIM.2021.3067242 – ident: ref16 doi: 10.1016/j.automatica.2018.04.003 – ident: ref20 doi: 10.1109/TIE.2021.3095807 – ident: ref6 doi: 10.1109/TCST.2016.2642159 – ident: ref23 doi: 10.1109/TAC.2018.2813004 – ident: ref1 doi: 10.1016/j.automatica.2015.05.001 – ident: ref22 doi: 10.1109/TII.2021.3057421 – ident: ref19 doi: 10.1002/aic.17327 – ident: ref5 doi: 10.1109/TIM.2020.3006664 – ident: ref11 doi: 10.1016/j.conengprac.2011.10.007 – ident: ref10 doi: 10.1016/j.jprocont.2021.07.003 – ident: ref21 doi: 10.1109/TIE.2016.2597764 – ident: ref14 doi: 10.1109/TII.2017.2702754 – ident: ref4 doi: 10.1016/j.jprocont.2019.11.005 – ident: ref8 doi: 10.1109/JSEN.2020.3033153 – ident: ref9 doi: 10.1016/j.dsp.2009.10.023 – ident: ref13 doi: 10.1109/TIE.2017.2733465 – ident: ref2 doi: 10.1049/iet-cta.2017.1119  | 
    
| SSID | ssj0007647 | 
    
| Score | 2.3689656 | 
    
| Snippet | To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Bayes methods Bayesian analysis Delays Hybrid systems Input variables Laboratories Linear parameter-varying (LPV) multirate process Mathematical models Optimization Optimization techniques Outliers (statistics) Prediction algorithms Predictive models Process controls Process parameters Process variables robust soft sensor Robustness (mathematics) Sensors Soft sensors Time measurement Uncertainty variational Bayesian (VB) algorithm varying delays  | 
    
| Title | Robust Variational Bayesian-Based Soft Sensor Model for LPV Processes With Delayed and Integrated Output Measurements | 
    
| URI | https://ieeexplore.ieee.org/document/9862995 https://www.proquest.com/docview/2711055449  | 
    
| Volume | 71 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgUKAFse2CfOBSqdmNvXYcH1mgahHbVn3RW5TYY4FY7VZNcii_nnEeSykIccvBjizNeOab8cw3AG-VQNIKHUci0UkktYyj1DkRCVEYJYX3hQ15yNlxcngpP12r6zXYX_XCIGJTfIaj8Nm85bulrUOqbGwIfhuj1mFdp0nbq7WyujqRLT8mpwtMqKB_kozN-OJoRoGgEKNJ6Esx6W8uqJmp8ochbrzLwVOY9edqi0q-j-qqGNkfDygb__fgz2Czg5nsXasXz2ENF1vw5B754BY8aoo_bbkN9dmyqMuKXVHc3OUG2TS_w9BfGU3JzTl2TtaanVPIu7xlYXzanBHYZZ9Pr1jXaYAl-_Kt-so-4Jx2OpYvHDvqqSgcO6mrm7pis18ZyfIFXB58vHh_GHXjGCIrDK8i6zFXJrbOY6q8V9742PLAFiMJNxhMHMGbHF1a5Nob5V3BdegT8Mhd4jyfvISNxXKBr4AJ531qY0TCJ9JpAiVy4rjySqVoCsMHMO4llNmOqzyMzJhnTcwSm4xkmgWZZp1MB7C32nHT8nT8Y-12ENFqXSedAQx7Jci6i1xmQvMwQlRKs_P3XbvwOPy7zcoMYaO6rfE14ZSqeNMo6E_j-uRo | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ9FGiLWFrABy5IZDf22kl8pEC1C5uC6Lb0FiX2WK1Y7VZNcii_nnEey1OIWw62YmnGM9-MZ74BeKEEklbEYSCiOApkLMMgsVYEQhRaSeFcYXweMj2OJqfy_bk634BX614YRGyKz3DoP5u3fLsytU-VjTTBb63VLbitpJSq7dZa2904ki1DJqcrTLigf5QM9Wg-TSkUFGI49p0pOvnFCTVTVf4wxY1_OboPaX-ytqzk67CuiqH59htp4_8e_QFsd0CTvW414yFs4HIHtn6iH9yBO035pyl3of68KuqyYmcUOXfZQXaY36DvsAwOydFZdkL2mp1Q0Lu6Zn6A2oIR3GWzT2es6zXAkn25rC7YW1zQTsvypWXTnozCso91dVVXLP2Rkyz34PTo3fzNJOgGMgRGaF4FxmGudGisw0Q5p5x2oeGeL0YSctAYWQI4OdqkyGOnlbMFj32ngENuI-v4-BFsLldLfAxMWOcSEyISQpE2Jlgix5Yrp1SCutB8AKNeQpnp2Mr90IxF1kQtoc5IppmXadbJdAAv1zuuWqaOf6zd9SJar-ukM4CDXgmy7iqXmYi5HyIqpX7y913P4e5kns6y2fT4wz7c8_9pczQHsFld1_iUUEtVPGuU9Tv-aue1 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Variational+Bayesian-Based+Soft+Sensor+Model+for+LPV+Processes+With+Delayed+and+Integrated+Output+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Salehi%2C+Yousef&rft.au=Huang%2C+Biao&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2022.3200098&rft.externalDocID=9862995 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |