Robust Variational Bayesian-Based Soft Sensor Model for LPV Processes With Delayed and Integrated Output Measurements

To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical lim...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 10
Main Authors Salehi, Yousef, Huang, Biao
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3200098

Cover

Abstract To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical limitations. To measure the quality variables of some processes, samples are usually collected over a considerable time interval (integration interval) and sent to the laboratory. Due to the time-consuming offline analysis in the laboratory, the measurements would be available only after a significant delay. The lack of frequent measurements for such variables may hamper the performance of control and optimization techniques. Furthermore, the processes often show time-varying properties due to operating over different conditions, aging, and so on. This article proposes a soft sensor model for the quality variables in linear parameter-varying (LPV) processes subject to unknown varying integration intervals, unknown varying delays, and outliers. The unknown parameters of the soft sensor model and noise variance along with their uncertainties are estimated using a robust variational Bayesian (VB) algorithm. Also, the proposed algorithm estimates various statistics based on a nonparametric distribution technique. Finally, a numerical example and an experimental study on a hybrid three-tank (HTT) system demonstrate the advantages of the developed model.
AbstractList To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the process variables are measured frequently, some quality variables cannot be recorded regularly due to economical considerations or technical limitations. To measure the quality variables of some processes, samples are usually collected over a considerable time interval (integration interval) and sent to the laboratory. Due to the time-consuming offline analysis in the laboratory, the measurements would be available only after a significant delay. The lack of frequent measurements for such variables may hamper the performance of control and optimization techniques. Furthermore, the processes often show time-varying properties due to operating over different conditions, aging, and so on. This article proposes a soft sensor model for the quality variables in linear parameter-varying (LPV) processes subject to unknown varying integration intervals, unknown varying delays, and outliers. The unknown parameters of the soft sensor model and noise variance along with their uncertainties are estimated using a robust variational Bayesian (VB) algorithm. Also, the proposed algorithm estimates various statistics based on a nonparametric distribution technique. Finally, a numerical example and an experimental study on a hybrid three-tank (HTT) system demonstrate the advantages of the developed model.
Author Huang, Biao
Salehi, Yousef
Author_xml – sequence: 1
  givenname: Yousef
  orcidid: 0000-0002-6786-0529
  surname: Salehi
  fullname: Salehi, Yousef
  email: ysalehi@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
– sequence: 2
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
BookMark eNp9kE1PAjEQhhuDiYDeTbw08bzYlm13e_RbEghEEI-bsp3qkmWLbffAv7cI8eDB08wk7zOTeXqo09gGELqkZEApkTeL0WTACGODISOEyPwEdSnnWSKFYB3UJYTmiUy5OEM979cxkok066L21a5aH_BSuUqFyjaqxndqB75STXKnPGg8tybgOTTeOjyxGmpsYjeeLfHM2RK8B4_fq_CJH6COpMaq0XjUBPhwKsRx2oZtG_AElG8dbKAJ_hydGlV7uDjWPnp7elzcvyTj6fPo_naclEzSkJQGFJek1AZybgw30pCSMpGnKaNcgtBEpAp0vlKZkdzoFc2GnKYGqBba0GEfXR_2bp39asGHYm1bF3_0BcuiNs7TVMYUOaRKZ713YIqtqzbK7QpKir3cIsot9nKLo9yIiD9IWYUff8Gpqv4PvDqAFQD83pG5YFLy4TdVSopT
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_sigpro_2024_109783
crossref_primary_10_1109_LSP_2024_3519258
crossref_primary_10_1109_TIM_2024_3373098
crossref_primary_10_1016_j_compchemeng_2023_108543
crossref_primary_10_1109_TIM_2022_3225004
Cites_doi 10.1080/00207170010018904
10.1109/TSMC.2019.2949087
10.1109/TCYB.2015.2499771
10.1109/ISIE.2016.7744872
10.1016/j.jfranklin.2020.10.046
10.1109/TIM.2018.2884604
10.1109/TIM.2021.3067242
10.1016/j.automatica.2018.04.003
10.1109/TIE.2021.3095807
10.1109/TCST.2016.2642159
10.1109/TAC.2018.2813004
10.1016/j.automatica.2015.05.001
10.1109/TII.2021.3057421
10.1002/aic.17327
10.1109/TIM.2020.3006664
10.1016/j.conengprac.2011.10.007
10.1016/j.jprocont.2021.07.003
10.1109/TIE.2016.2597764
10.1109/TII.2017.2702754
10.1016/j.jprocont.2019.11.005
10.1109/JSEN.2020.3033153
10.1016/j.dsp.2009.10.023
10.1109/TIE.2017.2733465
10.1049/iet-cta.2017.1119
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3200098
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2022_3200098
9862995
Genre orig-research
GrantInformation_xml – fundername: Natural Science and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-cfea590cdfe85ff5f9f0c1268442159e6d064aed8ba7f95fdb173514fe1d6df13
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:13:21 EDT 2025
Wed Oct 01 03:46:39 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Aug 27 02:14:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cfea590cdfe85ff5f9f0c1268442159e6d064aed8ba7f95fdb173514fe1d6df13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6786-0529
0000-0001-9082-2216
PQID 2711055449
PQPubID 85462
PageCount 10
ParticipantIDs ieee_primary_9862995
crossref_citationtrail_10_1109_TIM_2022_3200098
proquest_journals_2711055449
crossref_primary_10_1109_TIM_2022_3200098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1080/00207170010018904
– ident: ref15
  doi: 10.1109/TSMC.2019.2949087
– ident: ref24
  doi: 10.1109/TCYB.2015.2499771
– ident: ref12
  doi: 10.1109/ISIE.2016.7744872
– ident: ref17
  doi: 10.1016/j.jfranklin.2020.10.046
– ident: ref3
  doi: 10.1109/TIM.2018.2884604
– ident: ref18
  doi: 10.1109/TIM.2021.3067242
– ident: ref16
  doi: 10.1016/j.automatica.2018.04.003
– ident: ref20
  doi: 10.1109/TIE.2021.3095807
– ident: ref6
  doi: 10.1109/TCST.2016.2642159
– ident: ref23
  doi: 10.1109/TAC.2018.2813004
– ident: ref1
  doi: 10.1016/j.automatica.2015.05.001
– ident: ref22
  doi: 10.1109/TII.2021.3057421
– ident: ref19
  doi: 10.1002/aic.17327
– ident: ref5
  doi: 10.1109/TIM.2020.3006664
– ident: ref11
  doi: 10.1016/j.conengprac.2011.10.007
– ident: ref10
  doi: 10.1016/j.jprocont.2021.07.003
– ident: ref21
  doi: 10.1109/TIE.2016.2597764
– ident: ref14
  doi: 10.1109/TII.2017.2702754
– ident: ref4
  doi: 10.1016/j.jprocont.2019.11.005
– ident: ref8
  doi: 10.1109/JSEN.2020.3033153
– ident: ref9
  doi: 10.1016/j.dsp.2009.10.023
– ident: ref13
  doi: 10.1109/TIE.2017.2733465
– ident: ref2
  doi: 10.1049/iet-cta.2017.1119
SSID ssj0007647
Score 2.3689656
Snippet To satisfy the objectives of industrial process control and automation, accurate real-time measurements of quality variables are desired. While most of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
Delays
Hybrid systems
Input variables
Laboratories
Linear parameter-varying (LPV) multirate process
Mathematical models
Optimization
Optimization techniques
Outliers (statistics)
Prediction algorithms
Predictive models
Process controls
Process parameters
Process variables
robust soft sensor
Robustness (mathematics)
Sensors
Soft sensors
Time measurement
Uncertainty
variational Bayesian (VB) algorithm
varying delays
Title Robust Variational Bayesian-Based Soft Sensor Model for LPV Processes With Delayed and Integrated Output Measurements
URI https://ieeexplore.ieee.org/document/9862995
https://www.proquest.com/docview/2711055449
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgUKAFse2CfOBSqdmNvXYcH1mgahHbVn3RW5TYY4FY7VZNcii_nnEeSykIccvBjizNeOab8cw3AG-VQNIKHUci0UkktYyj1DkRCVEYJYX3hQ15yNlxcngpP12r6zXYX_XCIGJTfIaj8Nm85bulrUOqbGwIfhuj1mFdp0nbq7WyujqRLT8mpwtMqKB_kozN-OJoRoGgEKNJ6Esx6W8uqJmp8ochbrzLwVOY9edqi0q-j-qqGNkfDygb__fgz2Czg5nsXasXz2ENF1vw5B754BY8aoo_bbkN9dmyqMuKXVHc3OUG2TS_w9BfGU3JzTl2TtaanVPIu7xlYXzanBHYZZ9Pr1jXaYAl-_Kt-so-4Jx2OpYvHDvqqSgcO6mrm7pis18ZyfIFXB58vHh_GHXjGCIrDK8i6zFXJrbOY6q8V9742PLAFiMJNxhMHMGbHF1a5Nob5V3BdegT8Mhd4jyfvISNxXKBr4AJ531qY0TCJ9JpAiVy4rjySqVoCsMHMO4llNmOqzyMzJhnTcwSm4xkmgWZZp1MB7C32nHT8nT8Y-12ENFqXSedAQx7Jci6i1xmQvMwQlRKs_P3XbvwOPy7zcoMYaO6rfE14ZSqeNMo6E_j-uRo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ9FGiLWFrABy5IZDf22kl8pEC1C5uC6Lb0FiX2WK1Y7VZNcii_nnEey1OIWw62YmnGM9-MZ74BeKEEklbEYSCiOApkLMMgsVYEQhRaSeFcYXweMj2OJqfy_bk634BX614YRGyKz3DoP5u3fLsytU-VjTTBb63VLbitpJSq7dZa2904ki1DJqcrTLigf5QM9Wg-TSkUFGI49p0pOvnFCTVTVf4wxY1_OboPaX-ytqzk67CuiqH59htp4_8e_QFsd0CTvW414yFs4HIHtn6iH9yBO035pyl3of68KuqyYmcUOXfZQXaY36DvsAwOydFZdkL2mp1Q0Lu6Zn6A2oIR3GWzT2es6zXAkn25rC7YW1zQTsvypWXTnozCso91dVVXLP2Rkyz34PTo3fzNJOgGMgRGaF4FxmGudGisw0Q5p5x2oeGeL0YSctAYWQI4OdqkyGOnlbMFj32ngENuI-v4-BFsLldLfAxMWOcSEyISQpE2Jlgix5Yrp1SCutB8AKNeQpnp2Mr90IxF1kQtoc5IppmXadbJdAAv1zuuWqaOf6zd9SJar-ukM4CDXgmy7iqXmYi5HyIqpX7y913P4e5kns6y2fT4wz7c8_9pczQHsFld1_iUUEtVPGuU9Tv-aue1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Variational+Bayesian-Based+Soft+Sensor+Model+for+LPV+Processes+With+Delayed+and+Integrated+Output+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Salehi%2C+Yousef&rft.au=Huang%2C+Biao&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2022.3200098&rft.externalDocID=9862995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon