Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery

Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 69; pp. 617 - 630
Main Authors Yuan, Zhengdao, Guo, Qinghua, Luo, Man
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2020.3044847

Cover

Abstract Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{C}+\boldsymbol{W}</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\lbrace \boldsymbol{b}_{\boldsymbol{k}}\rbrace</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol{C}</tex-math></inline-formula> are jointly recovered with known <inline-formula><tex-math notation="LaTeX">\boldsymbol{A}_k</tex-math></inline-formula> from the noisy measurements <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}</tex-math></inline-formula>. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance.
AbstractList Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{C}+\boldsymbol{W}</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\lbrace \boldsymbol{b}_{\boldsymbol{k}}\rbrace</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol{C}</tex-math></inline-formula> are jointly recovered with known <inline-formula><tex-math notation="LaTeX">\boldsymbol{A}_k</tex-math></inline-formula> from the noisy measurements <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}</tex-math></inline-formula>. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance.
Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are jointly recovered with known [Formula Omitted] from the noisy measurements [Formula Omitted]. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance.
Author Luo, Man
Guo, Qinghua
Yuan, Zhengdao
Author_xml – sequence: 1
  givenname: Zhengdao
  surname: Yuan
  fullname: Yuan, Zhengdao
  email: yuan_zhengdao@163.com
  organization: Artificial Intelligence Technology Engineering Research Center, Open University of Henan, and School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Qinghua
  orcidid: 0000-0002-5180-7854
  surname: Guo
  fullname: Guo, Qinghua
  email: qguo@uow.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia
– sequence: 3
  givenname: Man
  surname: Luo
  fullname: Luo, Man
  email: ml857@uowmail.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia
BookMark eNp9kM1LAzEQxYMo2FbvgpcFz1snm2w-jrX4BRWLbtHbkl0nNaXu1mQr9r83pcWDB0_zBt6b4f365LBpGyTkjMKQUtCXxfN0mEEGQwacKy4PSI9qTlPgUhxGDTlLcyVfj0k_hAUA5VyLHilGq5Vvv92H6TB5wBDMHJOpCcE18-TFde_JrHGd8Zuk8KYJtvXR6domiSp5aqt16JIrt3QNmrhj3X6h35yQI2uWAU_3c0BmN9fF-C6dPN7ej0eTtM407dLaCimo0hYNSJSWWwG2EtwIQ_VbVuUIFpRmnKlKYs61qrW1tsoZ1wwqxgbkYnc3VvhcY-jKRbv2TXxZZlxqpaSkNLpg56p9G4JHW6587Os3JYVyy66M7Motu3LPLkbEn0gdIWx7d9645X_B813QIeLvH53FEiDYD0PJfoI
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TWC_2022_3204688
crossref_primary_10_1109_TAES_2022_3233545
crossref_primary_10_1109_TSP_2024_3512575
crossref_primary_10_1109_TCOMM_2021_3063236
crossref_primary_10_1109_TIT_2023_3311408
crossref_primary_10_1109_JSEN_2022_3192534
crossref_primary_10_1109_LWC_2023_3265373
crossref_primary_10_1109_TWC_2024_3352975
crossref_primary_10_1109_JIOT_2022_3196015
crossref_primary_10_1109_TSP_2021_3092363
crossref_primary_10_1109_TWC_2023_3283275
crossref_primary_10_1109_TWC_2021_3110125
crossref_primary_10_1109_TSP_2023_3269151
crossref_primary_10_1109_TWC_2024_3510935
crossref_primary_10_1109_JSEN_2021_3068281
crossref_primary_10_1109_TIT_2024_3509476
crossref_primary_10_1109_TWC_2021_3087501
crossref_primary_10_1109_TSP_2024_3509413
crossref_primary_10_1109_TVT_2024_3355981
crossref_primary_10_1109_TWC_2021_3097173
crossref_primary_10_1109_LWC_2021_3126871
crossref_primary_10_1109_OJCOMS_2025_3542860
crossref_primary_10_1109_TCOMM_2022_3179771
crossref_primary_10_1109_JSEN_2024_3419053
crossref_primary_10_1109_JIOT_2023_3345339
crossref_primary_10_1109_LWC_2023_3330972
crossref_primary_10_1109_JIOT_2023_3301018
crossref_primary_10_1109_TIT_2022_3186166
crossref_primary_10_1109_TSP_2021_3114985
crossref_primary_10_1109_TVT_2022_3227282
crossref_primary_10_1109_TSP_2021_3112922
Cites_doi 10.1088/0266-5611/31/11/115002
10.1109/ISIT.2007.4557602
10.1109/ACCESS.2018.2887261
10.1109/TIT.2019.2916359
10.1109/ITWKSPS.2010.5503193
10.1109/ISIT.2011.6033942
10.1109/JSTSP.2016.2539123
10.1093/imaiai/iat004
10.1109/TSP.2011.2109956
10.1109/JSEN.2020.3004037
10.1109/TIT.2019.2913109
10.1109/26.297849
10.1109/18.910572
10.1109/TSP.2019.2916100
10.1016/j.sigpro.2016.08.027
10.1016/j.dsp.2020.102800
10.1023/A:1007665907178
10.1109/TIT.2013.2294644
10.1109/ITWKSPS.2010.5503228
10.1016/j.sigpro.2019.107248
10.1109/JSTSP.2016.2539100
10.1109/LSP.2013.2256783
10.1109/TSP.2013.2272287
10.1109/LSP.2017.2789163
10.1109/26.774855
10.1088/1742-5468/2012/08/P08009
10.1109/VTS-APWCS.2019.8851644
10.1109/JPROC.2010.2040551
10.1109/LSP.2016.2632180
10.1109/TSP.2014.2357773
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.3044847
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 630
ExternalDocumentID 10_1109_TSP_2020_3044847
9293406
Genre orig-research
GrantInformation_xml – fundername: Henan research Project of high education
  grantid: 20B510005
– fundername: Science and technology research Project of Henan province
  grantid: 202102210313; 202102210172
– fundername: National Natural Science Foundation of China
  grantid: 61901417; 61801434
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-cf676189fea07e7f4f60fb64a6a19d2b5e0f0893438b7e5498c9fffb534930b33
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:10:27 EDT 2025
Wed Oct 01 03:34:35 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Wed Aug 27 06:01:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cf676189fea07e7f4f60fb64a6a19d2b5e0f0893438b7e5498c9fffb534930b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5180-7854
PQID 2479887711
PQPubID 85478
PageCount 14
ParticipantIDs ieee_primary_9293406
crossref_primary_10_1109_TSP_2020_3044847
proquest_journals_2479887711
crossref_citationtrail_10_1109_TSP_2020_3044847
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref14
ref31
fletcher (ref22) 0
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
winn (ref27) 2005; 6
geiger (ref35) 0
ref24
ref23
ref26
ref25
ref21
guo (ref15) 2015
ref28
ref8
xing (ref36) 2003
ref7
minka (ref29) 0
ref9
yuan (ref20) 0
ref4
ref3
ref6
ref5
pearl (ref30) 0
References_xml – ident: ref3
  doi: 10.1088/0266-5611/31/11/115002
– ident: ref28
  doi: 10.1109/ISIT.2007.4557602
– ident: ref24
  doi: 10.1109/ACCESS.2018.2887261
– ident: ref21
  doi: 10.1109/TIT.2019.2916359
– ident: ref5
  doi: 10.1109/ITWKSPS.2010.5503193
– ident: ref8
  doi: 10.1109/ISIT.2011.6033942
– ident: ref10
  doi: 10.1109/JSTSP.2016.2539123
– ident: ref32
  doi: 10.1093/imaiai/iat004
– ident: ref1
  doi: 10.1109/TSP.2011.2109956
– ident: ref18
  doi: 10.1109/JSEN.2020.3004037
– ident: ref14
  doi: 10.1109/TIT.2019.2913109
– ident: ref2
  doi: 10.1109/26.297849
– start-page: 7440
  year: 0
  ident: ref22
  article-title: Plugin estimation in high-dimensional linear inverse problems: A rigorous analysis
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/18.910572
– ident: ref7
  doi: 10.1109/TSP.2019.2916100
– ident: ref33
  doi: 10.1016/j.sigpro.2016.08.027
– ident: ref19
  doi: 10.1016/j.dsp.2020.102800
– ident: ref26
  doi: 10.1023/A:1007665907178
– year: 0
  ident: ref20
  article-title: Iterative detection for orthogonal time frequency space modulation using approximate message passing with unitary transformation
– ident: ref12
  doi: 10.1109/TIT.2013.2294644
– ident: ref6
  doi: 10.1109/ITWKSPS.2010.5503228
– ident: ref23
  doi: 10.1016/j.sigpro.2019.107248
– ident: ref13
  doi: 10.1088/0266-5611/31/11/115002
– ident: ref11
  doi: 10.1109/JSTSP.2016.2539100
– ident: ref16
  doi: 10.1109/LSP.2013.2256783
– ident: ref38
  doi: 10.1109/TSP.2013.2272287
– volume: 6
  start-page: 661
  year: 2005
  ident: ref27
  article-title: Variational message passing
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1109/LSP.2017.2789163
– ident: ref39
  doi: 10.1109/26.774855
– ident: ref37
  doi: 10.1088/1742-5468/2012/08/P08009
– year: 2003
  ident: ref36
  article-title: A generalized mean field algorithm for variational inference in exponential families
– ident: ref17
  doi: 10.1109/VTS-APWCS.2019.8851644
– year: 0
  ident: ref35
  article-title: Structured variational inference procedures and their realizations
  publication-title: Proc 10th Int Workshop Artif Intell Statist
– ident: ref4
  doi: 10.1109/JPROC.2010.2040551
– start-page: 362
  year: 0
  ident: ref29
  article-title: Expectation propagation for approximate Bayesian inference
  publication-title: Proc 17th Conf Uncertainty Artif Intell
– start-page: 133
  year: 0
  ident: ref30
  article-title: Reverend bayes on inference engines: A distributed hierarchical approach
  publication-title: Proc 22nd Conf Artif Intell AAAI
– ident: ref34
  doi: 10.1109/LSP.2016.2632180
– year: 2015
  ident: ref15
  article-title: Approximate message passing with unitary transformation
  publication-title: CoRR
– ident: ref9
  doi: 10.1109/TSP.2014.2357773
SSID ssj0014496
Score 2.5152895
Snippet Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math...
Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model [Formula Omitted], where...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 617
SubjectTerms Algorithms
Approximate message passing
Approximation algorithms
Bayesian analysis
bilinear recovery
compressive sensing
Covariance matrices
dictionary learning
Gaussian noise
Inference algorithms
Matrix decomposition
Message passing
Propagation
Recovery
Robustness
Self calibration
Signal processing algorithms
Statistical inference
unitary transformation
Title Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery
URI https://ieeexplore.ieee.org/document/9293406
https://www.proquest.com/docview/2479887711
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78NcXplBy8CHZrmjRpjiqKCJOhE3crTZroUDaZHah_vS9pO4aKeCkpSUrIS5rvJS_fh9ARJ1qTyEaBJsIGTLsggJzZIE9oJqjJVOJF-3o3_OqeXQ_j4RI6md-FMcb44DPTcUl_lp9P9MxtlXVhKafM8Wsvi4SXd7XmJwaMeS0ugAs0iBMxrI8kQ9kd3PXBEYzAPw3BGXFCKgtLkNdU-fEj9qvL5Trq1e0qg0qeO7NCdfTnN8rG_zZ8A61VMBOfluNiEy2Z8RZaXSAfbKLBqaMTfx8BZDW455RQHg3uA5aGXPwwKp6ww6PZ9AMPFsDtZIwhhW8navZW4LORQ6kZvIMXC5PiYxvdX14Mzq-CSmMh0JEkRaAtF5wk0posFEZYZnloFWcZz4jMIxWb0IaAaRhNlDDgTCZaWmtVTJmkoaJ0BzXGk7HZRVhRxZXNoRp8xt3oiqXKE8IiDU-pbAt1625PdUVA7nQwXlLviIQyBUOlzlBpZagWOp7XeC3JN_4o23T9Pi9XdXkLtWvLptXsfEsj5ljahCBk7_da-2glcrErfquljRrFdGYOAHwU6tCPui-wTtay
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5CcBgcgNEhyo_NBy5ISxvHThwfAQ11gyK0paK3KHZsqEAtalOJ8tfz7KZVtU3TLpEj25HlZ8ffs5-_D-A0oVrTyEaBpsIGXLsggJLboExZIZgpVOpF-7q3SafHf_Tj_hp8Xd6FMcb44DPTckl_ll-O9NRtlbVxKWfc8WtvxJzzeH5ba3lmwLlX40LAwII4Ff3FoWQo29mvO3QFI_RQQ3RHnJTKyiLkVVX--BX79eVqB7qLls3DSp5a00q19NtvpI3_2_Rd2K6BJjmfj4yPsGaGe7C1Qj_YgOzcEYq_DhC0GtJ1WigPhtwhmsZccj-oHolDpMV4RrIVeDsaEkyRnyM1nVTkYuBwaoHv6MfitJh9gt7Vt-yyE9QqC4GOJK0CbROR0FRaU4TCCMttElqV8CIpqCwjFZvQhohqOEuVMOhOplpaa1XMuGShYmwf1oejoTkAophKlC2xGn7G3emKpSpTyiONT6lsE9qLbs91TUHulDCec--KhDJHQ-XOUHltqCacLWu8zOk3_lG24fp9Wa7u8iYcLyyb1_Nzkkfc8bQJQenh32t9gQ-drHuT33y_vT6CzchFsviNl2NYr8ZTc4JQpFKf_Qh8BxdH2f8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Message+Passing+With+Unitary+Transformation+for+Robust+Bilinear+Recovery&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yuan%2C+Zhengdao&rft.au=Guo%2C+Qinghua&rft.au=Luo%2C+Man&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=617&rft.epage=630&rft_id=info:doi/10.1109%2FTSP.2020.3044847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3044847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon