Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery
Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 69; pp. 617 - 630 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2020.3044847 | 
Cover
| Abstract | Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{C}+\boldsymbol{W}</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\lbrace \boldsymbol{b}_{\boldsymbol{k}}\rbrace</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol{C}</tex-math></inline-formula> are jointly recovered with known <inline-formula><tex-math notation="LaTeX">\boldsymbol{A}_k</tex-math></inline-formula> from the noisy measurements <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}</tex-math></inline-formula>. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance. | 
    
|---|---|
| AbstractList | Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}=\sum _{\boldsymbol{k}=1}^{\boldsymbol{K}} \boldsymbol{b}_{\boldsymbol{k}} \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{C}+\boldsymbol{W}</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\lbrace \boldsymbol{b}_{\boldsymbol{k}}\rbrace</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol{C}</tex-math></inline-formula> are jointly recovered with known <inline-formula><tex-math notation="LaTeX">\boldsymbol{A}_k</tex-math></inline-formula> from the noisy measurements <inline-formula><tex-math notation="LaTeX">\boldsymbol{Y}</tex-math></inline-formula>. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance. Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are jointly recovered with known [Formula Omitted] from the noisy measurements [Formula Omitted]. The bilinear recovery problem has many applications such as dictionary learning, self-calibration, compressive sensing with matrix uncertainty, etc. In this work, we propose a new approximate Bayesian inference algorithm for bilinear recovery, where AMP with unitary transformation (UTAMP) is integrated with belief propagation (BP), variational inference (VI) and expectation propagation (EP) to achieve efficient approximate inference. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed algorithm is much more robust and faster, leading to remarkably better performance.  | 
    
| Author | Luo, Man Guo, Qinghua Yuan, Zhengdao  | 
    
| Author_xml | – sequence: 1 givenname: Zhengdao surname: Yuan fullname: Yuan, Zhengdao email: yuan_zhengdao@163.com organization: Artificial Intelligence Technology Engineering Research Center, Open University of Henan, and School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Qinghua orcidid: 0000-0002-5180-7854 surname: Guo fullname: Guo, Qinghua email: qguo@uow.edu.au organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia – sequence: 3 givenname: Man surname: Luo fullname: Luo, Man email: ml857@uowmail.edu.au organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia  | 
    
| BookMark | eNp9kM1LAzEQxYMo2FbvgpcFz1snm2w-jrX4BRWLbtHbkl0nNaXu1mQr9r83pcWDB0_zBt6b4f365LBpGyTkjMKQUtCXxfN0mEEGQwacKy4PSI9qTlPgUhxGDTlLcyVfj0k_hAUA5VyLHilGq5Vvv92H6TB5wBDMHJOpCcE18-TFde_JrHGd8Zuk8KYJtvXR6domiSp5aqt16JIrt3QNmrhj3X6h35yQI2uWAU_3c0BmN9fF-C6dPN7ej0eTtM407dLaCimo0hYNSJSWWwG2EtwIQ_VbVuUIFpRmnKlKYs61qrW1tsoZ1wwqxgbkYnc3VvhcY-jKRbv2TXxZZlxqpaSkNLpg56p9G4JHW6587Os3JYVyy66M7Motu3LPLkbEn0gdIWx7d9645X_B813QIeLvH53FEiDYD0PJfoI | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1109_TWC_2022_3204688 crossref_primary_10_1109_TAES_2022_3233545 crossref_primary_10_1109_TSP_2024_3512575 crossref_primary_10_1109_TCOMM_2021_3063236 crossref_primary_10_1109_TIT_2023_3311408 crossref_primary_10_1109_JSEN_2022_3192534 crossref_primary_10_1109_LWC_2023_3265373 crossref_primary_10_1109_TWC_2024_3352975 crossref_primary_10_1109_JIOT_2022_3196015 crossref_primary_10_1109_TSP_2021_3092363 crossref_primary_10_1109_TWC_2023_3283275 crossref_primary_10_1109_TWC_2021_3110125 crossref_primary_10_1109_TSP_2023_3269151 crossref_primary_10_1109_TWC_2024_3510935 crossref_primary_10_1109_JSEN_2021_3068281 crossref_primary_10_1109_TIT_2024_3509476 crossref_primary_10_1109_TWC_2021_3087501 crossref_primary_10_1109_TSP_2024_3509413 crossref_primary_10_1109_TVT_2024_3355981 crossref_primary_10_1109_TWC_2021_3097173 crossref_primary_10_1109_LWC_2021_3126871 crossref_primary_10_1109_OJCOMS_2025_3542860 crossref_primary_10_1109_TCOMM_2022_3179771 crossref_primary_10_1109_JSEN_2024_3419053 crossref_primary_10_1109_JIOT_2023_3345339 crossref_primary_10_1109_LWC_2023_3330972 crossref_primary_10_1109_JIOT_2023_3301018 crossref_primary_10_1109_TIT_2022_3186166 crossref_primary_10_1109_TSP_2021_3114985 crossref_primary_10_1109_TVT_2022_3227282 crossref_primary_10_1109_TSP_2021_3112922  | 
    
| Cites_doi | 10.1088/0266-5611/31/11/115002 10.1109/ISIT.2007.4557602 10.1109/ACCESS.2018.2887261 10.1109/TIT.2019.2916359 10.1109/ITWKSPS.2010.5503193 10.1109/ISIT.2011.6033942 10.1109/JSTSP.2016.2539123 10.1093/imaiai/iat004 10.1109/TSP.2011.2109956 10.1109/JSEN.2020.3004037 10.1109/TIT.2019.2913109 10.1109/26.297849 10.1109/18.910572 10.1109/TSP.2019.2916100 10.1016/j.sigpro.2016.08.027 10.1016/j.dsp.2020.102800 10.1023/A:1007665907178 10.1109/TIT.2013.2294644 10.1109/ITWKSPS.2010.5503228 10.1016/j.sigpro.2019.107248 10.1109/JSTSP.2016.2539100 10.1109/LSP.2013.2256783 10.1109/TSP.2013.2272287 10.1109/LSP.2017.2789163 10.1109/26.774855 10.1088/1742-5468/2012/08/P08009 10.1109/VTS-APWCS.2019.8851644 10.1109/JPROC.2010.2040551 10.1109/LSP.2016.2632180 10.1109/TSP.2014.2357773  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TSP.2020.3044847 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 630 | 
    
| ExternalDocumentID | 10_1109_TSP_2020_3044847 9293406  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Henan research Project of high education grantid: 20B510005 – fundername: Science and technology research Project of Henan province grantid: 202102210313; 202102210172 – fundername: National Natural Science Foundation of China grantid: 61901417; 61801434 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c291t-cf676189fea07e7f4f60fb64a6a19d2b5e0f0893438b7e5498c9fffb534930b33 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Mon Jun 30 10:10:27 EDT 2025 Wed Oct 01 03:34:35 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Wed Aug 27 06:01:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-cf676189fea07e7f4f60fb64a6a19d2b5e0f0893438b7e5498c9fffb534930b33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5180-7854 | 
    
| PQID | 2479887711 | 
    
| PQPubID | 85478 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | ieee_primary_9293406 crossref_primary_10_1109_TSP_2020_3044847 proquest_journals_2479887711 crossref_citationtrail_10_1109_TSP_2020_3044847  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref34 ref12 ref37 ref14 ref31 fletcher (ref22) 0 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 winn (ref27) 2005; 6 geiger (ref35) 0 ref24 ref23 ref26 ref25 ref21 guo (ref15) 2015 ref28 ref8 xing (ref36) 2003 ref7 minka (ref29) 0 ref9 yuan (ref20) 0 ref4 ref3 ref6 ref5 pearl (ref30) 0  | 
    
| References_xml | – ident: ref3 doi: 10.1088/0266-5611/31/11/115002 – ident: ref28 doi: 10.1109/ISIT.2007.4557602 – ident: ref24 doi: 10.1109/ACCESS.2018.2887261 – ident: ref21 doi: 10.1109/TIT.2019.2916359 – ident: ref5 doi: 10.1109/ITWKSPS.2010.5503193 – ident: ref8 doi: 10.1109/ISIT.2011.6033942 – ident: ref10 doi: 10.1109/JSTSP.2016.2539123 – ident: ref32 doi: 10.1093/imaiai/iat004 – ident: ref1 doi: 10.1109/TSP.2011.2109956 – ident: ref18 doi: 10.1109/JSEN.2020.3004037 – ident: ref14 doi: 10.1109/TIT.2019.2913109 – ident: ref2 doi: 10.1109/26.297849 – start-page: 7440 year: 0 ident: ref22 article-title: Plugin estimation in high-dimensional linear inverse problems: A rigorous analysis publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/18.910572 – ident: ref7 doi: 10.1109/TSP.2019.2916100 – ident: ref33 doi: 10.1016/j.sigpro.2016.08.027 – ident: ref19 doi: 10.1016/j.dsp.2020.102800 – ident: ref26 doi: 10.1023/A:1007665907178 – year: 0 ident: ref20 article-title: Iterative detection for orthogonal time frequency space modulation using approximate message passing with unitary transformation – ident: ref12 doi: 10.1109/TIT.2013.2294644 – ident: ref6 doi: 10.1109/ITWKSPS.2010.5503228 – ident: ref23 doi: 10.1016/j.sigpro.2019.107248 – ident: ref13 doi: 10.1088/0266-5611/31/11/115002 – ident: ref11 doi: 10.1109/JSTSP.2016.2539100 – ident: ref16 doi: 10.1109/LSP.2013.2256783 – ident: ref38 doi: 10.1109/TSP.2013.2272287 – volume: 6 start-page: 661 year: 2005 ident: ref27 article-title: Variational message passing publication-title: J Mach Learn Res – ident: ref25 doi: 10.1109/LSP.2017.2789163 – ident: ref39 doi: 10.1109/26.774855 – ident: ref37 doi: 10.1088/1742-5468/2012/08/P08009 – year: 2003 ident: ref36 article-title: A generalized mean field algorithm for variational inference in exponential families – ident: ref17 doi: 10.1109/VTS-APWCS.2019.8851644 – year: 0 ident: ref35 article-title: Structured variational inference procedures and their realizations publication-title: Proc 10th Int Workshop Artif Intell Statist – ident: ref4 doi: 10.1109/JPROC.2010.2040551 – start-page: 362 year: 0 ident: ref29 article-title: Expectation propagation for approximate Bayesian inference publication-title: Proc 17th Conf Uncertainty Artif Intell – start-page: 133 year: 0 ident: ref30 article-title: Reverend bayes on inference engines: A distributed hierarchical approach publication-title: Proc 22nd Conf Artif Intell AAAI – ident: ref34 doi: 10.1109/LSP.2016.2632180 – year: 2015 ident: ref15 article-title: Approximate message passing with unitary transformation publication-title: CoRR – ident: ref9 doi: 10.1109/TSP.2014.2357773  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.5152895 | 
    
| Snippet | Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model <inline-formula><tex-math... Recently, several promising approximate message passing (AMP) based algorithms have been developed for bilinear recovery with model [Formula Omitted], where...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 617 | 
    
| SubjectTerms | Algorithms Approximate message passing Approximation algorithms Bayesian analysis bilinear recovery compressive sensing Covariance matrices dictionary learning Gaussian noise Inference algorithms Matrix decomposition Message passing Propagation Recovery Robustness Self calibration Signal processing algorithms Statistical inference unitary transformation  | 
    
| Title | Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery | 
    
| URI | https://ieeexplore.ieee.org/document/9293406 https://www.proquest.com/docview/2479887711  | 
    
| Volume | 69 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78NcXplBy8CHZrmjRpjiqKCJOhE3crTZroUDaZHah_vS9pO4aKeCkpSUrIS5rvJS_fh9ARJ1qTyEaBJsIGTLsggJzZIE9oJqjJVOJF-3o3_OqeXQ_j4RI6md-FMcb44DPTcUl_lp9P9MxtlXVhKafM8Wsvi4SXd7XmJwaMeS0ugAs0iBMxrI8kQ9kd3PXBEYzAPw3BGXFCKgtLkNdU-fEj9qvL5Trq1e0qg0qeO7NCdfTnN8rG_zZ8A61VMBOfluNiEy2Z8RZaXSAfbKLBqaMTfx8BZDW455RQHg3uA5aGXPwwKp6ww6PZ9AMPFsDtZIwhhW8navZW4LORQ6kZvIMXC5PiYxvdX14Mzq-CSmMh0JEkRaAtF5wk0posFEZYZnloFWcZz4jMIxWb0IaAaRhNlDDgTCZaWmtVTJmkoaJ0BzXGk7HZRVhRxZXNoRp8xt3oiqXKE8IiDU-pbAt1625PdUVA7nQwXlLviIQyBUOlzlBpZagWOp7XeC3JN_4o23T9Pi9XdXkLtWvLptXsfEsj5ljahCBk7_da-2glcrErfquljRrFdGYOAHwU6tCPui-wTtay | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5CcBgcgNEhyo_NBy5ISxvHThwfAQ11gyK0paK3KHZsqEAtalOJ8tfz7KZVtU3TLpEj25HlZ8ffs5-_D-A0oVrTyEaBpsIGXLsggJLboExZIZgpVOpF-7q3SafHf_Tj_hp8Xd6FMcb44DPTckl_ll-O9NRtlbVxKWfc8WtvxJzzeH5ba3lmwLlX40LAwII4Ff3FoWQo29mvO3QFI_RQQ3RHnJTKyiLkVVX--BX79eVqB7qLls3DSp5a00q19NtvpI3_2_Rd2K6BJjmfj4yPsGaGe7C1Qj_YgOzcEYq_DhC0GtJ1WigPhtwhmsZccj-oHolDpMV4RrIVeDsaEkyRnyM1nVTkYuBwaoHv6MfitJh9gt7Vt-yyE9QqC4GOJK0CbROR0FRaU4TCCMttElqV8CIpqCwjFZvQhohqOEuVMOhOplpaa1XMuGShYmwf1oejoTkAophKlC2xGn7G3emKpSpTyiONT6lsE9qLbs91TUHulDCec--KhDJHQ-XOUHltqCacLWu8zOk3_lG24fp9Wa7u8iYcLyyb1_Nzkkfc8bQJQenh32t9gQ-drHuT33y_vT6CzchFsviNl2NYr8ZTc4JQpFKf_Qh8BxdH2f8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Message+Passing+With+Unitary+Transformation+for+Robust+Bilinear+Recovery&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yuan%2C+Zhengdao&rft.au=Guo%2C+Qinghua&rft.au=Luo%2C+Man&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=617&rft.epage=630&rft_id=info:doi/10.1109%2FTSP.2020.3044847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3044847 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |