NPROS: A Not So Pure Random Orthogonal search algorithm—A suite of random optimization algorithms driven by reinforcement learning

We live in a world where waves of novel nature-inspired metaheuristic algorithms keep hitting the shore repeatedly. This never-ending surge of new metaheuristic algorithms is overwhelming to the extent that their novelty is being criticized. In this paper, instead of focusing on metaheuristics, we f...

Full description

Saved in:
Bibliographic Details
Published inOptimization letters Vol. 18; no. 9; pp. 2091 - 2111
Main Authors Hameed, A. S. Syed Shahul, Rajagopalan, Narendran
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Subjects
Online AccessGet full text
ISSN1862-4472
1862-4480
DOI10.1007/s11590-023-02038-0

Cover

Abstract We live in a world where waves of novel nature-inspired metaheuristic algorithms keep hitting the shore repeatedly. This never-ending surge of new metaheuristic algorithms is overwhelming to the extent that their novelty is being criticized. In this paper, instead of focusing on metaheuristics, we focus on pure random search algorithms for global optimization. Pure Random Orthogonal Search (PROS) is a recently published random optimization algorithm, which is strikingly simple, involves no parameter tuning, but is very effective in solving global optimization problems. In this paper, we propose a modified version of the PROS algorithm, which injects a flavor of exploitation into the otherwise purely explorative PROS algorithm. Further, the concepts of reinforcement learning are utilized to provide the proposed algorithm the ability to ‘learn’ to take the optimal actions, to find the global optima. The source code of NPROS is publicly available at: https://github.com/Shahul-Rahman/NPROS
AbstractList We live in a world where waves of novel nature-inspired metaheuristic algorithms keep hitting the shore repeatedly. This never-ending surge of new metaheuristic algorithms is overwhelming to the extent that their novelty is being criticized. In this paper, instead of focusing on metaheuristics, we focus on pure random search algorithms for global optimization. Pure Random Orthogonal Search (PROS) is a recently published random optimization algorithm, which is strikingly simple, involves no parameter tuning, but is very effective in solving global optimization problems. In this paper, we propose a modified version of the PROS algorithm, which injects a flavor of exploitation into the otherwise purely explorative PROS algorithm. Further, the concepts of reinforcement learning are utilized to provide the proposed algorithm the ability to ‘learn’ to take the optimal actions, to find the global optima. The source code of NPROS is publicly available at: https://github.com/Shahul-Rahman/NPROS
Author Hameed, A. S. Syed Shahul
Rajagopalan, Narendran
Author_xml – sequence: 1
  givenname: A. S. Syed Shahul
  orcidid: 0000-0001-8828-2919
  surname: Hameed
  fullname: Hameed, A. S. Syed Shahul
  email: shahulshan81@gmail.com
  organization: Computer Science and Engineering, National Institute of Technology Puducherry
– sequence: 2
  givenname: Narendran
  orcidid: 0000-0002-1829-9587
  surname: Rajagopalan
  fullname: Rajagopalan, Narendran
  organization: Computer Science and Engineering, National Institute of Technology Puducherry
BookMark eNp9kE1OwzAQRi1UJNrCBVj5AgHbSeqEXVXxJ1Vt1cI6cp1x6yqxK9tFKisWHIETchLSBoHEgsVoZvG9T6PXQx1jDSB0SckVJYRfe0rTnESExc2QOIvICerSbMCiJMlI5-fm7Az1vN8QMqA0z7vofTKbTxc3eIgnNuCFxbOdAzwXprQ1nrqwtitrRIU9CCfXWFQr63RY159vH0PsdzoAtgq7Nm-3Qdf6VQRtzW_U49LpFzB4uccOtFHWSajBBFw1pUab1Tk6VaLycPG9--j57vZp9BCNp_ePo-E4kiynIZISpJBLkkMKrFRioDKeCq4kI4OUAZdZuVwqnse5SjgIkTIeJ0QQriDOpSRxH2Vtr3TWeweqkDocvw1O6KqgpDjYLFqbRWOzONosDij7g26droXb_w_FLeSbsFmBKzZ25xqd_j_qC1zHjgU
CitedBy_id crossref_primary_10_1007_s13369_024_09098_z
crossref_primary_10_1007_s42979_024_02924_z
Cites_doi 10.1007/s13042-019-01053-x
10.1007/s11047-020-09820-4
10.1177/003754977101700504
10.1111/itor.12001
10.3390/app11115053
10.3390/math10050800
10.1016/j.ejco.2021.100012
10.1007/s10107-006-0006-3
10.1137/1.9781611972672
10.1109/TAC.1968.1098903
10.1145/3479242.3487323
10.1145/3121050.3121108
10.1016/j.eswa.2022.116696
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11590-023-02038-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 2111
ExternalDocumentID 10_1007_s11590_023_02038_0
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-ccecacb09e5e2dfa6f875a7fc20652e7c8dbbf7939f47eaa527340a07fe39cc03
IEDL.DBID AGYKE
ISSN 1862-4472
IngestDate Thu Apr 24 23:05:49 EDT 2025
Wed Oct 01 02:12:05 EDT 2025
Fri Feb 21 02:37:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Global optimization
Metaheuristics
Multi-armed bandit
Reinforcement learning
Random search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ccecacb09e5e2dfa6f875a7fc20652e7c8dbbf7939f47eaa527340a07fe39cc03
ORCID 0000-0001-8828-2919
0000-0002-1829-9587
PageCount 21
ParticipantIDs crossref_citationtrail_10_1007_s11590_023_02038_0
crossref_primary_10_1007_s11590_023_02038_0
springer_journals_10_1007_s11590_023_02038_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Matyas (CR5) 1965; 26
CR19
Plevris, Bakas, Solorzano (CR10) 2021; 11
CR18
CR17
CR15
CR13
Sörensen (CR1) 2015; 22
Sutton, Barto (CR12) 2018
White (CR6) 1971; 17
Hameed, Rajagopalan (CR11) 2022; 10
Rastrigin (CR4) 1963; 24
Stork, Eiben, Bartz-Beielstein (CR2) 2020; 21
CR3
CR8
CR7
Locatelli, Schoen (CR9) 2021; 9
CR24
CR23
CR22
CR21
Grosso, Locatelli, Schoen (CR25) 2007; 110
Mohamed, Hadi, Mohamed (CR20) 2020; 11
Casella, Berger (CR14) 2001
Jamil, Yang (CR16) 2013; 4
Vagelis Plevris (2038_CR10) 2021; 11
Kenneth Sörensen (2038_CR1) 2015; 22
A Grosso (2038_CR25) 2007; 110
2038_CR24
2038_CR23
2038_CR22
2038_CR21
RC White Jr (2038_CR6) 1971; 17
2038_CR7
AW Mohamed (2038_CR20) 2020; 11
2038_CR8
2038_CR3
2038_CR17
J Matyas (2038_CR5) 1965; 26
2038_CR19
2038_CR18
J Stork (2038_CR2) 2020; 21
RS Sutton (2038_CR12) 2018
2038_CR13
2038_CR15
M Jamil (2038_CR16) 2013; 4
ASSS Hameed (2038_CR11) 2022; 10
Marco Locatelli (2038_CR9) 2021; 9
LA Rastrigin (2038_CR4) 1963; 24
G Casella (2038_CR14) 2001
References_xml – ident: CR22
– ident: CR18
– volume: 11
  start-page: 1501
  issue: 7
  year: 2020
  end-page: 1529
  ident: CR20
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-019-01053-x
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: CR16
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 21
  start-page: 219
  year: 2020
  end-page: 242
  ident: CR2
  article-title: A new taxonomy of global optimization algorithms
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-020-09820-4
– volume: 17
  start-page: 197
  issue: 5
  year: 1971
  end-page: 205
  ident: CR6
  article-title: A survey of random methods for parameter optimization
  publication-title: Simulation
  doi: 10.1177/003754977101700504
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  end-page: 18
  ident: CR1
  article-title: Metaheuristics-the metaphor exposed
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12001
– ident: CR8
– volume: 26
  start-page: 246
  issue: 2
  year: 1965
  end-page: 253
  ident: CR5
  article-title: Random optimization
  publication-title: Automat. Remote control
– volume: 11
  start-page: 5053
  issue: 11
  year: 2021
  ident: CR10
  article-title: Pure random orthogonal search (PROS): a plain and elegant parameterless algorithm for global optimization
  publication-title: Appl. Sci.
  doi: 10.3390/app11115053
– volume: 24
  start-page: 1337
  year: 1963
  end-page: 1342
  ident: CR4
  article-title: The convergence of the random search method in the extremal control of a many parameter system
  publication-title: Automat. Remote Control
– ident: CR23
– volume: 10
  start-page: 800
  issue: 5
  year: 2022
  ident: CR11
  article-title: SPGD: search party gradient descent algorithm, a simple gradient-based parallel algorithm for bound-constrained optimization
  publication-title: Mathematics
  doi: 10.3390/math10050800
– ident: CR21
– ident: CR19
– volume: 9
  year: 2021
  ident: CR9
  article-title: (Global) Optimization: historical notes and recent developments
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2021.100012
– ident: CR3
– ident: CR15
– year: 2001
  ident: CR14
  publication-title: Statistical Inference
– ident: CR17
– ident: CR13
– year: 2018
  ident: CR12
  publication-title: Reinforcement learning: an introduction
– volume: 110
  start-page: 373
  year: 2007
  end-page: 404
  ident: CR25
  article-title: A population-based approach for hard global optimization problems based on dissimilarity measures
  publication-title: Math. Progr.
  doi: 10.1007/s10107-006-0006-3
– ident: CR7
– ident: CR24
– ident: 2038_CR8
– ident: 2038_CR24
– volume: 4
  start-page: 150
  year: 2013
  ident: 2038_CR16
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 17
  start-page: 197
  issue: 5
  year: 1971
  ident: 2038_CR6
  publication-title: Simulation
  doi: 10.1177/003754977101700504
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 2038_CR1
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12001
– volume: 110
  start-page: 373
  year: 2007
  ident: 2038_CR25
  publication-title: Math. Progr.
  doi: 10.1007/s10107-006-0006-3
– ident: 2038_CR13
– volume: 26
  start-page: 246
  issue: 2
  year: 1965
  ident: 2038_CR5
  publication-title: Automat. Remote control
– ident: 2038_CR3
  doi: 10.1137/1.9781611972672
– volume-title: Statistical Inference
  year: 2001
  ident: 2038_CR14
– ident: 2038_CR17
– ident: 2038_CR15
– volume: 11
  start-page: 1501
  issue: 7
  year: 2020
  ident: 2038_CR20
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-019-01053-x
– volume: 10
  start-page: 800
  issue: 5
  year: 2022
  ident: 2038_CR11
  publication-title: Mathematics
  doi: 10.3390/math10050800
– ident: 2038_CR23
– ident: 2038_CR7
  doi: 10.1109/TAC.1968.1098903
– ident: 2038_CR21
  doi: 10.1145/3479242.3487323
– volume-title: Reinforcement learning: an introduction
  year: 2018
  ident: 2038_CR12
– volume: 9
  year: 2021
  ident: 2038_CR9
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2021.100012
– volume: 21
  start-page: 219
  year: 2020
  ident: 2038_CR2
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-020-09820-4
– volume: 24
  start-page: 1337
  year: 1963
  ident: 2038_CR4
  publication-title: Automat. Remote Control
– ident: 2038_CR22
  doi: 10.1145/3121050.3121108
– ident: 2038_CR18
– ident: 2038_CR19
  doi: 10.1016/j.eswa.2022.116696
– volume: 11
  start-page: 5053
  issue: 11
  year: 2021
  ident: 2038_CR10
  publication-title: Appl. Sci.
  doi: 10.3390/app11115053
SSID ssj0061199
Score 2.357343
Snippet We live in a world where waves of novel nature-inspired metaheuristic algorithms keep hitting the shore repeatedly. This never-ending surge of new...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2091
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title NPROS: A Not So Pure Random Orthogonal search algorithm—A suite of random optimization algorithms driven by reinforcement learning
URI https://link.springer.com/article/10.1007/s11590-023-02038-0
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: AFBBN
  dateStart: 20070101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: U2A
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6VcIFDS1tQoSWaQ2-t0Xrj-MHNoKRRKwKCRqIna5-hKomR7RzgxKE_ob-wv4RZe00KqpA4Whpbq9ndeXjm-4aQjwE1MRd4v5VSmKCgwfOEHwuPWXSO4XE_phbvfDQOR5Pg63n_3IHCyrbbvS1J1pZ6CXZDz0s99DGerZ7FHibqqzXfVoespl9-fBu0Fjj0m7mRfmwRQUHEHFjm_1956JAeVkNrJzN8RSbt8prekl97i0rsyZtHzI3PXf8GeemiTkibY_KavNDzN2T9Hy5CfDq6J3At35Lf45PT47N9SGGcV3CWw8mi0HDK5yqfwXFRXeRTG8JDc1GAX07z4md1Mft7-yeFcoFxLOQGikY-R7M0c3jPpWgJqrCmFsQ1FLomcJX1v0pwkyymm2QyHHw_HHluYIMnWeJXnpRaciloovuaKcNDg9kQj4xkGOgwHclYCWHQIiQmiDTnlvwtoJxGRvcSKWlvi3Tm-Vy_I5AIRpWOMb_iLNCYxojQUKlFQmWoqDTbxG93LZOOzdwO1bjMljzMVt8Z6jur9Z3RbfLp_p2rhsvjSenP7T5m7l6XT4jvPE_8PVljGB41jTEfSKcqFnoXw5tKdPE0Dw8Oxl13qrtkZcLSO4KV9LU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsNAEF0hKIACcYqbKejA0npxfNBFiCgcCQiIRGftmSCRGNlOQUfBJ_CFfAmzPhKQEBKlpfEWnp2ZN959bwg59KgJucD4Vkphg4IJzxFuKBxm2TmGh42QWr5zp-u3e97lY-OxIoVl9W33-kiyyNRTshtWXupgjXHs6VnoYKM-ZwWsrGJ-jzXr_Ou75dRIN7R8IC9gFVXm9zV-lqOfZ6FFiWktk6UKG0KzdOYKmdGjVbL4TTEQnzoTmdVsjbx3b-9u7k-hCd0kh_sEbsephjs-UskQbtJ8kPQt0IZyOwN_7ifpUz4Yfr59NCEbI9qExEBa2ieYPIYVK3NqmoFKbUIE8QqpLmRWZfFHEap5E_110mudP5y1nWqsgiNZ5OaOlFpyKWikG5opw32DPQsPjGQIR5gOZKiEMBi3kfECzbmVaPMop4HRJ5GU9GSDzI6Skd4kEAlGlQ6xC-LM09hsCN9QqUVEpa-oNFvErb9uLCvNcTv64jmeqiVbj8TokbjwSEy3yNHknZdSceNP6-PaaXEVfdkf5tv_Mz8g8-2HznV8fdG92iELDAFNeZVll8zm6VjvISDJxX6x_74AoX_YRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5EQfQgrrj7Dt40OJmmWbwVtdStFrXgLcxaBZtImh68efAn-Av9Jb5J0lZBBI-Blznk7XnzfY-QfY-akAv0b6UUNigY8BzhhsJhFp1jeFgPqcU7X7f9Vte7eKg_fEPxF7fdRyPJEtNgWZqS_OhFmaMJ8A2zMHUw3zh2khY62LTPeJYoAS26yxqjWOy75QZJN7TYIC9gFWzm9zN-pqafc9Ei3TQXyUJVJ0KjVOwSmdLJMpn_xh6IT9djytXBCnlvd25v7o6hAe00h7sUOsNMwy1PVNqHmyx_THu26IbStIE_99LsKX_sf759NGAwxMoTUgNZKZ9iIOlXCM2J6ABUZoMjiFfIdEG5Kou_i1Dtnuitkm7z7P6k5VQrFhzJIjd3pNSSS0EjXddMGe4b7F94YCTD0oTpQIZKCIM-HBkv0JxbujaPchoYXYukpLU1Mp2kiV4nEAlGlQ6xI-LM09h4CN9QqUVEpa-oNBvEHX3dWFb843YNxnM8YU62GolRI3GhkZhukIPxOy8l-8af0ocjpcWVJw7-EN_8n_geme2cNuOr8_blFpljWNuUt1q2yXSeDfUO1ia52C3M7wsfHNyB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NPROS%3A+A+Not+So+Pure+Random+Orthogonal+search+algorithm%E2%80%94A+suite+of+random+optimization+algorithms+driven+by+reinforcement+learning&rft.jtitle=Optimization+letters&rft.au=Hameed%2C+A.+S.+Syed+Shahul&rft.au=Rajagopalan%2C+Narendran&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=18&rft.issue=9&rft.spage=2091&rft.epage=2111&rft_id=info:doi/10.1007%2Fs11590-023-02038-0&rft.externalDocID=10_1007_s11590_023_02038_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon