Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW

Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 2; pp. 1220 - 1230
Main Authors Fan, Junfeng, Deng, Sai, Ma, Yunkai, Zhou, Chao, Jing, Fengshui, Tan, Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2020.2977121

Cover

Abstract Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking.
AbstractList Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking.
Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking.
Author Fan, Junfeng
Zhou, Chao
Ma, Yunkai
Jing, Fengshui
Deng, Sai
Tan, Min
Author_xml – sequence: 1
  givenname: Junfeng
  orcidid: 0000-0003-4922-7946
  surname: Fan
  fullname: Fan, Junfeng
  email: fanjunfeng2014@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Sai
  orcidid: 0000-0001-5347-7003
  surname: Deng
  fullname: Deng, Sai
  email: dengsai2012@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Yunkai
  surname: Ma
  fullname: Ma, Yunkai
  email: mayunkai2019@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Chao
  orcidid: 0000-0003-4461-8075
  surname: Zhou
  fullname: Zhou, Chao
  email: chao.zhou@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Fengshui
  orcidid: 0000-0003-4922-7946
  surname: Jing
  fullname: Jing, Fengshui
  email: fengshui.jing@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Min
  surname: Tan
  fullname: Tan, Min
  email: min.tan@ia.ac.cn
  organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kM1rAjEQxUOxULW9F3oJ9Lx2JtnPoxW1gkWhlh6XmJ2FyLrRbLbQ_75rlR566GkezPvN8N6A9WpbE2P3CCNEyJ42i8VIgICRyJIEBV6xPmYhBgAR9DodRRhIAfKGDZpmByATkFmfbd9I7fmMlG8d8bU1tedjfWxNY7yxNX9WDRW8E9OyNNpQt57Y-tNW7c96dSCnvHVc1QVfK-eNrojPTOXJcVPz-ev445Zdl6pq6O4yh-x9Nt1MXoLlar6YjJeBFhn6QCtKk0xmAqhMwhAwLFQJEMtUR6EW6bYAFFQoSDDVIJQkBVDIgmIoFRahHLLH892Ds8eWGp_vbOvq7mUuwlikURij6Fzx2aWdbRpHZa6NV6cw3ilT5Qj5qc-86zM_9Zlf-uxA-AMenNkr9_Uf8nBGDBH92jPAFLtc3zEUgZU
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_jmapro_2021_10_005
crossref_primary_10_1007_s00170_023_11456_4
crossref_primary_10_1109_TIM_2024_3485460
crossref_primary_10_1007_s00170_024_13245_z
crossref_primary_10_1016_j_engappai_2025_110193
crossref_primary_10_1007_s40194_025_01961_3
crossref_primary_10_1016_j_engappai_2023_107535
crossref_primary_10_1007_s11431_023_2569_1
crossref_primary_10_1109_TIM_2021_3106685
crossref_primary_10_1109_TIM_2022_3214632
crossref_primary_10_1016_j_engappai_2024_108278
crossref_primary_10_1109_TII_2024_3413365
crossref_primary_10_1108_IR_11_2024_0528
crossref_primary_10_3390_s23125640
crossref_primary_10_1007_s00170_023_12667_5
crossref_primary_10_1109_TIE_2023_3243265
crossref_primary_10_1109_JSEN_2023_3340258
crossref_primary_10_3390_electronics13204117
crossref_primary_10_1016_j_jmapro_2024_07_140
crossref_primary_10_1109_TIM_2024_3381689
crossref_primary_10_1007_s00170_024_13942_9
crossref_primary_10_1109_TIM_2021_3072103
crossref_primary_10_1109_JSEN_2025_3531794
crossref_primary_10_1016_j_measurement_2023_113808
crossref_primary_10_1007_s00170_023_10862_y
crossref_primary_10_1109_TIE_2024_3409873
crossref_primary_10_1016_j_optlaseng_2022_107304
crossref_primary_10_1016_j_jmapro_2024_10_042
crossref_primary_10_1109_TII_2023_3241595
Cites_doi 10.3390/s16091480
10.1109/TII.2019.2919658
10.1109/TPAMI.2014.2345390
10.1109/JSEN.2018.2824660
10.1109/70.34770
10.1109/CVPR.2017.733
10.1007/978-3-319-46454-1_29
10.1016/j.jmapro.2013.07.002
10.1109/34.888718
10.1016/S0924-0136(97)00458-5
10.1007/s00170-012-3902-0
10.1007/s00170-016-8990-9
10.1016/j.jmapro.2018.08.014
10.1007/s00170-016-9481-8
10.1016/j.jmatprotec.2017.04.025
10.1017/S0263574797000313
10.1016/j.jmatprotec.2016.12.029
10.1016/j.sna.2019.111533
10.1016/j.rcim.2015.04.005
10.1016/j.promfg.2017.07.228
10.1016/j.optlastec.2013.12.027
10.1109/TII.2017.2657786
10.1109/TPAMI.2011.239
10.1109/ChiCC.2016.7554318
10.1109/TII.2017.2775218
10.1007/978-3-319-16181-5_18
10.1109/TIE.2017.2694399
10.1016/j.rcim.2017.04.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.2977121
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1230
ExternalDocumentID 10_1109_TII_2020_2977121
9018106
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1813208; 61903362
  funderid: 10.13039/501100001809
– fundername: State Key Laboratory of Management and Control for Complex Systems
  grantid: 20190201
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-cae8793920ef744014daf00638c54c28bd012eda0718c02a3ea00d3de60fa1d43
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:12:25 EDT 2025
Wed Oct 01 03:40:14 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Wed Aug 27 02:29:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cae8793920ef744014daf00638c54c28bd012eda0718c02a3ea00d3de60fa1d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4922-7946
0000-0001-5347-7003
0000-0003-4461-8075
PQID 2462854612
PQPubID 85507
PageCount 11
ParticipantIDs ieee_primary_9018106
proquest_journals_2462854612
crossref_primary_10_1109_TII_2020_2977121
crossref_citationtrail_10_1109_TII_2020_2977121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
van der merwe (ref28) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.3390/s16091480
– ident: ref23
  doi: 10.1109/TII.2019.2919658
– ident: ref19
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref16
  doi: 10.1109/JSEN.2018.2824660
– ident: ref27
  doi: 10.1109/70.34770
– ident: ref22
  doi: 10.1109/CVPR.2017.733
– ident: ref21
  doi: 10.1007/978-3-319-46454-1_29
– ident: ref4
  doi: 10.1016/j.jmapro.2013.07.002
– ident: ref25
  doi: 10.1109/34.888718
– ident: ref2
  doi: 10.1016/S0924-0136(97)00458-5
– ident: ref13
  doi: 10.1007/s00170-012-3902-0
– ident: ref7
  doi: 10.1007/s00170-016-8990-9
– ident: ref14
  doi: 10.1016/j.jmapro.2018.08.014
– ident: ref17
  doi: 10.1007/s00170-016-9481-8
– ident: ref29
  doi: 10.1016/j.jmatprotec.2017.04.025
– ident: ref5
  doi: 10.1017/S0263574797000313
– ident: ref9
  doi: 10.1016/j.jmatprotec.2016.12.029
– ident: ref12
  doi: 10.1016/j.sna.2019.111533
– ident: ref15
  doi: 10.1016/j.rcim.2015.04.005
– ident: ref3
  doi: 10.1016/j.promfg.2017.07.228
– ident: ref8
  doi: 10.1016/j.optlastec.2013.12.027
– ident: ref10
  doi: 10.1109/TII.2017.2657786
– ident: ref18
  doi: 10.1109/TPAMI.2011.239
– ident: ref26
  doi: 10.1109/ChiCC.2016.7554318
– start-page: 584
  year: 0
  ident: ref28
  article-title: The unscented particle filter
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/TII.2017.2775218
– ident: ref20
  doi: 10.1007/978-3-319-16181-5_18
– ident: ref11
  doi: 10.1109/TIE.2017.2694399
– ident: ref1
  doi: 10.1016/j.rcim.2017.04.004
SSID ssj0037039
Score 2.449363
Snippet Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1220
SubjectTerms Algorithms
Arc seam welding
Butt joints
Cameras
Convolution
Efficient convolution operator (ECO)
Feature extraction
Gas metal arc welding
Image acquisition
Lap joints
particle filter (PF)
Position measurement
robot intelligent welding
Robots
seam feature acquisition
Seam tracking
Seams
structured light vision
Target tracking
Vision sensors
Welded joints
Welding
Title Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW
URI https://ieeexplore.ieee.org/document/9018106
https://www.proquest.com/docview/2462854612
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUKJziwFUTZ5AMXJJLaTtrGx4IoLVKhEq3oLfJWqQISloQDX8_YSSo2IW6OZMuW3tjzJjN-RuiYhVpEXHEvkhwCFPjypBZtL2hBbMA10x0n1zS8bvcn4dW0Na2h08VdGGOMKz4zvm26XL5OVW5_lTW5VZey-tpLnahd3NWqTt0ALJc7bdQW9QJGgiolSXhzPBhAIMiIz4DsUEa_uCD3psqPg9h5l946GlbrKopK7v08k756_ybZ-N-Fb6C1kmbibmEXm6hmki20-kl8sI7krRGP2FLA_MXgUTpPMtxVz_m8qOLCZ-DfNIbGhVOZgAnweZq8laaKb56My9BjkWg8Kg0Q9-Y2-47nCb4cdu-20aR3MT7ve-WLC55inGaeEiaCDcsZMTOrHEgBu5ljNaoVKhZJDf7MaAG8JFKEicAIQnSgTZvMBNVhsIOWkzQxuwgzPusAOdQ6oDKkTEbAGzWTVEohbO6zgZoVCLEq5cjtqxgPsQtLCI8BttjCFpewNdDJYsRTIcXxR9-6RWHRrwSggQ4qnONyr77GLHTXSIHq7f0-ah-tMFvJ4mq1D9By9pKbQ6AimTxyNvgBtLTY7g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOAAHoDzUAG194ILUTWyvN6yPKSJNWkKRCILbyq9IUWHDY5cDv56xdzeCtqq4eSVbtvSNPd_sjD8DHHBhVSqNjFItMUDBr0hb1Y3iBGMDabk9CnJNo7Pu4FL8uE6uF-Dr_C6Mcy4Un7m2b4Zcvp2Z0v8q60ivLuX1tZcSIURS3dZqzt0YbVcGddSERTGncZOUpLIzHg4xFOS0zZHuMM7eOKHwqspfR3HwL_11GDUrq8pKfrfLQrfN8x-ije9d-gas1UST9CrL-AALLt-E1Vfyg1ugL5y6JZ4Elg-OnM-meUF65r6cVnVc5Bt6OEuwcRJ0JnACcjzLn2pjJb_uXMjRE5Vbcl6bIOlPff6dTHPyfdS72obL_sn4eBDVby5EhktWREa5FLes5NRNvHYgQ_QmgdeYRBieaosezVmFzCQ1lKvYKUptbF2XThSzIt6BxXyWu49AuJwcIT20NmZaMK5TZI6Wa6a1Uj772YJOA0JmakFy_y7GTRYCEyozhC3zsGU1bC04nI-4q8Q4_tN3y6Mw71cD0IL9Bues3q2PGRfhIimSvd1_j_oCy4Px6DQ7HZ793IMV7utaQuX2PiwWD6X7hMSk0J-DPb4AOy_cOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seam+Feature+Point+Acquisition+Based+on+Efficient+Convolution+Operator+and+Particle+Filter+in+GMAW&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Fan%2C+Junfeng&rft.au=Deng%2C+Sai&rft.au=Ma%2C+Yunkai&rft.au=Zhou%2C+Chao&rft.date=2021-02-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=2&rft.spage=1220&rft.epage=1230&rft_id=info:doi/10.1109%2FTII.2020.2977121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_2977121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon