Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW
Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feat...
Saved in:
| Published in | IEEE transactions on industrial informatics Vol. 17; no. 2; pp. 1220 - 1230 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-3203 1941-0050 |
| DOI | 10.1109/TII.2020.2977121 |
Cover
| Abstract | Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking. |
|---|---|
| AbstractList | Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking. Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam feature point acquisition methods based on geometric feature have shortcomings of poor flexibility and robustness. In this article, a seam feature point acquisition method based on efficient convolution operator (ECO) and particle filter (PF) is proposed, which could be applied to different weld types and could achieve fast and accurate seam feature point acquisition even under the interference of welding arc light and spatter noises. First, a structured light vision sensor is developed to acquire welding image. Second, the ECO algorithm is adopted to track the seam region and acquire seam feature point during gas metal arc welding process. Third, the state and measurement equations of the weld seam position are established, and PF is applied to improve seam feature point acquisition accuracy. Finally, a welding experiment system is built and a series of seam feature point acquisition experiments of butt joint, lap joint, and fillet joint are carried out to validate the performance of the proposed method. The experiment results demonstrate that the processing speed of the proposed method could reach up 35 Hz, and the seam feature point acquisition errors are smaller than 0.15 mm, which could meet the real-time and accuracy requirement for subsequent initial point guiding and seam tracking. |
| Author | Fan, Junfeng Zhou, Chao Ma, Yunkai Jing, Fengshui Deng, Sai Tan, Min |
| Author_xml | – sequence: 1 givenname: Junfeng orcidid: 0000-0003-4922-7946 surname: Fan fullname: Fan, Junfeng email: fanjunfeng2014@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Sai orcidid: 0000-0001-5347-7003 surname: Deng fullname: Deng, Sai email: dengsai2012@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Yunkai surname: Ma fullname: Ma, Yunkai email: mayunkai2019@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Chao orcidid: 0000-0003-4461-8075 surname: Zhou fullname: Zhou, Chao email: chao.zhou@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Fengshui orcidid: 0000-0003-4922-7946 surname: Jing fullname: Jing, Fengshui email: fengshui.jing@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Min surname: Tan fullname: Tan, Min email: min.tan@ia.ac.cn organization: Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kM1rAjEQxUOxULW9F3oJ9Lx2JtnPoxW1gkWhlh6XmJ2FyLrRbLbQ_75rlR566GkezPvN8N6A9WpbE2P3CCNEyJ42i8VIgICRyJIEBV6xPmYhBgAR9DodRRhIAfKGDZpmByATkFmfbd9I7fmMlG8d8bU1tedjfWxNY7yxNX9WDRW8E9OyNNpQt57Y-tNW7c96dSCnvHVc1QVfK-eNrojPTOXJcVPz-ev445Zdl6pq6O4yh-x9Nt1MXoLlar6YjJeBFhn6QCtKk0xmAqhMwhAwLFQJEMtUR6EW6bYAFFQoSDDVIJQkBVDIgmIoFRahHLLH892Ds8eWGp_vbOvq7mUuwlikURij6Fzx2aWdbRpHZa6NV6cw3ilT5Qj5qc-86zM_9Zlf-uxA-AMenNkr9_Uf8nBGDBH92jPAFLtc3zEUgZU |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1016_j_jmapro_2021_10_005 crossref_primary_10_1007_s00170_023_11456_4 crossref_primary_10_1109_TIM_2024_3485460 crossref_primary_10_1007_s00170_024_13245_z crossref_primary_10_1016_j_engappai_2025_110193 crossref_primary_10_1007_s40194_025_01961_3 crossref_primary_10_1016_j_engappai_2023_107535 crossref_primary_10_1007_s11431_023_2569_1 crossref_primary_10_1109_TIM_2021_3106685 crossref_primary_10_1109_TIM_2022_3214632 crossref_primary_10_1016_j_engappai_2024_108278 crossref_primary_10_1109_TII_2024_3413365 crossref_primary_10_1108_IR_11_2024_0528 crossref_primary_10_3390_s23125640 crossref_primary_10_1007_s00170_023_12667_5 crossref_primary_10_1109_TIE_2023_3243265 crossref_primary_10_1109_JSEN_2023_3340258 crossref_primary_10_3390_electronics13204117 crossref_primary_10_1016_j_jmapro_2024_07_140 crossref_primary_10_1109_TIM_2024_3381689 crossref_primary_10_1007_s00170_024_13942_9 crossref_primary_10_1109_TIM_2021_3072103 crossref_primary_10_1109_JSEN_2025_3531794 crossref_primary_10_1016_j_measurement_2023_113808 crossref_primary_10_1007_s00170_023_10862_y crossref_primary_10_1109_TIE_2024_3409873 crossref_primary_10_1016_j_optlaseng_2022_107304 crossref_primary_10_1016_j_jmapro_2024_10_042 crossref_primary_10_1109_TII_2023_3241595 |
| Cites_doi | 10.3390/s16091480 10.1109/TII.2019.2919658 10.1109/TPAMI.2014.2345390 10.1109/JSEN.2018.2824660 10.1109/70.34770 10.1109/CVPR.2017.733 10.1007/978-3-319-46454-1_29 10.1016/j.jmapro.2013.07.002 10.1109/34.888718 10.1016/S0924-0136(97)00458-5 10.1007/s00170-012-3902-0 10.1007/s00170-016-8990-9 10.1016/j.jmapro.2018.08.014 10.1007/s00170-016-9481-8 10.1016/j.jmatprotec.2017.04.025 10.1017/S0263574797000313 10.1016/j.jmatprotec.2016.12.029 10.1016/j.sna.2019.111533 10.1016/j.rcim.2015.04.005 10.1016/j.promfg.2017.07.228 10.1016/j.optlastec.2013.12.027 10.1109/TII.2017.2657786 10.1109/TPAMI.2011.239 10.1109/ChiCC.2016.7554318 10.1109/TII.2017.2775218 10.1007/978-3-319-16181-5_18 10.1109/TIE.2017.2694399 10.1016/j.rcim.2017.04.004 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2020.2977121 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 1230 |
| ExternalDocumentID | 10_1109_TII_2020_2977121 9018106 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1813208; 61903362 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Management and Control for Complex Systems grantid: 20190201 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-cae8793920ef744014daf00638c54c28bd012eda0718c02a3ea00d3de60fa1d43 |
| IEDL.DBID | RIE |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:12:25 EDT 2025 Wed Oct 01 03:40:14 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Wed Aug 27 02:29:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-cae8793920ef744014daf00638c54c28bd012eda0718c02a3ea00d3de60fa1d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4922-7946 0000-0001-5347-7003 0000-0003-4461-8075 |
| PQID | 2462854612 |
| PQPubID | 85507 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9018106 proquest_journals_2462854612 crossref_primary_10_1109_TII_2020_2977121 crossref_citationtrail_10_1109_TII_2020_2977121 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 van der merwe (ref28) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.3390/s16091480 – ident: ref23 doi: 10.1109/TII.2019.2919658 – ident: ref19 doi: 10.1109/TPAMI.2014.2345390 – ident: ref16 doi: 10.1109/JSEN.2018.2824660 – ident: ref27 doi: 10.1109/70.34770 – ident: ref22 doi: 10.1109/CVPR.2017.733 – ident: ref21 doi: 10.1007/978-3-319-46454-1_29 – ident: ref4 doi: 10.1016/j.jmapro.2013.07.002 – ident: ref25 doi: 10.1109/34.888718 – ident: ref2 doi: 10.1016/S0924-0136(97)00458-5 – ident: ref13 doi: 10.1007/s00170-012-3902-0 – ident: ref7 doi: 10.1007/s00170-016-8990-9 – ident: ref14 doi: 10.1016/j.jmapro.2018.08.014 – ident: ref17 doi: 10.1007/s00170-016-9481-8 – ident: ref29 doi: 10.1016/j.jmatprotec.2017.04.025 – ident: ref5 doi: 10.1017/S0263574797000313 – ident: ref9 doi: 10.1016/j.jmatprotec.2016.12.029 – ident: ref12 doi: 10.1016/j.sna.2019.111533 – ident: ref15 doi: 10.1016/j.rcim.2015.04.005 – ident: ref3 doi: 10.1016/j.promfg.2017.07.228 – ident: ref8 doi: 10.1016/j.optlastec.2013.12.027 – ident: ref10 doi: 10.1109/TII.2017.2657786 – ident: ref18 doi: 10.1109/TPAMI.2011.239 – ident: ref26 doi: 10.1109/ChiCC.2016.7554318 – start-page: 584 year: 0 ident: ref28 article-title: The unscented particle filter publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1109/TII.2017.2775218 – ident: ref20 doi: 10.1007/978-3-319-16181-5_18 – ident: ref11 doi: 10.1109/TIE.2017.2694399 – ident: ref1 doi: 10.1016/j.rcim.2017.04.004 |
| SSID | ssj0037039 |
| Score | 2.449363 |
| Snippet | Seam feature point acquisition is the premise of the intelligent welding process such as initial point guiding and seam tracking. However, conventional seam... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1220 |
| SubjectTerms | Algorithms Arc seam welding Butt joints Cameras Convolution Efficient convolution operator (ECO) Feature extraction Gas metal arc welding Image acquisition Lap joints particle filter (PF) Position measurement robot intelligent welding Robots seam feature acquisition Seam tracking Seams structured light vision Target tracking Vision sensors Welded joints Welding |
| Title | Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW |
| URI | https://ieeexplore.ieee.org/document/9018106 https://www.proquest.com/docview/2462854612 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUKJziwFUTZ5AMXJJLaTtrGx4IoLVKhEq3oLfJWqQISloQDX8_YSSo2IW6OZMuW3tjzJjN-RuiYhVpEXHEvkhwCFPjypBZtL2hBbMA10x0n1zS8bvcn4dW0Na2h08VdGGOMKz4zvm26XL5OVW5_lTW5VZey-tpLnahd3NWqTt0ALJc7bdQW9QJGgiolSXhzPBhAIMiIz4DsUEa_uCD3psqPg9h5l946GlbrKopK7v08k756_ybZ-N-Fb6C1kmbibmEXm6hmki20-kl8sI7krRGP2FLA_MXgUTpPMtxVz_m8qOLCZ-DfNIbGhVOZgAnweZq8laaKb56My9BjkWg8Kg0Q9-Y2-47nCb4cdu-20aR3MT7ve-WLC55inGaeEiaCDcsZMTOrHEgBu5ljNaoVKhZJDf7MaAG8JFKEicAIQnSgTZvMBNVhsIOWkzQxuwgzPusAOdQ6oDKkTEbAGzWTVEohbO6zgZoVCLEq5cjtqxgPsQtLCI8BttjCFpewNdDJYsRTIcXxR9-6RWHRrwSggQ4qnONyr77GLHTXSIHq7f0-ah-tMFvJ4mq1D9By9pKbQ6AimTxyNvgBtLTY7g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOAAHoDzUAG194ILUTWyvN6yPKSJNWkKRCILbyq9IUWHDY5cDv56xdzeCtqq4eSVbtvSNPd_sjD8DHHBhVSqNjFItMUDBr0hb1Y3iBGMDabk9CnJNo7Pu4FL8uE6uF-Dr_C6Mcy4Un7m2b4Zcvp2Z0v8q60ivLuX1tZcSIURS3dZqzt0YbVcGddSERTGncZOUpLIzHg4xFOS0zZHuMM7eOKHwqspfR3HwL_11GDUrq8pKfrfLQrfN8x-ije9d-gas1UST9CrL-AALLt-E1Vfyg1ugL5y6JZ4Elg-OnM-meUF65r6cVnVc5Bt6OEuwcRJ0JnACcjzLn2pjJb_uXMjRE5Vbcl6bIOlPff6dTHPyfdS72obL_sn4eBDVby5EhktWREa5FLes5NRNvHYgQ_QmgdeYRBieaosezVmFzCQ1lKvYKUptbF2XThSzIt6BxXyWu49AuJwcIT20NmZaMK5TZI6Wa6a1Uj772YJOA0JmakFy_y7GTRYCEyozhC3zsGU1bC04nI-4q8Q4_tN3y6Mw71cD0IL9Bues3q2PGRfhIimSvd1_j_oCy4Px6DQ7HZ793IMV7utaQuX2PiwWD6X7hMSk0J-DPb4AOy_cOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seam+Feature+Point+Acquisition+Based+on+Efficient+Convolution+Operator+and+Particle+Filter+in+GMAW&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Fan%2C+Junfeng&rft.au=Deng%2C+Sai&rft.au=Ma%2C+Yunkai&rft.au=Zhou%2C+Chao&rft.date=2021-02-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=2&rft.spage=1220&rft.epage=1230&rft_id=info:doi/10.1109%2FTII.2020.2977121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_2977121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |