On Bandwidth Constrained Distributed Detection of a Known Signal in Correlated Gaussian Noise
We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or no...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 69; no. 10; pp. 11428 - 11444 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2020.3011050 |
Cover
Abstract | We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol <inline-formula><tex-math notation="LaTeX">u_k \in \lbrace -1,0,1\rbrace</tex-math></inline-formula> where "0" corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme. |
---|---|
AbstractList | We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol [Formula Omitted] where “0” corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters [Formula Omitted]. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include [Formula Omitted]. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme. We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol <inline-formula><tex-math notation="LaTeX">u_k \in \lbrace -1,0,1\rbrace</tex-math></inline-formula> where "0" corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme. |
Author | Vosoughi, Azadeh Maleki, Nahal |
Author_xml | – sequence: 1 givenname: Nahal orcidid: 0000-0001-5615-4285 surname: Maleki fullname: Maleki, Nahal email: nahal.maleki.tabriz@gmail.com organization: Maxentric Technologies, Fort Lee, NJ, USA – sequence: 2 givenname: Azadeh orcidid: 0000-0002-1937-2838 surname: Vosoughi fullname: Vosoughi, Azadeh email: azadeh@ucf.edu organization: Department of Electrical Engineering and Computer Science, University of Central florida, Orlando, FL, USA |
BookMark | eNp9kM1LAzEQxYMo2FbvgpeA56352Gx3jlq1isUerN5kyW6ymlKTmmQp_vdmafHgwdPMg_cb3rwhOrTOaoTOKBlTSuBy-bocM8LImJOkBTlAAwocMuACDtGAEFpmIHJxjIYhrJLMc6AD9Law-FpatTUqfuCpsyF6aaxW-Mak1dRd7HcddRONs9i1WOJH67YWP5t3K9fY2IR5r9eyd85kF4KRFj85E_QJOmrlOujT_Ryhl7vb5fQ-my9mD9OredYwoDFroJaiZGWREyIAOCG8FnmjFC9aACUgL4BNNBWylVqxtpZ8UsqagqZKqZLxEbrY3d1499XpEKuV63xKFyqWi0IwUeRlchU7V-NdCF63VWOi7N_qf15XlFR9lVWqsuqrrPZVJpD8ATfefEr__R9yvkOM1vrXDjSloYT_APUGgG8 |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3465209 crossref_primary_10_1109_TGCN_2022_3146868 crossref_primary_10_1109_ACCESS_2022_3170463 crossref_primary_10_1109_TSP_2024_3460741 crossref_primary_10_3390_e25091313 crossref_primary_10_1109_TGCN_2023_3264506 |
Cites_doi | 10.1109/5.554208 10.1109/WCNC.2007.6 10.1109/TSP.2011.2177975 10.1109/TSP.2007.896061 10.1109/TSP.2007.909355 10.1109/TIT.2006.881746 10.1109/TSP.2018.2824279 10.1109/TSP.2008.924639 10.1109/TVT.2018.2847300 10.1109/7.30797 10.1109/TSIPN.2019.2928093 10.1109/JSAC.2005.843536 10.1016/S0098-1354(96)00282-7 10.1109/7.489500 10.1109/TVT.2012.2187467 10.1109/TWC.2015.2422304 10.1109/ACSSC.2014.7094855 10.1109/TSP.2016.2552504 10.1109/TVT.2008.923659 10.1109/TWC.2005.858363 10.1109/TVT.2015.2497266 10.1109/TCOMM.2018.2837101 10.1109/TWC.2010.100110.100473 10.1109/PIMRC.2014.7136253 10.1186/s13634-016-0303-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2020.3011050 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 11444 |
ExternalDocumentID | 10_1109_TVT_2020_3011050 9145610 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1341966; CCF-1319770 funderid: 10.13039/501100008982 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-c9ba582864005993003b54cdd36f99d5946927e15afaed2fba378ab19e1ddd823 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:19:00 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Tue Jul 01 01:44:09 EDT 2025 Wed Aug 27 02:31:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c9ba582864005993003b54cdd36f99d5946927e15afaed2fba378ab19e1ddd823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5615-4285 0000-0002-1937-2838 |
PQID | 2456525648 |
PQPubID | 85454 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_TVT_2020_3011050 ieee_primary_9145610 proquest_journals_2456525648 crossref_primary_10_1109_TVT_2020_3011050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 yiu (ref13) 2008; 2008 tsitsiklis (ref1) 1993; 2 varshney (ref2) 1997; 85 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 85 start-page: 54 year: 1997 ident: ref2 article-title: Distributed detection with multiple sensors publication-title: IEEE Proc doi: 10.1109/5.554208 – ident: ref15 doi: 10.1109/WCNC.2007.6 – ident: ref18 doi: 10.1109/TSP.2011.2177975 – ident: ref22 doi: 10.1109/TSP.2007.896061 – ident: ref17 doi: 10.1109/TSP.2007.909355 – ident: ref23 doi: 10.1109/TIT.2006.881746 – ident: ref26 doi: 10.1109/TSP.2018.2824279 – ident: ref28 doi: 10.1109/TSP.2008.924639 – ident: ref3 doi: 10.1109/TVT.2018.2847300 – ident: ref19 doi: 10.1109/7.30797 – ident: ref25 doi: 10.1109/TSIPN.2019.2928093 – ident: ref16 doi: 10.1109/JSAC.2005.843536 – ident: ref27 doi: 10.1016/S0098-1354(96)00282-7 – ident: ref8 doi: 10.1109/7.489500 – ident: ref7 doi: 10.1109/TVT.2012.2187467 – ident: ref11 doi: 10.1109/TWC.2015.2422304 – volume: 2008 year: 2008 ident: ref13 article-title: Censored distributed space-time coding for wireless sensor networks publication-title: EURASIP J Adv Signal Process – volume: 2 start-page: 297 year: 1993 ident: ref1 article-title: Decentralized detection publication-title: Advanced Statistical Signal Processing – ident: ref20 doi: 10.1109/ACSSC.2014.7094855 – ident: ref10 doi: 10.1109/TVT.2012.2187467 – ident: ref24 doi: 10.1109/TSP.2016.2552504 – ident: ref14 doi: 10.1109/TVT.2008.923659 – ident: ref9 doi: 10.1109/TWC.2005.858363 – ident: ref4 doi: 10.1109/TVT.2015.2497266 – ident: ref5 doi: 10.1109/TCOMM.2018.2837101 – ident: ref12 doi: 10.1109/TWC.2010.100110.100473 – ident: ref21 doi: 10.1109/PIMRC.2014.7136253 – ident: ref6 doi: 10.1186/s13634-016-0303-9 |
SSID | ssj0014491 |
Score | 2.3851383 |
Snippet | We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11428 |
SubjectTerms | Bandwidths Bernoulli random variables Cathode ray tubes communication rate constraint constrained optimization Constraints correlated Gaussian noises Correlation distributed binary detection Fading channels False alarms Gaussian noise Independent variables J-divergence maximization Neyman-Pearson detection Optimization orthogonal fading channels pure censoring Random noise Random variables Randomization randomized transmission Sensors Wireless communication Wireless sensor networks |
Title | On Bandwidth Constrained Distributed Detection of a Known Signal in Correlated Gaussian Noise |
URI | https://ieeexplore.ieee.org/document/9145610 https://www.proquest.com/docview/2456525648 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BTu0BaFNEeFQ-9ILUTeK1N7s-Ai1FlQqHJlUu1cqPWYhAuyjZCIlfj8e7iaK2Qr35YFtej70z45n5PoBPxisxYQnlk1sKM6YiMhliJHTm9Ys29PRG2RbXo6uJ_D5NplvweV0Lg4gh-Qz71AyxfFfZJT2VDRQP6n4bttNUNbVa64iBlC07HvcX2JsFq5DkUA3Gv8beEYy9f0rKjirsN1RQ4FT560cctMvlLvxYratJKrnvL2vTt89_QDb-78L3YKc1M9lZcy7ewRaW7-HtBvhgF37flOxcl-5p5uo7RsSdgS4CHftCYLrEg0VtrEOyVsmqgmlGLNkl-zm7pdlnpR82D9Uwvuc3vVxQRSa7rmYL_ACTy6_ji6uoJVuIbKx4HVllNIXQRjJAtgh_200irXNiVCjlEuX96DhFnuhCo4sLo0WaacMVcudcFot96JRViQfAtFQFpjJzTg1lgS6zOhOCa8lNoQqb9GCw2v_ctkjk9IUPefBIhir3EstJYnkrsR6crkc8Nigcr_TtkgDW_dq978HxSsR5e00XeYj6eqNPZof_HnUEb2juJnvvGDr1fIkn3gqpzcdw_F4AizbYRA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeIA9sDGGViibH_YyibR17DTxI4NBx6A8rCBepsg_Llu1KUU0FRJ__XxOWlUDob35wU4cn5278919H8BH45WYsITyyS2FGVMRmQwxEjrz-kUbunqjbIthf3Alz26SmxU4WNTCIGJIPsMONUMs303sjK7KuooHdf8C1hLvVaR1tdYiZiBlw4_H_RH2hsE8KNlT3dH1yLuCsfdQSd1Rjf2SEgqsKo9-xUG_nLyCi_nM6rSS351ZZTr24R_Qxv-d-mvYbAxNdljvjC1YwfINvFyCH9yGH5cl-6xLdz921S9G1J2BMAIdOyY4XWLCojZWIV2rZJOCaUY82SX7Pv5JTx-XfthdqIfxPU_1bEo1mWw4GU_xLVydfBkdDaKGbiGyseJVZJXRFETrywDaIvx5N4m0zol-oZRLlPek4xR5oguNLi6MFmmmDVfInXNZLHZgtZyU-A6YlqrAVGbOqZ4s0GVWZ0JwLbkpVGGTFnTn65_bBoucvvBPHnySnsq9xHKSWN5IrAWfFiNuaxyOZ_pukwAW_Zq1b0F7LuK8OajTPMR9vdkns92nR32A9cHo4jw__zr8tgcb9J46l68Nq9XdDPe9TVKZ92Er_gURnduV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Bandwidth+Constrained+Distributed+Detection+of+a+Known+Signal+in+Correlated+Gaussian+Noise&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Maleki%2C+Nahal&rft.au=Vosoughi%2C+Azadeh&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=10&rft.spage=11428&rft.epage=11444&rft_id=info:doi/10.1109%2FTVT.2020.3011050&rft.externalDocID=9145610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |