On Bandwidth Constrained Distributed Detection of a Known Signal in Correlated Gaussian Noise

We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or no...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 10; pp. 11428 - 11444
Main Authors Maleki, Nahal, Vosoughi, Azadeh
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2020.3011050

Cover

Abstract We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol <inline-formula><tex-math notation="LaTeX">u_k \in \lbrace -1,0,1\rbrace</tex-math></inline-formula> where "0" corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme.
AbstractList We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol [Formula Omitted] where “0” corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters [Formula Omitted]. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include [Formula Omitted]. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme.
We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a final decision about the presence or absence of a known signal in correlated Gaussian noises. Our goals are (i) to investigate whether or not randomized transmission can improve detection performance, under communication rate constraint, and (ii) to explore how the correlation among observation noises impacts performance. We propose two novel schemes that combine the concepts of censoring and randomized transmission (which we name CRT schemes) and compare them with pure censoring scheme. In CRT (pure censoring) schemes we map randomly (deterministically) a sensor's observation to a ternary transmit symbol <inline-formula><tex-math notation="LaTeX">u_k \in \lbrace -1,0,1\rbrace</tex-math></inline-formula> where "0" corresponds to no transmission (sensor censors). We model the randomization in CRT schemes using two independent Bernoulli random variables with parameters <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Assuming sensors transmit over orthogonal fading channels, we formulate and address two system-level constrained optimization problems: in the first problem we minimize the probability of miss detection at the FC, subject to constraints on the probabilities of transmission and false alarm at the FC; in the second (dual) problem we minimize the probability of transmission, subject to constraints on the probabilities of miss detection and false alarm at the FC. The optimization variables include <inline-formula><tex-math notation="LaTeX">g,f</tex-math></inline-formula>. Both problems are non-convex and their solutions can be found via exhaustive search. Seeking to shed some light on the qualitative behavior of randomization, we propose methods to find sub-optimal solutions of the original problems and study the relation between these solutions. Through analysis and numerical evaluations, we explore and provide the conditions under which CRT schemes outperform pure censoring scheme.
Author Vosoughi, Azadeh
Maleki, Nahal
Author_xml – sequence: 1
  givenname: Nahal
  orcidid: 0000-0001-5615-4285
  surname: Maleki
  fullname: Maleki, Nahal
  email: nahal.maleki.tabriz@gmail.com
  organization: Maxentric Technologies, Fort Lee, NJ, USA
– sequence: 2
  givenname: Azadeh
  orcidid: 0000-0002-1937-2838
  surname: Vosoughi
  fullname: Vosoughi, Azadeh
  email: azadeh@ucf.edu
  organization: Department of Electrical Engineering and Computer Science, University of Central florida, Orlando, FL, USA
BookMark eNp9kM1LAzEQxYMo2FbvgpeA56352Gx3jlq1isUerN5kyW6ymlKTmmQp_vdmafHgwdPMg_cb3rwhOrTOaoTOKBlTSuBy-bocM8LImJOkBTlAAwocMuACDtGAEFpmIHJxjIYhrJLMc6AD9Law-FpatTUqfuCpsyF6aaxW-Mak1dRd7HcddRONs9i1WOJH67YWP5t3K9fY2IR5r9eyd85kF4KRFj85E_QJOmrlOujT_Ryhl7vb5fQ-my9mD9OredYwoDFroJaiZGWREyIAOCG8FnmjFC9aACUgL4BNNBWylVqxtpZ8UsqagqZKqZLxEbrY3d1499XpEKuV63xKFyqWi0IwUeRlchU7V-NdCF63VWOi7N_qf15XlFR9lVWqsuqrrPZVJpD8ATfefEr__R9yvkOM1vrXDjSloYT_APUGgG8
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TVT_2024_3465209
crossref_primary_10_1109_TGCN_2022_3146868
crossref_primary_10_1109_ACCESS_2022_3170463
crossref_primary_10_1109_TSP_2024_3460741
crossref_primary_10_3390_e25091313
crossref_primary_10_1109_TGCN_2023_3264506
Cites_doi 10.1109/5.554208
10.1109/WCNC.2007.6
10.1109/TSP.2011.2177975
10.1109/TSP.2007.896061
10.1109/TSP.2007.909355
10.1109/TIT.2006.881746
10.1109/TSP.2018.2824279
10.1109/TSP.2008.924639
10.1109/TVT.2018.2847300
10.1109/7.30797
10.1109/TSIPN.2019.2928093
10.1109/JSAC.2005.843536
10.1016/S0098-1354(96)00282-7
10.1109/7.489500
10.1109/TVT.2012.2187467
10.1109/TWC.2015.2422304
10.1109/ACSSC.2014.7094855
10.1109/TSP.2016.2552504
10.1109/TVT.2008.923659
10.1109/TWC.2005.858363
10.1109/TVT.2015.2497266
10.1109/TCOMM.2018.2837101
10.1109/TWC.2010.100110.100473
10.1109/PIMRC.2014.7136253
10.1186/s13634-016-0303-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2020.3011050
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 11444
ExternalDocumentID 10_1109_TVT_2020_3011050
9145610
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1341966; CCF-1319770
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-c9ba582864005993003b54cdd36f99d5946927e15afaed2fba378ab19e1ddd823
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:19:00 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Tue Jul 01 01:44:09 EDT 2025
Wed Aug 27 02:31:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c9ba582864005993003b54cdd36f99d5946927e15afaed2fba378ab19e1ddd823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5615-4285
0000-0002-1937-2838
PQID 2456525648
PQPubID 85454
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TVT_2020_3011050
ieee_primary_9145610
proquest_journals_2456525648
crossref_primary_10_1109_TVT_2020_3011050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
yiu (ref13) 2008; 2008
tsitsiklis (ref1) 1993; 2
varshney (ref2) 1997; 85
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 85
  start-page: 54
  year: 1997
  ident: ref2
  article-title: Distributed detection with multiple sensors
  publication-title: IEEE Proc
  doi: 10.1109/5.554208
– ident: ref15
  doi: 10.1109/WCNC.2007.6
– ident: ref18
  doi: 10.1109/TSP.2011.2177975
– ident: ref22
  doi: 10.1109/TSP.2007.896061
– ident: ref17
  doi: 10.1109/TSP.2007.909355
– ident: ref23
  doi: 10.1109/TIT.2006.881746
– ident: ref26
  doi: 10.1109/TSP.2018.2824279
– ident: ref28
  doi: 10.1109/TSP.2008.924639
– ident: ref3
  doi: 10.1109/TVT.2018.2847300
– ident: ref19
  doi: 10.1109/7.30797
– ident: ref25
  doi: 10.1109/TSIPN.2019.2928093
– ident: ref16
  doi: 10.1109/JSAC.2005.843536
– ident: ref27
  doi: 10.1016/S0098-1354(96)00282-7
– ident: ref8
  doi: 10.1109/7.489500
– ident: ref7
  doi: 10.1109/TVT.2012.2187467
– ident: ref11
  doi: 10.1109/TWC.2015.2422304
– volume: 2008
  year: 2008
  ident: ref13
  article-title: Censored distributed space-time coding for wireless sensor networks
  publication-title: EURASIP J Adv Signal Process
– volume: 2
  start-page: 297
  year: 1993
  ident: ref1
  article-title: Decentralized detection
  publication-title: Advanced Statistical Signal Processing
– ident: ref20
  doi: 10.1109/ACSSC.2014.7094855
– ident: ref10
  doi: 10.1109/TVT.2012.2187467
– ident: ref24
  doi: 10.1109/TSP.2016.2552504
– ident: ref14
  doi: 10.1109/TVT.2008.923659
– ident: ref9
  doi: 10.1109/TWC.2005.858363
– ident: ref4
  doi: 10.1109/TVT.2015.2497266
– ident: ref5
  doi: 10.1109/TCOMM.2018.2837101
– ident: ref12
  doi: 10.1109/TWC.2010.100110.100473
– ident: ref21
  doi: 10.1109/PIMRC.2014.7136253
– ident: ref6
  doi: 10.1186/s13634-016-0303-9
SSID ssj0014491
Score 2.3851383
Snippet We consider a Neyman-Pearson (NP) distributed binary detection problem in a bandwidth constrained wireless sensor network, where the fusion center (FC) makes a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11428
SubjectTerms Bandwidths
Bernoulli random variables
Cathode ray tubes
communication rate constraint
constrained optimization
Constraints
correlated Gaussian noises
Correlation
distributed binary detection
Fading channels
False alarms
Gaussian noise
Independent variables
J-divergence maximization
Neyman-Pearson detection
Optimization
orthogonal fading channels
pure censoring
Random noise
Random variables
Randomization
randomized transmission
Sensors
Wireless communication
Wireless sensor networks
Title On Bandwidth Constrained Distributed Detection of a Known Signal in Correlated Gaussian Noise
URI https://ieeexplore.ieee.org/document/9145610
https://www.proquest.com/docview/2456525648
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BTu0BaFNEeFQ-9ILUTeK1N7s-Ai1FlQqHJlUu1cqPWYhAuyjZCIlfj8e7iaK2Qr35YFtej70z45n5PoBPxisxYQnlk1sKM6YiMhliJHTm9Ys29PRG2RbXo6uJ_D5NplvweV0Lg4gh-Qz71AyxfFfZJT2VDRQP6n4bttNUNbVa64iBlC07HvcX2JsFq5DkUA3Gv8beEYy9f0rKjirsN1RQ4FT560cctMvlLvxYratJKrnvL2vTt89_QDb-78L3YKc1M9lZcy7ewRaW7-HtBvhgF37flOxcl-5p5uo7RsSdgS4CHftCYLrEg0VtrEOyVsmqgmlGLNkl-zm7pdlnpR82D9Uwvuc3vVxQRSa7rmYL_ACTy6_ji6uoJVuIbKx4HVllNIXQRjJAtgh_200irXNiVCjlEuX96DhFnuhCo4sLo0WaacMVcudcFot96JRViQfAtFQFpjJzTg1lgS6zOhOCa8lNoQqb9GCw2v_ctkjk9IUPefBIhir3EstJYnkrsR6crkc8Nigcr_TtkgDW_dq978HxSsR5e00XeYj6eqNPZof_HnUEb2juJnvvGDr1fIkn3gqpzcdw_F4AizbYRA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeIA9sDGGViibH_YyibR17DTxI4NBx6A8rCBepsg_Llu1KUU0FRJ__XxOWlUDob35wU4cn5278919H8BH45WYsITyyS2FGVMRmQwxEjrz-kUbunqjbIthf3Alz26SmxU4WNTCIGJIPsMONUMs303sjK7KuooHdf8C1hLvVaR1tdYiZiBlw4_H_RH2hsE8KNlT3dH1yLuCsfdQSd1Rjf2SEgqsKo9-xUG_nLyCi_nM6rSS351ZZTr24R_Qxv-d-mvYbAxNdljvjC1YwfINvFyCH9yGH5cl-6xLdz921S9G1J2BMAIdOyY4XWLCojZWIV2rZJOCaUY82SX7Pv5JTx-XfthdqIfxPU_1bEo1mWw4GU_xLVydfBkdDaKGbiGyseJVZJXRFETrywDaIvx5N4m0zol-oZRLlPek4xR5oguNLi6MFmmmDVfInXNZLHZgtZyU-A6YlqrAVGbOqZ4s0GVWZ0JwLbkpVGGTFnTn65_bBoucvvBPHnySnsq9xHKSWN5IrAWfFiNuaxyOZ_pukwAW_Zq1b0F7LuK8OajTPMR9vdkns92nR32A9cHo4jw__zr8tgcb9J46l68Nq9XdDPe9TVKZ92Er_gURnduV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Bandwidth+Constrained+Distributed+Detection+of+a+Known+Signal+in+Correlated+Gaussian+Noise&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Maleki%2C+Nahal&rft.au=Vosoughi%2C+Azadeh&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=10&rft.spage=11428&rft.epage=11444&rft_id=info:doi/10.1109%2FTVT.2020.3011050&rft.externalDocID=9145610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon