Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm
This document presents the implementation of a con- tinuous population genetic optimization algorithm (CGA) as a solution method to the parameter estimation problem of a diode model (SDM) of a photovoltaic panel (PV) from experimental data of voltage versus current (V-I). The parameters to be estima...
Saved in:
Published in | Revista IEEE América Latina Vol. 20; no. 4; pp. 616 - 623 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Spanish |
Published |
Los Alamitos
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1548-0992 1548-0992 |
DOI | 10.1109/TLA.2022.9675467 |
Cover
Abstract | This document presents the implementation of a con- tinuous population genetic optimization algorithm (CGA) as a solution method to the parameter estimation problem of a diode model (SDM) of a photovoltaic panel (PV) from experimental data of voltage versus current (V-I). The parameters to be estimated by means of the CGA are: the photoinduced current, the diode saturation current, the ideality factor, the series resistance and the parallel resistance. The estimation of the SDM parameters is carried out in order to obtain the real values that represent the power profile of the panel and thus carry out an analysis of its physical state. For which, the mean square error of the PV current estimated by the solution method from the selected parameters is used as the objective function, with the real curve of the PV panel used as the test scenario. All of the above subject to the set of restrictions that limits the problem under analysis. To validate the effectiveness and robustness of the proposed method, in this document two comparison methods have been used: the particle swarm optimization method (PSO) and a traditional genetic algorithm (GAT). In addition, four different panel types were used to generate the test scenarios: the MSX60, the SOLAR SJ65, the KYOCERA KC200GT, and the STP245S. All simulations were obtained using MATLAB 2019b. The results obtained in this document show that the proposed method presents the best relationship between the estimation of parameters and the computation time required to solve the SDM problem. |
---|---|
AbstractList | This document presents the implementation of a con- tinuous population genetic optimization algorithm (CGA) as a solution method to the parameter estimation problem of a diode model (SDM) of a photovoltaic panel (PV) from experimental data of voltage versus current (V-I). The parameters to be estimated by means of the CGA are: the photoinduced current, the diode saturation current, the ideality factor, the series resistance and the parallel resistance. The estimation of the SDM parameters is carried out in order to obtain the real values that represent the power profile of the panel and thus carry out an analysis of its physical state. For which, the mean square error of the PV current estimated by the solution method from the selected parameters is used as the objective function, with the real curve of the PV panel used as the test scenario. All of the above subject to the set of restrictions that limits the problem under analysis. To validate the effectiveness and robustness of the proposed method, in this document two comparison methods have been used: the particle swarm optimization method (PSO) and a traditional genetic algorithm (GAT). In addition, four different panel types were used to generate the test scenarios: the MSX60, the SOLAR SJ65, the KYOCERA KC200GT, and the STP245S. All simulations were obtained using MATLAB 2019b. The results obtained in this document show that the proposed method presents the best relationship between the estimation of parameters and the computation time required to solve the SDM problem. |
Author | Tobon, Andres Felipe Gonzalez Montoya, Daniel Montano, Jhon Jairo Grisales Norena, Luis F. |
Author_xml | – sequence: 1 givenname: Jhon Jairo orcidid: 0000-0002-9573-9179 surname: Montano fullname: Montano, Jhon Jairo email: jhonrojas7420@correo.itm.edu.co organization: Instituto Tecnologico Metropolitano: Medellin, Antioquia, CO – sequence: 2 givenname: Luis F. orcidid: 0000-0002-1409-9756 surname: Grisales Norena fullname: Grisales Norena, Luis F. email: luisgrisales@itm.edu.co organization: Instituto Tecnologico Metropolitano: Medellin, Antioquia, CO – sequence: 3 givenname: Andres Felipe orcidid: 0000-0003-1254-231X surname: Tobon fullname: Tobon, Andres Felipe email: andrestobon@itm.edu.co organization: Instituto Tecnologico Metropolitano: Medellin, CO – sequence: 4 givenname: Daniel orcidid: 0000-0002-8658-614X surname: Gonzalez Montoya fullname: Gonzalez Montoya, Daniel email: danielgonzalez@itm.edu.co organization: Instituto Tecnologico Metropolitano: Medellin, Antioquia, CO |
BookMark | eNp9kMtqAjEUhkOxULXdF7oJdD02yVxiliL2AkI3dj3EeMaJjIkmGaGv0KduxkspXXSV8N8OfAPUM9YAQveUjCgl4mkxn4wYYWwkCp5nBb9CfZpn44QIwXq__jdo4P2GkHRcjNM--pr5oLcyaGuwrXCoAe-kk1sI4PxFiX4NXUjJBm_tCprOkQbDvtUH2YAJeKWjfpTxrrbBHmwTpFZxzcR467VZR0tZE7RpbevxGgzERSybtXU61NtbdF3JxsPd-R2ij-fZYvqazN9f3qaTeaKYoCFRvMgBKi7zZSohUwKUFFwSvhSKi1VOUiIyCoxTUhAuCilTVrEqXWYVU1UsDdHjaXfn7L4FH8qNbZ2JJ0tWUEHSdMyzmCpOKeWs9w6qUulw5BSc1E1JSdlxLyP3suNenrnHIvlT3LlI2H3-V3k4VTQA_MQv7jccEpK4 |
CitedBy_id | crossref_primary_10_3390_electronics13152934 crossref_primary_10_1142_S0218001422560146 crossref_primary_10_1016_j_heliyon_2024_e39301 crossref_primary_10_3390_en16073180 crossref_primary_10_1016_j_ijhydene_2025_02_401 crossref_primary_10_3390_math11061326 crossref_primary_10_3390_axioms12010084 crossref_primary_10_3390_computation10070111 crossref_primary_10_1007_s00521_023_08451_x crossref_primary_10_1016_j_est_2023_107240 crossref_primary_10_3233_JIFS_230663 crossref_primary_10_1016_j_renene_2024_122238 crossref_primary_10_1109_OJIM_2023_3318678 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TLA.2022.9675467 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1548-0992 |
EndPage | 623 |
ExternalDocumentID | 10_1109_TLA_2022_9675467 9675467 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5GY 5VS 6IK 97E AAJGR AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-c765eef7a5b3ae4c9eca97a07b9c79d5030941e271060796aa32f2f3b4f2cf5b3 |
IEDL.DBID | RIE |
ISSN | 1548-0992 |
IngestDate | Mon Jun 30 10:12:15 EDT 2025 Wed Oct 01 02:09:39 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English Spanish |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c765eef7a5b3ae4c9eca97a07b9c79d5030941e271060796aa32f2f3b4f2cf5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9573-9179 0000-0002-1409-9756 0000-0002-8658-614X 0000-0003-1254-231X |
PQID | 2619033874 |
PQPubID | 75720 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9675467 proquest_journals_2619033874 crossref_citationtrail_10_1109_TLA_2022_9675467 crossref_primary_10_1109_TLA_2022_9675467 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Los Alamitos |
PublicationPlace_xml | – name: Los Alamitos |
PublicationTitle | Revista IEEE América Latina |
PublicationTitleAbbrev | T-LA |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0038683 |
Score | 2.3267148 |
Snippet | This document presents the implementation of a con- tinuous population genetic optimization algorithm (CGA) as a solution method to the parameter estimation... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 616 |
SubjectTerms | Documents Estimation Genetic algorithms Integrated circuit modeling Mathematical model Mathematical models modeling Optimization methods Parameter estimation parameters identification Particle swarm optimization photovoltaic Photovoltaic cells Photovoltaic systems Renewable energy Resistance Resistance factors Robustness (mathematics) Semiconductor diodes Solar |
Title | Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm |
URI | https://ieeexplore.ieee.org/document/9675467 https://www.proquest.com/docview/2619033874 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1548-0992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038683 issn: 1548-0992 databaseCode: RIE dateStart: 20030101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JTuwwLAJOvAPrQ49VOXBBojNp2iaTI0IghIATSNyqJE2gekwLTHvhE_hq7G5iE-JWObEb1U5i1xsh-1KDcSylDYwIXRAb7gLjfRQIlgkfMpOpBBOFL6_E2U18fpvczpHDIRfGOdcEn7kRPja-_Ky0Nf4qGyvQbmFjz5N5KVWbq9WfutFETKLeDcnU-PriCIw_zkcdzodrp-mj8uXwbW6U02Vy2a-lDST5P6orM7Ivn8o0_naxK2SpUy3pUSsLq2TOFWvkz7uCg-vk9QR2dJusSEtPQfmjWPt7ijExsx4yHSq5ArWmUw6O6IK6pzoHwYTX0iwHeAOmj_dlVcIhV-ncArUCpmMw_R0MYRx8XtRlPaMgp5guSfXDXfmcV_fTv-Tm9OT6-CzoujEElquwCqwUiXNe6sRE2sVWOasVstooK1WWoK8mDh0HlUUwqYTWEffcRyb23HpA2iALRVm4f4QmMbBLMBtaAYSkmSQy9kyzhGMpHT7ZJOOeWantSpVjx4yHtDFZmEqBvSmyN-2-8iY5GDAe2zIdP8xdR24N8wbwTi8PabePZynalwyseBlvfY-1TRaRdhvLs0MWqufa7YKaUpm9Rj7fAMs06DQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHNoeCi1F0AL1oZdKza7j-LE-ogq00F1Oi8Qtsh0bItiEssmFn8Cv7jgvtRRV3KKJx7YyY3smnvkGoa9Sg3MspY2MiF3EDHWR8T6JBMmEj4nJFA-JwvNzMb1gZ5f8cg19H3JhnHNN8JkbhcfmLj8rbR1-lY0VWLewsF-hDc6YpG22Vr_vJhMxSfqLSKLGi9kRuH-Ujjquvw6eppLKP9tvc6acbKJ5P5s2lORmVFdmZB-eADW-dLpb6F1nXOKjVhveozVXfEBv_4Ac3EaPx7Cm23RFXHoM5h8O6N_LEBWz6inLAcsVemtq5YQ3usDuV52DasKwOMuB3pDx3XVZlbDNVTq30FsBzUM4_RW8CpHweVGX9QqDpoaESaxvr8r7vLpefkQXJ8eLH9Ooq8cQWariKrJScOe81Nwk2jGrnNUqCNsoK1XGw20Nix0Fo0UQqYTWCfXUJ4Z5aj0w7aD1oizcLsKcgbgEsbEV0JE0Ey6ZJ5pwGsB06GQPjXthpbYDKw81M27TxmkhKgXxpkG8afeV99C3geOuBer4T9vtIK2h3UDe7_Uh7VbyKg0eJgE_XrJPz3N9Qa-ni_ksnZ2e__yM3oRx2siefbRe3dfuAIyWyhw2uvobD4brfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+parameters+of+the+mathematical+model+of+an+equivalent+diode+of+a+photovoltaic+panel+using+a+continuous+genetic+algorithm&rft.jtitle=Revista+IEEE+Am%C3%A9rica+Latina&rft.au=Montano%2C+Jhon+Jairo&rft.au=Grisales+Norena%2C+Luis+F.&rft.au=Tobon%2C+Andres+Felipe&rft.au=Gonzalez+Montoya%2C+Daniel&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=1548-0992&rft.volume=20&rft.issue=4&rft.spage=616&rft.epage=623&rft_id=info:doi/10.1109%2FTLA.2022.9675467&rft.externalDocID=9675467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-0992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-0992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-0992&client=summon |